Progress in The Proof of The Conjecture $c < \text{rad}^2(abc)$ - Case : $c = a + 1$

Abdelmajid Ben Hadj Salem, Dipl.-Eng.

Received: date / Accepted: date

Abstract In this paper, we consider the abc conjecture. We give some progress in the proof of the conjecture $c < \text{rad}^2(abc)$ in the case $c = a + 1$.

Keywords Elementary number theory · real functions of one variable · Number of solutions of elementary Diophantine equations.

Mathematics Subject Classification (2010) 11AXX · 26AXX

To the memory of my Father who taught me arithmetic
To my wife Wahida, my daughter Sinda and my son Mohamed
Mazen

1 Introduction and notations

Let a a positive integer, $a = \prod_i a_i^{\alpha_i}$, a_i prime integers and $\alpha_i \geq 1$ positive integers. We call radical of a the integer $\prod_i a_i$, noted by $\text{rad}(a)$. Then a is written as:

$$a = \prod_i a_i^{\alpha_i} = \text{rad}(a) \cdot \prod_i a_i^{\alpha_i-1}$$

(1)

We note:

$$\mu_a = \prod_i a_i^{\alpha_i-1} \implies a = \mu_a \cdot \text{rad}(a)$$

(2)

The abc conjecture was proposed independently in 1985 by David Masser of the University of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris 6)) ([4]). It describes the distribution of the prime factors of two integers with those of its sum. The definition of the abc conjecture is given below:

Abdelmajid Ben Hadj Salem
Résidence Bousten 8, Mosquée Raoudha, Bloc B,
1181 Soukra Raoudha
Tunisia
E-mail: abenhadjsalem@gmail.com
Conjecture 1 (abc Conjecture): Let \(a, b, c \) positive integers relatively prime with \(c = a + b \), then for each \(\epsilon > 0 \), there exists \(K(\epsilon) \) such that:

\[
c < K(\epsilon).\text{rad}(abc)^{1+\epsilon}\tag{3}
\]

We know that numerically, \(\frac{\log c}{\log(\text{rad}(abc))} \leq 1.629912 \) ([2]). A conjecture was proposed that \(c < \text{rad}^2(abc) \) ([1]). Here we will give a proof of it for the case \(c = a + 1 \).

Conjecture 2 Let \(a, b, c \) positive integers relatively prime with \(c = a + b \), then:

\[
c < \text{rad}^2(abc) \implies \frac{\log c}{\log(\text{rad}(abc))} < 2 \tag{4}
\]

This result, I think is the key to obtain the final proof of the veracity of the abc conjecture.

2 A Proof of the conjecture ([2]) case \(c = a + 1 \)

Let \(a, c \) positive integers, relatively prime, with \(c = a + 1 \) and \(R = \text{rad}(ac) \),

\[
c = \prod_{p \in J'} c_{j'}^{\beta_{j'}} \left(\beta_{j'} \geq 1 \right).
\]

If \(c < \text{rad}(ac) \) then we obtain:

\[
c < \text{rad}(ac) < \text{rad}^2(ac) \implies c < R^2
\]

and the condition (4) is verified.

If \(c = \text{rad}(ac) \), then \(a, c \) are not coprime, case to reject.

In the following, we suppose that \(c > \text{rad}(ac) \) and \(c \) and \(a \) are not prime numbers.

\[
c = a + 1 = \mu_a \text{rad}(a) + 1 < \text{rad}^2(ac)\tag{6}
\]

2.1 \(\mu_a \neq 1, \mu_a \leq \text{rad}(a) \)

We obtain:

\[
c = a + 1 < 2\mu_a \text{rad}(a) \Rightarrow c < 2\text{rad}^2(a) \Rightarrow c < \text{rad}^2(ac) \implies c < R^2\tag{7}
\]

Then (6) is verified.
2.2 $\mu_c \neq 1$, $\mu_c \leq \text{rad}(c)$

We obtain:

$$c = \mu_c \text{rad}(c) \leq \text{rad}^2(c) < \text{rad}^2(ac) \implies c < R^2$$

(8)

and the condition (8) is verified.

