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Abstract. This paper investigates the onset of turbulence in incompressible viscous fluid
flow over a flat plate by looking at the pressure gradients implied by the Blasius solution for
laminar fluid flow and adjusting the predicted flow, leading to a mathematically predictable flow
separation in the boundary layer and the onset of turbulence (including both transition and fully
turbulent regions - both with and without the presence of a flat plate). It then considers the
implications for potential analytic solutions to the Navier-Stokes Equations of the fact that it
is possible to predict turbulence and a singularity for many flows (at any velocity).
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2. Introduction
This paper investigates the onset of turbulence in incompressible viscous fluid flow over a flat
plate by looking at the pressure gradients implied by the Blasius solution for laminar fluid flow
and adjusting the predicted flow, leading to a mathematically predictable onset of turbulence.

Section 3 looks at the equations governing viscous incompressible flow in general and more
specifically for steady state flow in a boundary layer over a flat plate. It then looks at the
general characteristics of boundary layer flow over a flat plate, introduces the Blasius solution
modelling this flow and notes the observed pressure drop for flow over a cylinder.

Section 4 looks at the Blasius solution in more detail, investigates the horizontal pressure gra-
dients implied by the Blasius solution and adjusts the Blasius flow accordingly, leading to a
predictable zero flow point close to the plate, resulting in flow separation and the onset of tur-
bulence. This section also shows the applicability for the Blasius solution in free flow, without
a physical plate boundary.

Section 5 looks at the conclusions to be drawn - including both for predicting turbulence in
geometries where Blasius can be directly applied but also more generally in free flow regions
where we can say it is possible to predict the onset of turbulence (and a singularity) as a direct



consequence of flow separation for many flows (at any initial velocity) - eliminating the possi-
bility of analytical solutions to the Navier-Stokes equations in a number of situations.

3. Preliminary - Incompressible Flow Equations and Incompressible Flow
Boundary Layer Observations
3.1. Incompressible Flow Equations
The equations governing incompressible homogeneous newtonian fluid flow in all of space RN N
=2,3, are [1, p. 2]:

Dv
Dt = −∆p+ ν∇v (Navier-Stokes for ν > 0 or Euler for ν = 0).

div v = 0 (x, t) ∈ RN × [0,∞) (Incompressibility).

v
∣∣
t=0

= v0, x ∈ RN (Initial Conditions).

where v(x, t) is the fluid velocity, p(x, t) is the scalar pressure, DvDt is the convective derivative
(ie the derivative along the particle trajectories);

D
Dt = δ

δt +
∑N

j=1 v
j δ
δxj

The gradient operator ∇ is:

∇ =
(
δ
δx1
, ..., δ

δxN

)t
,

and the Laplace operator ∆ is:

∆ =
∑N

j=1
δ2

δx2j

ν = µ
ρ is the kinematic viscosity. (µ is the viscosity, ρ the density).

For 2-dimensional steady state flow (ie no variation with time), these equations reduce to:

(using x for x1, y for x2, u for δx1
δt , v for δx2

δt )

x Navier-Stokes: ρ
(
u δuδx + v δuδy

)
= − δp

δx + µ
(
δ2u
δx2

+ δ2u
δy2

)
(1)

y Navier-Stokes: ρ
(
u δvδx + v δvδy

)
= − δp

δy + µ
(
δ2v
δx2

+ δ2v
δy2

)
(2)

Incompressibility: δu
δx + δv

δy = 0 (3)

For most practical purposes, a scale analysis of these equations eliminates a number of terms
from the above equations, resulting in a boundary layer that has no pressure variation in the y
direction and a pressure variation in the x direction impressed from the external flow. In this
paper, we are looking at the (small) pressure variations that do exist (and the implications) and
so below we will look at a different approach.

3.2. Incompressible Flow over a Flat Plate
Firstly observing the characteristics of incompressible fluid flow over a flat plate (steady state)
as shown in figure 10-81 from [2, p. 514](not reproduced here):



The key points of interest are a continually increasing boundary layer thickness (boundary layer
edge being defined as the point at which u = 0.99U) with δu

δy always the same sign, as well as

the onset of turbulence as shown by the transition and turbulent regions (with corresponding
increases on boundary layer thickness).

If we now refer to the paper of Blasius (NACA translation) [3, p. 3], noting that Blasius uses ε for
the boundary layer thickness, then we see that there will be a small pressure gradient across the
boundary layer ( in the y direction - of the order of the square of the boundary layer thickness
for a steady state flow). For most practical purposes this pressure gradient (resulting in a small
pressure differential across the boundary layer) is ignored - however we will not ignore it for the
purposes of this paper. More importantly, we shall investigate the pressure profile implied by
the Blasius solution along the boundary layer (in the x direction).

