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Exact solutions of the Navier-Stokes equation are given which represents steady compressible flow of a viscous 
fluid past a sphere. Numerical discussions of the relevant functions as well as the structure of the flow field are 
made. 
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For reasons related to the nonlinearity of the Navier-Stokes equation, very few flows are 
currently known that are its exact solution [1]. In most cases, to construct exact solutions, the 
appropriate ideal incompressible fluid flow 0u  is used as the basis, which is at the same time a 
solution of both the Navier-Stokes equation, which is nonlinear, and the simpler, linear vortex-
free flow equation 
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in which the velocity field is represented as a vector product of the gradients of its integral 
surfaces  2,1,0 ii  

(2)                   0
2

0
1

0  
u . 

In a special form of surface 0
i  representation typical of the method of separation of variables in 

linear partial differential equations 
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the variables in equation (1) are separated, which makes it possible to reduce it to a system of 
ordinary differential equations. 
     Further, in order to extend the ideal solution (3) to the case of a viscous flow, the form of the 
function )( 2

0
2 xf  is preserved, and the remaining functions are searched again, assuming their 

asymptotic desire for their “ideal” inverse images 0
if : 
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When substituting expressions (4) into the stationary Navier-Stokes equation 
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the number of independent equations for determining functions  0
if  

 usually exceeds their number, and such a system turns out to be joint only in the case of an ideal 
fluid. In those rare cases when the number of equations coincides with the number of unknowns, 
or when redundant equations coincide with others from the system, it is possible to find the exact 
solution to the Navier-Stokes equation [2,3]. 
An obvious reason for the limited applicability of the described method is that during viscous 
fluid flow, at least all functions in representation (3) must change [4]. 
This article provides a method to expand the applicability of the standard approach to finding 
exact Navier-Stokes solutions by taking into account the compressibility of a viscous fluid. This 
method is illustrated by the example of laminar flow around a sphere. 
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Compressible Flow around a Sphere. 
 
We choose the Cartesian coordinates  yx,  in the equatorial plane of the sphere and the axis z  in 
the direction of the incident flow. 
When a free-stream flow around a sphere u  with a density   
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in spherical coordinates 
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equations (4) take the following form 
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The stationary Navier-Stokes equation for a compressible fluid whose dynamic viscosity 
depends only on its density   has the form [5] 
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Here 10 ,  are the kinematic viscosities. 
Substitution of (8) into (9) gives ordinary differential equations for )(1 rf  and )(r . Thus 
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 , )ln(rl  ,  iC  are arbitrary constants. 

The components of the material flow field  ],, zyx uuuuJ  


 in the new coordinates (7) 
have the form 
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Compressible Flow around a Sphere 

 
Differential equation (10) under boundary conditions 
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 has two independent solutions 
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The streamlines of these flows in the plane  zy,  are shown in Fig. 1 and Fig. 2 
 
 

                                
                          Fig. 1                                                                     Fig. 2 
 
 
The distribution of the components of the material flow depending on the radius (with a fixed 
value of the coordinate o ) is shown in Fig. 3 and Fig. 4, which allow us to conclude that the first 
solution corresponds to the constant value of the material flow at infinity, and the second to its 
zero value. 
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Compressible Flow around a Sphere. 
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Fig.4 
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Fig.3 
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Compressible Flow around a Sphere 

 
 

 
Fig.5 

 
The density distribution of material flows, the first of which vanishes on the surface of the 
sphere, and the second decreases unlimitedly with distance from it (see Fig.5), partially disavow 
the physical value of the obtained solutions. 
At the same time, the solutions considered can be of particular importance for the purposes of 
mathematical hydrodynamics. 
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