2.3 $\mu_a > \text{rad}(a)$ and $\mu_c > \text{rad}(c)$

2.3.1 Case: $\mu_a = \text{rad}^p(a), q \geq 2$, $\mu_c = \text{rad}^p(c), p \geq 2$

In this case, we write $c = a + 1$ as $\text{rad}^{p+1}(c) - \text{rad}^{q+1}(a) = 1$. Then $\text{rad}(c), \text{rad}(a)$ are solutions of the Diophantine equation:

$$X^{p+1} - Y^{q+1} = 1 \text{ with } (p + 1)(q + 1) \geq 9$$

(9)

But the solutions of the equation (9) are: $X = \pm 3, p + 1 = 2, Y = \pm 2, q + 1 = 3$, we obtain $p = 1 < 2$, then $\text{rad}(c), \text{rad}(a)$ are not solutions of (9) and the case $\mu_a = \text{rad}^p(a), q \geq 2, \mu_c = \text{rad}^p(c), p \geq 2$ is to reject.

2.3.2 Case: $\text{rad}(c) < \mu_c < \text{rad}^2(c)$ and $\text{rad}(a) < \mu_a < \text{rad}^2(a)$:

We can write:

$$\mu_c < \text{rad}^2(c) \implies c < \text{rad}^3(c)$$

$$\mu_a < \text{rad}^2(a) \implies a < \text{rad}^3(a)$$

$$\implies ac < R^3 \implies a^2 < ac < R^3 \implies a < R\sqrt{R} < R^2 \implies c = a + 1 < R^2$$

(10)

2.3.3 Case: $\mu_a > \text{rad}^2(c) \text{ or } \mu_a > \text{rad}^2(a)$

I- We suppose that $\mu_c > \text{rad}^2(c)$ and $\text{rad}(a) < \mu_a \leq \text{rad}^2(a)$:

I-1- Case $\text{rad}(a) < \text{rad}(c)$: In this case $a = \mu_a, \text{rad}(a) \leq \text{rad}^2(a).\text{rad}(a) < \text{rad}^2(a)\text{rad}(c) < \text{rad}^2(ac) \implies a < R^2 \implies c < R^2$.

I-2- Case $\text{rad}(c) < \text{rad}(a) < \text{rad}^2(c)$: As $a \leq \text{rad}^2(a).\text{rad}(a) < \text{rad}^2(a).\text{rad}^2(c) \implies a < R^2 \implies c < R^2$.

Example: $2^{30}.5^2.127.353^2 = 3^7.5^3.13^2.17.1831 + 1$, $\text{rad}(c) = 25.127.353 = 448310$, $\text{rad}^2(c) = 200981856100$.

$\mu_c = 2^{29}.5.353 = 947577159680 \implies \text{rad}^2(c) < \mu_c < \text{rad}^3(c)$,

$\text{rad}(a) = 3.5.13.17.1831 = 6069765, \text{rad}^2(a) = 36842047155225$,

$\mu_a = 3^6.5^4.13^4 = 13013105625 < \text{rad}^2(a)$. It is the case: $\text{rad}(c) < \mu_c < \text{rad}^2(c)$ and $\text{rad}(a) < \mu_a \leq \text{rad}^2(a)$ with $\text{rad}(c) = 448310 < \text{rad}(a) =
6069 765 < \text{rad}^2(c) = 200981 856 100.