3.3. Incompressible Flow over a cylinder
In his paper, Blasius also applied this analysis to a flow over a cylinder. In this case, there is
an additional term (related to the curvature of the cylinder) which generates a larger pressure
gradient.

An indication of the pressure differential in laminar flow over a cylinder is given in the widely
available graphs showing the difference between theoretical and actual pressure coefficients
measured along the surface of a cylinder in a moving fluid - a good example is in figure 10-
64 from [2, p. 504] (not reproduced here).
The key points to notice here are the clearly increasing pressure differential between theoreti-
cal pressure coefficient and laminar flow experimental results (up to boundary layer separation.
Note that the pressure is measured on the surface of the cylinder) consistent with an increasing
pressure gradient in the boundary layer as well as the much smaller pressure differential seen in
the turbulent boundary layer results.

4. Mechanism for the Onset of Turbulence
4.1. Blasius Solution
Blasius in his paper (see[3]) provides an approximation for laminar flow over an infinite flat
plate by ignoring the small pressure variations developed along and across the boundary layer
(approximating that any pressure profile is impressed on the boundary layer by the external
flow). This approximation works well for many applications, but does not predict the onset of
turbulence.

The reduced set of boundary layer equations that Blasius used were:

ρ( δuδt + u δuδx + v δuδy ) = ρ( δUδt + U δU
δx ) + µ δ

2u
δy2

δu
δx + δv

δy = 0

Where U is the x component of the external flow.

For the steady state situation this reduces to:



ρ(u δuδx + v δuδy ) = ρ(U δU
δx ) + µ δ

2u
δy2

δu
δx + δv

δy = 0

Blasius used these equations to approximate a numerical solution (based on a similarity variable

approach - η = y( Uνx)
1
2 ) for the flow velocities in a boundary layer. This solution has been shown

to be usefully accurate experimentally. See figure 10-99 from [2, p. 523](not reproduced here).

We can now investigate the implied x direction pressure gradient in a boundary layer by taking
the Blasius results for velocity in the x direction and (numerically) calculating the pressure pro-
file by using the full Navier-Stokes equations (i.e. equations 1, 2 and 3 at the start of the paper).

By using the Blasius values from [4] and matlab, based on an infinite plate in water flowing at
1ms−1, over a grid of 100,000 points in the x direction (up to x=0.6 so near observed turbulence)
and 1000 points in the y direction (up to y = 0.004 or the edge of the boundary layer at x=0.5)
- enough points to give us a good indication of the characteristics of the pressure gradient, if not
enough to give us reliably accurate values - we arrive at the following results (see figure 1 below):

Figure 1. Calculated Pressure Gradient and Horizontal Velocity

The key points to note from this figure relevant to this paper are the continuously positive
pressure gradients in the x direction (i.e continuous adverse pressure gradients - δp

δx > 0 for all
values of y for large enough values of x) and the continually decreasing u value as x increases.

We can also look in more detail at the pressure profile in the region where η < 2.5 - i.e closer to
the plate and away from the edge of the boundary layer (in the more ’linear’ part of the Blasius



graph above) - (see figure 2 below):

This detail shows more clearly the adverse pressure gradients and velocities close to the plate,
away from the boundary layer edge. It is important to note that these are calculated pressure
gradients and velocities from the Blasius approximation (which assumed no pressure gradients
generated inside the boundary layer).

The presence of an adverse pressure gradient in boundary layer flow is a necessary but not suf-
ficient condition for flow separation. We can visualise the pressure gradient here as a kind of
virtual diffuser.

Figure 2. Calculated Pressure Gradient and Horizontal Velocity Detail η < 2.5

4.2. Adjusting the Blasius Solution with the Implied Pressure Gradients.
It is now instructive to adjust the standard Blasius Solution by adding the calculated pres-
sure gradient and finding the implied adjusted flow velocities. Considering the full (x-direction)
steady-state Navier Stokes equation:

ρ
(
u δuδx + v δuδy

)
= − δp

δx + µ
(
δ2u
δx2

+ δ2u
δy2

)
We can rearrange this expression to evaluate the adjusted velocity figure when we superimpose
the implied pressure gradient onto the Blasius solution. It is important to note that the expres-
sion will be used to evaluate the change in variables.



