Non-existence of odd almost perfect numbers

Kouji Takaki

May 09th, 2020
Abstract

Let \(b\) be an odd almost perfect number. Let the prime factors of \(b\) which are different from each other be odd primes \(p_1, p_2, \ldots, p_r\) and let the exponent of \(p_k\) be a positive integer \(q_k\). If the product of the series of the prime factors is an odd integer \(a\),

\[
a = \prod_{k=1}^{r} (p_k^{q_k} + p_k^{q_k-1} + \cdots + 1)
\]

\[
b = \prod_{k=1}^{r} p_k^{q_k}
\]

If \(b\) is an almost perfect number,

\[
a = 2b - 1
\]

holds. By a research of this paper, let \(a_k\) and \(b_k\) be odd integers and \(c_k\) be a positive integer and the following equations are assumed to hold.

\[
a_k = a / (p_k^{q_k} + \cdots + 1)
\]

\[
b_k = b / p_k^{q_k}
\]

\[
a_k = c_k(p_k + 1) + 2b_k - 1
\]

When \(r \geq 2\), By a proof which uses the product of \(a_k/b_k\), we found that it becomes a contradiction when odd almost perfect numbers exist other than 1. We have obtained a conclusion that there are no odd almost perfect numbers other than 1.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Proof</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>5</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
</tbody>
</table>
1. Introduction

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficient number) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function \(\sigma(n) \)) is equal to \(2n - 1 \). The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is \(2^0 = 1 \).

(Quoted from Wikipedia)

In this paper, we prove that there are no odd almost perfect numbers other than 1.

2. Proof

Let \(b \) be an odd almost perfect number. Let the prime factors of \(b \) which are different from each other be odd primes \(p_1, p_2, \ldots, p_r \) and let the exponent of \(p_k \) be a positive integer \(q_k \). If the product of the series of the prime factors is an odd integer \(a \),

\[
a = \prod_{k=1}^{r} \left(p_k^{q_k} + p_k^{q_k-1} + \cdots + 1 \right) \quad \text{①}
\]

\[
b = \prod_{k=1}^{r} p_k^{q_k} \quad \text{②}
\]

If \(b \) is an almost perfect number,

\[
a = 2b - 1 \quad \text{③}
\]

holds.

Let \(a_k \) and \(b_k \) be odd integers,

\[
a_k = a / (p_k^{q_k} + \cdots + 1)
\]

\[
b_k = b / p_k^{q_k}
\]

\(p_k^{q_k} + \cdots + 1 \) is odd since \(a \) and \(a_k \) are odd integers. Thereby, \(q_k \) is an even integer for all \(k \).

From the equation ③,

\[
a_k(p_k^{q_k} + \cdots + 1) = 2b_k p_k^{q_k} - 1 \quad \text{④}
\]

I. When \(r = 1 \)

\[
p_1^{q_1} + \cdots + 1 = 2p_1^{q_1} - 1
\]

\[
1 \equiv -1 \quad \text{(mod } p_1\text{)}
\]

It becomes inconsistent since \(p_1 \geq 3 \). Therefore, odd almost perfect numbers do not exist when \(r = 1 \).
II. When $r \geq 2$

\[p_k^{q_k} + \cdots + 1 = \frac{(p_k^{q_k+1} - 1)}{(p_k - 1)} < \frac{p_k^{q_k+1}}{(p_k - 1)} \]

When $p_k \geq 3$,

\[p_k^{q_k} + \cdots + 1 < \frac{p_k^{q_k+1}}{2} \]

\[a_k(p_k^{q_k} + \cdots + 1) < \frac{a_k p_k^{q_k+1}}{2} \]

From the equation (4),

\[2b_k p_k^{q_k} - 1 < \frac{a_k p_k^{q_k+1}}{2} \]

Since $p_k \geq 3$ and $b_k p_k^{q_k} \geq 9$,

\[15b_k p_k^{q_k}/8 < \frac{a_k p_k^{q_k+1}}{2} \]

\[a_k/b_k > \frac{15}{(4p_k)} \]

\[\prod_{k=1}^{r} \frac{a_k}{b_k} > \prod_{k=1}^{r} \left(\frac{15}{(4p_k)} \right) \]

\[\prod_{k=1}^{r} p_k > \left(\frac{15}{4} \right)^r/(a/b)^{r-1} \ldots (5) \]

Let c_k be a positive integer. From the equation (4),

\[a_k \equiv 2b_k - 1 \pmod{p_k + 1} \]

\[a_k = c_k(p_k + 1) + 2b_k - 1 > c_k p_k \]

From the inequality (5),

\[\prod_{k=1}^{r} a_k > \prod_{k=1}^{r} c_k p_k > \left(\frac{15}{4} \right)^r \prod_{k=1}^{r} c_k/(a/b)^{r-1} \]

\[a^{r-1} > \left(\frac{15}{4} \right)^r \prod_{k=1}^{r} c_k/(a/b)^{r-1} \ldots (6) \]

\[(4a^2/15b)^{r-1} > 15/4 \times \prod_{k=1}^{r} c_k \]

\[(8a^2/15(a + 1))^{r-1} > 15/4 \times \prod_{k=1}^{r} c_k \]

Suppose the following expression holds. Let x be a real number and $x \neq 0$ holds.

\[xa < 15a + 1 \ldots (7) \]

\[(8a/x)^{r-1} > 15/4 \times \prod_{k=1}^{r} c_k \]
In order to keep the direction of the inequality sign, $x > 0$ must be satisfied when r is even.

$$a^{r-1} > \frac{15}{4} \times \left(\frac{x}{8}\right)^{r-1} \prod_{k=1}^{r} c_k$$

From the inequality 6, a set A and a set B each having a as an element are defined under the following conditions.

A: $a^{r-1} > \left(\frac{15}{4}\right)^r \prod_{k=1}^{r} c_k / (a/b)^{r-1}$

B: $a^{r-1} > \frac{15}{4} \times \left(\frac{x}{8}\right)^{r-1} \prod_{k=1}^{r} c_k$

Since $A \Rightarrow B$, $A \subseteq B$ holds. On the other hand, $A \supseteq B$ holds because $B \land \neg A = \emptyset$ must be hold. Therefore, $A = B$ must be satisfied. It is not appropriate when r is even and $x < 0$ hold since $A = B$ does not hold.

$$\left(\frac{15}{4}\right)^r / (a/b)^{r-1} = \frac{15}{4} \times \left(\frac{x}{8}\right)^{r-1}$$

$$\left(\frac{15}{4}\right) / (a/b) = x / 8$$

$$a/b = 30 / x$$

From this equation, $a = 2b$ holds when $x = 15$. However, since it becomes contrary to the equation 3 it is not appropriate when $x = 15$.

When $x \neq 15$,

$$x(2b - 1) = 30b$$

$$b = -x / (30 - 2x)$$

From the inequality 7,

$$(x - 15)(2b - 1) < 1$$

$$(x - 15)(-2x / (30 - 2x) - 1) < 1$$

$$14 < 0$$

It becomes a contradiction. Therefore, odd almost perfect numbers do not exist when $r \geq 2$. From the above I and II, there are no odd almost perfect numbers other than 1.
3. Acknowledgement

We would like to thank the family members who sustained the research environment and the mathematicians who reviewed these studies in conducting this study.

4. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017
Fumio Sairaiji·Kenichi Shimizu "A story that prime is playing" Kodansha, 2015
The Free Encyclopedia Wikipedia
Kouji Takaki "Non-existence of odd n·multiperfect numbers". 2020
Kouji Takaki "There are no quasiperfect numbers". 2020