I-3- Case \text{rad}^2(c) < \text{rad}(a):

I-3-1- We suppose that \(c \leq \text{rad}^6(c) \), we obtain:

\[
\begin{align*}
&c \leq \text{rad}^6(c) \implies c \leq \text{rad}^2(c) \cdot \text{rad}^4(c) \implies c < \text{rad}^2(c) \cdot (\text{rad}(a))^2 = R^2 \implies c < R^2
\end{align*}
\]

Example: \(5^8 \cdot 7^2 = 2^4 \cdot 3^7 \cdot 547 + 1 \implies 19140625 = 19140624 + 1, \text{rad}(c) = 5.7 = 35, \text{rad}(a) = 2.3547 = 3282 \implies \text{rad}(a) > \text{rad}^2(c) \), we obtain \(c = 19140625 > \text{rad}^6(c) = 42875 \) and \(c < \text{rad}^6(c) = 1838265625 \) and \(3282 = \text{rad}(a) < \mu_a = 5832 < \text{rad}^2(a) = 10771524 \implies a < \text{rad}^3(a) = 35352141768. \)

I-3-2- We suppose that \(c > \text{rad}^6(c) \implies \mu_c > \text{rad}^5(c) \), we suppose \(\mu_a = \text{rad}^2(a) \implies a = \text{rad}^2(a) \). Then we obtain that \(x = \text{rad}(a) \) is a solution in positive integers of the equation:

\[
X^3 + 1 = c = \mu_c \cdot \text{rad}(c) \quad (11)
\]

If \(c = \text{rad}^n(c) \) with \(n \geq 7 \), we obtain an equation like (9) that gives a contradiction. In the following, we will study the cases \(\mu_c = A \cdot \text{rad}^n(c) \) with \(\text{rad}(c) \nmid A, n \geq 0 \). The above equation (11) can be written as:

\[
(X + 1)(X^2 - X + 1) = c
\]

Let \(\delta \) any divisor of \(c \), then:

\[
X + 1 = \delta \quad (13)
\]

\[
X^2 - X + 1 = \frac{c}{\delta} = \delta' = \delta^2 - 3X \quad (14)
\]

We recall that \(\text{rad}(a) > \text{rad}^2(c) \), it follows that \(\delta \) must verifies \(\delta - 1 > \text{rad}^2(c) \implies \delta > \text{rad}^2(c) + 1. \)

I-3-2-1- We suppose that \(\delta = l \cdot \text{rad}(c) \implies l \cdot \text{rad}(c) > \text{rad}^2(c) + 1 \implies l > \frac{\text{rad}^2(c) + 1}{\text{rad}(c)} \). We obtain \(l \geq \text{rad}(c) + 2 \) so \(\text{rad}(c) \) and \(l \) have the same parity.

We have \(\delta = l \cdot \text{rad}(c) < c = \mu_c \cdot \text{rad}(c) \implies l < \mu_c \). As \(\delta \) is a divisor of \(c \), then \(l \) is a divisor of \(\mu_c \), we write \(\mu_c = l \cdot m. \) From \(\mu_c = l(\delta^2 - 3X) \), we obtain:

\[
m = l^2 \cdot \text{rad}^2(c) - 3 \cdot \text{rad}(a) \implies 3 \cdot \text{rad}(a) = l^2 \cdot \text{rad}^2(c) - m
\]

A- Case \(3|m \implies m = 3m', m' > 1 \): As \(\mu_c = ml = 3m' \implies 3|\text{rad}(c) \) and \((\text{rad}(c), m') \) not coprime. We obtain:

\[
\text{rad}(a) = l^2 \cdot \text{rad}(c) \cdot \frac{\text{rad}(c)}{3} - m'
\]
It follows that \(a, c \) are not coprime, then the contradiction.

B - Case \(m = 3 \Rightarrow \mu_c = 3! \Rightarrow c = 3\text{rad}(c) = 3\delta = \delta(\delta^2 - 3X) \Rightarrow \delta^2 = 3(1 + X) = 3\delta \Rightarrow \delta = l\text{rad}(c) = 3 \), then the contradiction.

