Abstract. This note is a proof of a strengthened form of the strong Goldbach conjecture.

Notations. Let \(\mathbb{N} \) denote the natural numbers starting from 1 and let \(\mathbb{P}_3 \) denote the prime numbers starting from 3.

Theorem (Strengthened strong Goldbach conjecture (SSGB)). Every even integer greater than 6 can be expressed as the sum of two different primes.

Proof. We define the set \(S_g := \{ (p_k, m_k, q_k) \mid k, m, p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \} \).

SSGB is equivalent to saying that every integer \(x \geq 4 \) is the arithmetic mean of two different odd primes and so it is equivalent to saying that all integers \(x \geq 4 \) appear as \(m \) in a middle component \(m_k \) of \(S_g \).

The negation \(\neg \)SSGB means that there is at least one \(n \geq 4 \) such that \(n_k \) is different from all the \(m_k \) for each \(k \geq 1 \), where all pairs \((p, q) \) of odd primes that determine the numbers \(m \) are used in \(S_g \). For each \(k \geq 1 \), \(n_k \) can be written as some \(p_k \) when \(n \) is prime, as some \(p_k' \) when \(n \) is composite and not a power of 2, or as \(4k' \) when \(n \) is a power of 2; \(p \in \mathbb{P}_3; k, k' \in \mathbb{N} \).

The expression \(p_k' \) for \(n_k \) with \(k' = k \) or \(k' \neq k \) is a first component of \(S_g \) triples and the expression \(4k' \) for \(n_k \) is component of the triple \((3k', 4k', 5k') \). Hence, for any \(n \geq 4 \) given by \(\neg \)SSGB we have

\[
(C): \forall k \in \mathbb{N} \quad \exists (p_k', m_k', q_k') \in S_g \quad n_k = p_k' \lor n_k = m_k'.
\]

Now, let \(S \) be a set such that \(SSGB \Rightarrow S_g = S \) and let \(S' \) be a set such that \(\neg SSGB \Rightarrow S_g = S' \). Then, since \(\neg \)SSGB means that there is an \(n \geq 4 \) such that \(n_k \neq m_k \) for all \((p_k, m_k, q_k) \in S_g \) and since SSGB means that there is no such \(n \), we can infer:

By the non-existence of \(n \), \(S \) equals \(S_g \) as it is defined, i.e. without any condition, and \(S' \) also equals \(S_g \) as it is defined because, according to \((C) \), every \(n_k \) given by \(\neg SSGB \) is a component of some triple that exists by definition of \(S_g \). So, by \(S = S' = S_g \), we have that the set \(S_g \) remains the same in the case \(n_k \) exists and in the case \(n_k \) does not exist.

Therefore, we obtain: \(\neg SSGB \Rightarrow SSGB \). This proves the theorem. \(\Box \)

\[1\] rwuesthofen@gmail.com