AN IMPROVED LOWER BOUND OF HEILBRONN’S TRIANGLE PROBLEM

T. AGAMA

Abstract. Using the method of compression we improve on the current lower bound of Heilbronn’s triangle problem. In particular, by letting ∆(s) denotes the minimal area of the triangle induced by s points in a unit disc. Then we have the lower bound

\[\Delta(s) \gg \frac{\log^2 s}{s^2}. \]

1. Introduction

Let \(D \) denotes any convex shape in the plane and \(\Delta(S) \) denotes the minimal area of the triangle induced by a set of \(s \) points in \(D \) so that \(\Delta(s) \) denotes the supremum of all the \(\Delta(S) \). Then Heilbronn conjectured what is now known as Heilbronn’s triangle problem, which states

Conjecture 1.1. The minimal area of the triangle induced by \(s \) points in \(D \) satisfies

\[\Delta(s) = O\left(\frac{1}{s^2}\right). \]

Indeed Erdős had shown earlier to the effect of Heilbronn’s conjecture the lower bound

\[\Delta(s) \gg \frac{1}{s^2}. \]

This lower bound would have vindicated Heilbronn’s conjectured upper bound as the sharpest if it had been proven to be true. Heilbronn’s triangle problem had long remained open until in 1982 when it was proven false by Komlos, Pintz and Szemeredi [1]. In particular, they constructed a set of points in \(D \) whose minimal area of their induced triangles, denoted \(\Delta(s) \) satisfies the lower bound (see [1])

\[\Delta(s) \gg \frac{\log s}{s^2}. \]

What remains open now is the asymptotic growth rate of the minimal area of the triangle determined by a finite set of points in \(D \). To that effect the quest for improved lower and upper bounds are of worthy pursuit. The first non-trivial upper bound was obtained by Roth [4] given as

\[\Delta(s) \ll \frac{1}{s \sqrt{\log \log s}}. \]
A refinement of a method in [3] eventually yields the best currently known upper bound (see [2])

\[\Delta(s) \ll e^{c\sqrt{\log s}}. \]

In this paper we obtain an improved lower bound of the minimal area of the triangle induced by \(s \) points in a unit disc, by considering a particular type of configuration:

Theorem 1.1. Let \(\Delta(s) \) denotes the minimal area of the triangle formed by \(s \) points in the unit disc. Then we have the lower bound

\[\Delta(s) \gg \frac{\log^2 s}{s^2}. \]

2. Preliminaries and background

Definition 2.1. By the compression of scale \(m > 0 \) on \(\mathbb{R}^n \) we mean the map

\[V_m : \mathbb{R}^n \rightarrow \mathbb{R}^n \]

such that

\[V_m[(x_1, x_2, \ldots, x_n)] = \left(\frac{m}{x_1}, \frac{m}{x_2}, \ldots, \frac{m}{x_n} \right) \]

for \(n \geq 2 \) and with \(x_i \neq 0 \) for all \(i = 1, \ldots, n \).

Remark 2.2. The notion of compression is in some way the process of re-scaling points in \(\mathbb{R}^n \) for \(n \geq 2 \). Thus it is important to notice that a compression pushes points very close to the origin away from the origin by certain scale and similarly draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale \(m > 0 \) with \(V_m : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a bijective map.

Proof. Suppose \(V_m[(x_1, x_2, \ldots, x_n)] = V_m[(y_1, y_2, \ldots, y_n)] \), then it follows that

\[\left(\frac{m}{x_1}, \frac{m}{x_2}, \ldots, \frac{m}{x_n} \right) = \left(\frac{m}{y_1}, \frac{m}{y_2}, \ldots, \frac{m}{y_n} \right). \]

It follows that \(x_i = y_i \) for each \(i = 1, 2, \ldots, n \). Surjectivity follows by definition of the map. Thus the map is bijective. \(\square \)

2.1. The mass of compression

In this section we recall the notion of the mass of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of compression of scale \(m > 0 \) we mean the map

\[M : \mathbb{R}^n \rightarrow \mathbb{R}^n \]

such that

\[M(V_m[(x_1, x_2, \ldots, x_n)]) = \sum_{i=1}^{n} \frac{m}{x_i} \]

Lemma 2.4. The estimate remain valid

\[\sum_{n \leq x} \frac{1}{n} = \log x + \gamma + O\left(\frac{1}{x} \right) \]

where \(\gamma = 0.5772 \ldots \).
Remark 2.5. Next we prove upper and lower bounding the mass of the compression of scale \(m \geq 1 \).