Rearranging:

δu
δx =

(
− δp
δx

+µ
(
δ2u
δx2

+ δ2u
δy2

))
(ρu) − v δuδy (4)

If we now look at the magnitudes of the quantities involved (note these are all close to the plate
- the magnitudes are significantly different away from the plate):

Water: µ 10−3ρ 103
δu
δx : 10−5

δp
δx : 10−6

δ2u
δx2

: 10−5

δ2u
δy2

: 10−7 Note: Small due to the adverse the adverse pressure gradient.

v : 10−11

δu
δy : 102

With those magnitudes in mind, a reliable first approximation for the adjusted δu
δx value (hence

adjusted u value, by numerical integration along the x direction) can be calculated numerically
using the following reduced expression:

δu
δx =

(
− δp
δx

)
(ρu)

A small adjustment to this expression (including an additional factor to allow for some influence
from the discarded terms) is:

δu
δx =

(
− δp
δx

)
(ρu1.2)

The results of this calculation (using the same grid as before. Matlab code available on re-
quest.) are shown in figure 3 below:

The key observation from these results is that the adjusted velocity reduces to zero - first for flow
adjacent to the plate with the zero flow point moving further from the plate as x increases. If
we consider the concepts of marginal and massive separation (see [5, p. 403-411] for details) and
use the x value as the S parameter, then we can see that the the first zero flow point is a limit of
incipient separation. It marks the start of a marginal separation (separation and reattachment)
region (the transitional flow region) with a change to massive separation as S becomes large
enough (the fully turbulent flow region - marked with a significant increase in the boundary
layer thickness and a reduced pressue drop).

In addition, we can see that the above observations are consistent with stability theory (see
[5, p. 415] for details), if we note that perturbations are created by the separations and
reattachments in the marginal separation region (even if there no external perturbations).
Stability Theory provides a useful description of transitional and turbulent flow - not necessarily
an explanation.
The above observations show us that turbulence close to a flat plate is a consequence of flow
separation (marginal and massive), due to the (small) pressure gradients implied by the Blasius
Solution. Below we show the Blasius Solution approach extended to a free-flow example.

The inevitability of this result can be seen in the nature of the adjustment expression above -



Figure 3. Pressure Gradient and Adjusted Horizontal Velocity

the appearance of u in the denominator means that as u becomes small, δu
δx increases rapidly,

leading to a sudden reduction of u to zero (as can bee seen in the figure).

In short, the Blasius solution adjusted with the effects of the implied pressure gradient leads to
a guaranteed (and calculable) onset of turbulence. In addition, we can see below that this result
can be extended to free flowing incompressible fluid as well. The reduction of horizontal fluid
velocity to zero leads to a mathematical singularity (as can be seen with u in the denominator
in equation (4)), to be expected with the onset of turbulence.

4.3. Showing the Applicability of the Blasius Solution to Free Flowing Fluid (No Plates or
Other Obstructions).
It is useful to show the adjusted Blasius solution above can be applied in the more general
case of viscous incompressible fluid flowing without obstructions - two fluid regions flowing with
different horizontal velocities (different values of u) with initially zero v velocities.

If we refer to figure 4 below showing key parameter values in the case of free-flowing incom-
pressible fluid with the initial flow values mentioned above, with the flows assumed to start at
t = 0 and x = 0:

The key points to note in the diagram are the signs of δuδx and
δv
δy at points a and b in the diagram

(close to the boundary between the two layers).

The immediate conclusion is that both partial derivatives are zero at the boundary.



Figure 4. Blasius Free Flow Applicability.

In the case of u, this means that the value of u does not vary at the boundary, and if we accept
that for large x, the value of u will approach u1+u2

2 , then we can say that u at the boundary will

be constant at u1+u2
2 .

In the case of v, it is useful to look at the arrows in the figure for an impression of the sense of
the paths of the particle flows. In the lower region (lower velocity, u increasing as we approach
the boundary from below), then the value of v is positive, decreasing to zero as we approach the
boundary. In the upper region (higher velocity, u decreasing as we approach the boundary from
above), the value of v is also positive, increasing from zero at the boundary.

This means that we can treat the boundary as a virtual flat plate (zero thickness) with boundary
layers above and below and use the Blasius and adjusted Blasius approaches detailed above for
modelling the flows near the plate.

The final point to match with the earlier analyses is to set the zero u value at u1+u2
2 , so that

the the upper flow initial velocity is u1−u2
2 and the lower flow initial velocity is −u1−u2

2 .

The immediate observation from the above is that there will (eventually) be turbulence for all
incompressible viscid flows starting with different initial velocities.

5. Conclusions
The Blasius solution for incompressible fluid flow over a flat plate is a very useful tool for practi-
cal applications, but by eliminating pressure it eliminates the possibility of predicting the onset
of turbulence . By adding back the effects of the pressure gradient, it is possible to predict
mathematically the onset of turbulence as a feature of flow separation - consistent with existing
approaches including marginal and massive separation and stability theory (although more work
will need to be done to establish suitable accuracy).

Due to the wide applicability of the Blasius solution (for many geometries, including for flow



without obstructions or plates and for flows of any velocity), this result suggests that, due to
the predicted onset of turbulence and associated singularity, there may not be analytic solutions
to the Navier-Stokes equations in most cases.
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