One page Proof of Riemann Hypothesis

Dmitri Martila

Institute of Theoretical Physics, Tartu University,
4 Tähe Street, 51010 Tartu, Estonia

(Dated: May 27, 2020)

Abstract

There are tenths of proofs for Riemann Hypothesis and 3 or 5 disproofs of it in arXiv. I am adding to the Status Quo my proof, which uses the achievement of Dr. Zhu.

*Electronic address: eestidima@gmail.com
I. PRIOR RESEARCH RESULT

Because the paper of Dr. Zhu [1] is not published in a peer-review journal (for 4 years) and is very complicated, it could contain a fatal mistake. Thus, I do not start with the final result called “The probability of Riemann’s hypothesis being true is equal to 1” but rather with the starting information of the papers [1, 2] (one of the papers is peer-reviewed), where is proven, that

\[
\lim_{n \to \infty} \inf d(n) = 0,
\]

where \(d(n) = D(n)/n \), and \(D(n) = e^\gamma n \ln \ln n - \sigma(n) \). Hereby the Riemann Hypothesis holds true, if \(\lim_{n \to \infty} \inf D(n) \geq 0 \).

II. MY PROOF

The Eq.(1) means, that \(\lim_{n \to \infty} d(n) \geq 0 \). However, the limit does not exist, because the number \(X = \lim \sigma(n)/n \) can not be determined: the function jumps from one value to another, namely \((\sigma(n) - \sigma(n+j))/n \neq 0 \) if \(n \to \infty \) for \(j < \infty \). Therefore, instead of Eq.(1) it is mathematically correct to write: \(d(n) = D(n)/n \geq 0 \), when \(n \gg 1 \). The expression \(n \gg 1 \) means, that the \(n \) is always finite \(n < \infty \). But for any finite \(n \) the \(D(n)/n \geq 0 \) implies, that \(D(n) \geq 0 \).