Proposition 2.2. Let \((x_1, x_2, \ldots, x_n) \in \mathbb{N}^n\), then the estimates hold

\[
m \log \left(1 - \frac{n - 1}{\sup(x_j)}\right)^{-1} \ll \mathcal{M}(\mathcal{V}_m[(x_1, x_2, \ldots, x_n)]) \ll m \log \left(1 + \frac{n - 1}{\inf(x_j)}\right)
\]

for \(n \geq 2 \).

Proof. Let \((x_1, x_2, \ldots, x_n) \in \mathbb{R}^n\) for \(n \geq 2 \) with \(x_j \geq 1 \). Then it follows that

\[
\mathcal{M}(\mathcal{V}_m[(x_1, x_2, \ldots, x_n)]) = m \sum_{j=1}^{n} \frac{1}{x_j}
\]

and the upper estimate follows by the estimate for this sum. The lower estimate also follows by noting the lower bound

\[
\mathcal{M}(\mathcal{V}_m[(x_1, x_2, \ldots, x_n)]) = m \sum_{j=1}^{n} \frac{1}{x_j}
\]

\[
\geq m \sum_{k=0}^{n-1} \frac{1}{\inf(x_j) - k}.
\]

\(\square \)

Definition 2.6. Let \((x_1, x_2, \ldots, x_n) \in \mathbb{R}^n\) with \(x_i \neq 0 \) for all \(i = 1, 2, \ldots, n \). Then by the gap of compression of scale \(m \) \(\mathcal{V}_m \), denoted \(\mathcal{G} \circ \mathcal{V}_m[(x_1, x_2, \ldots, x_n)] \), we mean the expression

\[
\mathcal{G} \circ \mathcal{V}_m[(x_1, x_2, \ldots, x_n)] = \left\| \left(x_1 - \frac{m}{x_1}, x_2 - \frac{m}{x_2}, \ldots, x_n - \frac{m}{x_n} \right) \right\|
\]

Definition 2.7. Let \((x_1, x_2, \ldots, x_n) \in \mathbb{N}^n\) with \(x_i \neq x_j \) for all \(1 \leq i < j \leq n \). Then by the ball induced by \((x_1, x_2, \ldots, x_n) \in \mathbb{N}^n\) under compression of scale \(m \), denoted \(\mathcal{B}_{\mathcal{G} \circ \mathcal{V}_m}[(x_1, x_2, \ldots, x_n)][(x_1, x_2, \ldots, x_n)] \) we mean the inequality

\[
\left\| \mathbf{y} - \frac{1}{2} \left(x_1 + \frac{m}{x_1}, x_2 + \frac{m}{x_2}, \ldots, x_n + \frac{m}{x_n} \right) \right\| \leq \frac{1}{2} \mathcal{G} \circ \mathcal{V}_m[(x_1, x_2, \ldots, x_n)].
\]

A point \(\mathbf{z} = (z_1, z_2, \ldots, z_n) \in \mathcal{B}_{\mathcal{G} \circ \mathcal{V}_m}[(x_1, x_2, \ldots, x_n)][(x_1, x_2, \ldots, x_n)] \) if it satisfies the inequality. We call the ball the circle induced by points under compression if we take the dimension of the underlying space to be \(n = 2 \).

Remark 2.8. The circle induced by points under compression is the ball induced on points when we take \(n = 2 \).

