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An exact solution of the Navier-Stokes equation is given which represents steady three-dimensional flow of a 
viscous fluid impinging on a plane wall obliquely. Numerical discussions of the relevant functions as well as the 
structure of the flow field are made. A comparison with an existing theory is also given. 
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     Unlike a two-dimensional flow obliquely running against a flat wall, a three-dimensional flow 
occurs when the flow tilts not only in the direction perpendicular to the flow, but also in its own 
plane. This article gives an exact solution to the Navier-Stokes equation, which generalizes the 
Hiemenz flow [1] to the case of a stationary three-dimensional flow running on a flat wall. 
     For reasons related to the nonlinearity of the Navier-Stokes equation, only two true three-
dimensional flows are currently known, which their exact solutions are. This is the Homan flow 
[2], finalized by Karman [3] for the case of a rotating disk and the Slezkin conical jet [4], and 
generalized to the case of swirling flow by Gol’dshtik [5] and Yih [6]. 
Although the Karman solution was obtained in cylindrical coordinates and the Slezkin solution 
in spherical coordinates, both of these solutions can be assigned to the same class of solutions of 
the Navier-Stokes equation. In both cases, to construct the solution, the corresponding ideal fluid 
flow is used as a basis, which is also a solution of the Navier-Stokes equation, which is 
nonlinear, and of a simpler, linear vortex-free equation 
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the variables in equation (1) are separated, which makes it possible to reduce it to a system of 
ordinary differential equations. 
Further, in order to extend the ideal solution (3) to the case of a viscous flow, the form of the 
function )( 2

0
2 xf  is preserved, and the remaining functions are searched again, assuming their 

asymptotic desire for their “ideal” analogues: 
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As a result, the solution of the Karman problem in cylindrical coordinates 
  ]),sin(),cos([,, 321 zororxxx   is representable in the form 
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and the Slezkin’s solution in spherical coordinates   ]),sin(),cos([,, 321 zororxxx   
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We choose the Cartesian coordinates  yx,  in the plane of the wall and the axis z in the 
perpendicular direction. The inviscid version of the current stream is very simple, and given in  
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terms of stream 2,1,0 ii  functions in the form (3), after substituting into the stationary Navier-
Stokes equation 
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As a result, for an ideal fluid flow we have 
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where a  and b   are scale constants. The flow consists of a vortex-free flow on the stagnation 
line and a uniform shear flow parallel to the wall (Fig. 1) 
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                              Fig. 1                                                                       Fig. 2 
 
 
If fluid viscosity is taken into account, a boundary layer appears along the wall. We assume a 
generalization of (3’) in the form of (4), assuming xf 0
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Then the stationary Navier-Stokes equation  
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Thus 
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where the dashes denote differentiation by z . Suitable boundary conditions follow from the 
expression for the flow rate 
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Equation (8) is the familiar Himenz equation. Equation (9) is a linear homogeneous Stuart 
equation [7] for )(0 zf . The function )(3 zf  satisfying the linear differential equation (10) gives a 
three-dimensional character to the flow 
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Since it is known that  zzzf ,)(1 , equations (8) and (9) can be approximated for large z  
as 
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The solutions of equations (8) - (10) and the components of the velocity field are presented in 
Figs. 3 and 4. 
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