Proposition 2.3. Let \((x_1, x_2, \ldots, x_n) \in \mathbb{R}^n\) for \(n \geq 2 \) with \(x_j \neq 0 \) for \(j = 1, \ldots, n \), then we have

\[
\mathcal{G} \circ \mathcal{V}_m[(x_1, x_2, \ldots, x_n)]^2 = \mathcal{M} \circ \mathcal{V}_1 \left[\left(\frac{1}{x_1^2}, \ldots, \frac{1}{x_n^2} \right) \right] + m^2 \mathcal{M} \circ \mathcal{V}_1[(x_1^2, \ldots, x_n^2)] - 2mn.
\]
In particular, we have the estimate
\[G \circ \mathcal{V}_m((x_1, x_2, \ldots, x_n))^2 = M \circ \mathcal{V}_1 \left[\left(\frac{1}{x_1}, \ldots, \frac{1}{x_n} \right) \right] - 2mn + O \left(m^2 M \circ \mathcal{V}_1([x_1^2, \ldots, x_n^2]) \right) \]
for \(\vec{x} \in \mathbb{N}^n \).

Lemma 2.9 (Compression estimate). Let \((x_1, x_2, \ldots, x_n) \in \mathbb{N}^n \) for \(n \geq 2 \), then we have
\[G \circ \mathcal{V}_m((x_1, x_2, \ldots, x_n))^2 \ll n \sup(x_j) + m^2 \log \left(1 + \frac{n-1}{\inf(x_j)^2} \right) - 2mn \]
and
\[G \circ \mathcal{V}_m((x_1, x_2, \ldots, x_n))^2 \gg n \inf(x_j) + m^2 \log \left(1 - \frac{n-1}{\sup(x_j)} \right) - 2mn. \]

Theorem 2.10. Let \(\vec{z} = (z_1, z_2, \ldots, z_n) \in \mathbb{N}^n \) with \(z_i \neq z_j \) for all \(1 \leq i < j \leq n \). Then \(\exists \vec{z} \in \mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{y}] \) if and only if
\[G \circ \mathcal{V}_m[\vec{z}] \leq G \circ \mathcal{V}_m[\vec{y}] \]

Proof. Let \(\vec{z} \in \mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{y}] \) for \(\vec{z} = (z_1, z_2, \ldots, z_n) \in \mathbb{N}^n \) with \(z_i \neq z_j \) for all \(1 \leq i < j \leq n \), then it follows that \(||\vec{y}|| > ||\vec{z}|| \). Suppose on the contrary that
\[G \circ \mathcal{V}_m[\vec{z}] > G \circ \mathcal{V}_m[\vec{y}] \]
then it follows that \(||\vec{y}|| < ||\vec{z}|| \), which is absurd. Conversely, suppose
\[G \circ \mathcal{V}_m[\vec{z}] \leq G \circ \mathcal{V}_m[\vec{y}] \]
then it follows from Proposition 2.3 that \(||\vec{z}|| \leq ||\vec{y}|| \) and \(\sup(z_j) \leq \sup(y_j) \) by Lemma 2.9. It follows that
\[\left\| \vec{z} - \frac{1}{2} \left(y_1 + \frac{m}{y_1}, \ldots, y_n + \frac{m}{y_n} \right) \right\| \leq \left\| \vec{y} - \frac{1}{2} \left(y_1 + \frac{m}{y_1}, \ldots, y_n + \frac{m}{y_n} \right) \right\| \leq \frac{1}{2} G \circ \mathcal{V}_m[\vec{y}] \]
This certainly implies \(\vec{z} \in \mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{y}] \) and the proof of the theorem is complete. \(\square \)

Theorem 2.11. Let \(\vec{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{N}^n \) with \(x_i \neq x_j \) for all \(1 \leq i < j \leq n \). If \(\vec{y} \in \mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{x}] \) then
\[\mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{y}] \subseteq \mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{x}] \]

Proof. First let \(\vec{y} \in \mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{x}] \) and suppose for the sake of contradiction that
\[\mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{y}] \not\subseteq \mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{x}] \]
Then there must exist some \(\vec{z} \in \mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{y}] \) such that \(\vec{z} \not\in \mathcal{B}_{1/2} G \circ \mathcal{V}_m[\vec{x}] \). It follows from Theorem 2.10 that
\[G \circ \mathcal{V}_m[\vec{z}] > G \circ \mathcal{V}_m[\vec{x}] \].
It follows that
\[G \circ V_m[\vec{y}] \geq G \circ V_m[\vec{z}] \]
\[> G \circ V_m[\vec{x}] \]
\[\geq G \circ V_m[\vec{y}] \]
which is absurd, thereby ending the proof. \(\square \)

Remark 2.12. Theorem 2.11 tells us that points confined in certain balls induced under compression should by necessity have their induced ball under compression covered by these balls in which they are contained.

2.2. Admissible points of balls induced under compression. We launch the notion of admissible points of balls induced by points under compression. We study this notion in depth and explore some possible connections.

Definition 2.13. Let \(\vec{y} = (y_1, y_2, \ldots, y_n) \in \mathbb{N}^n \) with \(y_i \neq y_j \) for all \(1 \leq i < j \leq n \). Then \(\vec{y} \) is said to be an admissible point of the ball \(B_{\frac{1}{2} G \circ V_m}[\vec{x}] \) if
\[\left| \vec{y} - \frac{1}{2} \left(x_1 + \frac{m}{x_1}, \ldots, x_n + \frac{m}{x_n} \right) \right| = \frac{1}{2} G \circ V_m[\vec{x}] \].

Remark 2.14. It is important to notice that the notion of admissible points of balls induced by points under compression encompasses points on the ball. These points in geometrical terms basically sit on the outer of the induced ball. Next we show that all balls can in principle be generated by their admissible points.

Theorem 2.15. The point \(\vec{y} \in B_{\frac{1}{2} G \circ V_m}[\vec{x}] \) is admissible if and only if
\[B_{\frac{1}{2} G \circ V_m}[\vec{y}] = B_{\frac{1}{2} G \circ V_m}[\vec{x}] \]
and \(G \circ V_m[\vec{y}] = G \circ V_m[\vec{x}] \).

Proof. First let \(\vec{y} \in B_{\frac{1}{2} G \circ V_m}[\vec{x}] \) be admissible and suppose on the contrary that
\[B_{\frac{1}{2} G \circ V_m}[\vec{y}] \neq B_{\frac{1}{2} G \circ V_m}[\vec{x}] \].

Then there exist some \(\vec{z} \in B_{\frac{1}{2} G \circ V_m}[\vec{x}] \) such that
\[\vec{z} \notin B_{\frac{1}{2} G \circ V_m}[\vec{y}] \].

Applying Theorem 2.10, we obtain the inequality
\[G \circ V_m[\vec{y}] < G \circ V_m[\vec{z}] \leq G \circ V_m[\vec{x}] \].

It follows from Proposition 2.3 that \(|\vec{x}| < |\vec{y}|\) or \(|\vec{y}| < |\vec{x}|\). By joining this points to the origin by a straight line, this contradicts the fact that the point \(\vec{y} \in B_{\frac{1}{2} G \circ V_m}[\vec{x}] \) is an admissible point. This contradicts the fact that the point \(\vec{y} \in B_{\frac{1}{2} G \circ V_m}[\vec{x}] \) is an admissible point. Now we notice that \(\vec{y} \in B_{\frac{1}{2} G \circ V_m}[\vec{x}] \) certainly implies \(G \circ V_m[\vec{y}] \leq G \circ V_m[\vec{x}] \). Conversely we notice as well that \(\vec{x} \in B_{\frac{1}{2} G \circ V_m}[\vec{y}] \), which certainly implies \(G \circ V_m[\vec{x}] \leq G \circ V_m[\vec{y}] \) by Theorem 2.10. Thus the conclusion follows. Conversely, suppose
\[B_{\frac{1}{2} G \circ V_m}[\vec{y}] = B_{\frac{1}{2} G \circ V_m}[\vec{x}] \]
and \(G \circ V_m[\vec{y}] = G \circ V_m[\vec{x}] \). Then it follows that the point \(\vec{y} \) must satisfy the inequality

\[
\left\| \vec{z} - \frac{1}{2} \left(y_1 + \frac{m}{y_1}, \ldots, y_n + \frac{m}{y_n} \right) \right\| = \left\| \vec{z} - \frac{1}{2} \left(x_1 + \frac{m}{x_1}, \ldots, x_n + \frac{m}{x_n} \right) \right\|
\leq \frac{1}{2} G \circ V_m[\vec{x}].
\]

It follows that

\[
\frac{1}{2} G \circ V_m[\vec{x}] = \left\| \vec{y} - \frac{1}{2} \left(x_1 + \frac{m}{x_1}, \ldots, x_n + \frac{m}{x_n} \right) \right\|
\leq \frac{1}{2} G \circ V_m[\vec{x}]
\]

and \(\vec{y} \) is indeed admissible, thereby ending the proof. \(\square \)

Next we obtain an equivalent notion of the area of the circle induced by points under compression in the plane \(\mathbb{R}^2 \) in the following result.

Proposition 2.4. Let \(\vec{x} \in \mathbb{N}^2 \subset \mathbb{R}^2 \). Then the area of the circle induced by point \(\vec{x} \) under compression of scale \(m \), denote by \(V_m[\vec{x}] \) is given by

\[
\delta(V_m[\vec{x}]) = \pi \left(G \circ V_m[\vec{x}] \right)^2.
\]

Proof. This follows from the mere definition of the area of a circle and noting that the radius \(r \) of the circle induced by the point \(\vec{x} \in \mathbb{R}^2 \) under compression is given by

\[
r = \frac{G \circ V_m[\vec{x}]}{2}.
\]

\(\square \)

3. **Lower bound**

Theorem 3.1. Let \(\Delta(s) \) denotes the minimal area of the triangle formed by \(s \) points in the unit disc. Then we have the lower bound

\[
\Delta(s) \gg \frac{\log^2 s}{s^2}.
\]

Proof. First let \(s \geq 4 \) and let \(m := m(s) > 0 \) be fixed. Pick arbitrarily a point \((x_1, x_2) = \vec{x} \in \mathbb{R}^2\) with \(x_j > 1 \) for \(1 \leq j \leq 2 \) such that \(G \circ V_m[\vec{x}] < 1 \). This ensures the circle induced under compression is contained in some unit disc. Next we apply the compression of scale \(m > 0 \), given by \(V_m[\vec{x}] \) and construct the circle induced by the compression given by

\[
\mathcal{B}_{\frac{1}{2} G \circ V_m[\vec{x}]}[\vec{x}]
\]

with radius \(\frac{G \circ V_m[\vec{x}]}{2} \). On this circle locate \((s - 3)\) admissible points so that the chord joining each pair of adjacent \((s - 1)\) admissible points including \(\vec{x} \) and \(V_m[\vec{x}] \) are equidistant. Let us now join each of the \((s - 1)\) admissible point considered to the center of the circle given by

\[
\vec{y} := \frac{1}{2} \left(x_1 + \frac{m}{x_1}, x_2 + \frac{m}{x_2} \right).
\]

...
Invoking Proposition 2.4, the area of the circle induced under compression is given by
\[
\delta(V_m[\vec{x}]) = \frac{\pi (G \circ V_m[\vec{x}])^2}{4}.
\]
We join all pairs of adjacent admissible points considered by a chord and produce \((s - 1)\) triangles of equal area. We note that we can use the area of each sector formed from this construction to approximate the area of each of the triangles inscribed in the sector as we increase the number of such admissible points on the circle. It follows that the area of each sector formed must be the same and given by
\[
A = \frac{\pi (G \circ V_m[\vec{x}])^2}{4 \times (s - 1)} \times 2\text{Inf}(x_j^2) + m^2 \log \left(1 - \frac{1}{\text{sup}(x_j^2)}\right)^{-1} - 4m.
\]

The lower bound follows by taking
\[
m := \frac{\log^2 s}{s} \quad \text{and} \quad \text{Inf}(x_j) := K \frac{\log s}{\sqrt{s}}
\]
for \(K \geq 2\). \(\square\)

\textbf{References}

\begin{flushleft}
\textsc{Department of Mathematics, African Institute for Mathematical science, Ghana}
\end{flushleft}

\begin{flushleft}
\textit{E-mail address:} theophilus@aims.edu.gh/emperordagama@yahoo.com
\end{flushleft}