I-3-2-2 - We suppose that \(\delta = l\text{rad}^2(c), l \geq 2 \). In this case \(\text{rad}(a) = l\text{rad}^2(c) - 1 \) verifies \(\text{rad}(a) > \text{rad}^2(c) \). If \(l\text{rad}(c) \nmid \mu_c \) then the case to reject. We suppose that \(l\text{rad}(c)|\mu_c \Rightarrow \mu_c = m\text{rad}(c) \), then \(\frac{\delta}{\delta} = m = \delta^2 - 3\text{rad}(a) \).

C - Case \(m = 1 = c/\delta \Rightarrow \delta^2 - 3\text{rad}(a) = 1 \Rightarrow (\delta - 1)(\delta + 1) = 3\text{rad}(a) = \text{rad}(a)(\delta + 1) \Rightarrow \delta = 2 = l\text{rad}^2(c) \), then the contradiction.

D - Case \(m = 3 \), we obtain \(3(1 + \text{rad}(a)) = \delta^2 = 3\delta \Rightarrow \delta = 3 = l\text{rad}^2(c) \). Then the contradiction.

E - Case \(m \neq 1, 3 \), we obtain: \(3\text{rad}(a) = l^2\text{rad}^4(c) - m \Rightarrow \text{rad}(a) \) and \(\text{rad}(c) \) are not coprime. Then the contradiction.

I-3-2-3 - We suppose that \(\delta = l\text{rad}^n(c), l \geq 2 \) with \(n \geq 3 \). From \(c = \mu_c\text{rad}(c) = l\text{rad}^n(c)(\delta^2 - 3\text{rad}(a)) \), let \(m = \delta^2 - 3\text{rad}(a) \).

F - As seen above (paragraphs C,D), the cases \(m = 1 \) and \(m = 3 \) give contradictions, it follows the reject of these cases.

G - Case \(m \neq 1, 3 \). Let \(q \) a prime that divides \(m \), it follows \(q|\mu_c \Rightarrow q = c_j^\beta_j \Rightarrow c_j^\beta_j|\delta^2 \Rightarrow c_j^\beta_j|3\text{rad}(a) \). Then \(\text{rad}(a) \) and \(\text{rad}(c) \) are not coprime. It follows the contradiction.

I-3-2-4 - We suppose that \(\delta = \prod_{j \in J_1} c_j^\beta_j, \beta_j \geq 1 \) with at least one \(j_0 \in J_1 \) with \(\beta_{j_0} \geq 2 \), \(\text{rad}(c) \nmid \delta \) and \(\delta - 1 = \prod_{j \in J_1} c_j^\beta_j - 1 > \text{rad}^2(c) = \prod_{j' \in J_1} c_{j'}^2, J_1 \subset J' \). We can write:

\[
\delta = \mu_\delta\text{rad}(\delta), \quad \text{rad}(c) = m\text{rad}(\delta)
\]

Then we obtain:

\[
c = \mu_c\text{rad}(c) = \mu_c m\text{rad}(\delta) = \delta(\delta^2 - 3X) = \mu_\delta\text{rad}(\delta)(\delta^2 - 3X) \Rightarrow m, \mu_c = \mu_\delta(\delta^2 - 3X)
\]

- If \(\mu_c = \mu_\delta \Rightarrow m = \delta^2 - 3X = (\mu_\delta\text{rad}(\delta))^2 - 3X \). As \(\delta < \delta^2 - 3X \Rightarrow m > \delta \Rightarrow \text{rad}(c) > m > \mu_c\text{rad}(\delta) > \text{rad}^2(c) \) because \(\mu_c > \text{rad}^2(c) \), it follows \(\text{rad}(c) > \text{rad}^2(c) \). Then the contradiction.
- We suppose that $\mu_c < \mu_\delta$. As $rad(a) = \mu_\delta rad(\delta) - 1$, we obtain:

$$rad(a) > \mu_c rad(\delta) - 1 > 0 \implies R > c rad(\delta) - rad(c) > 0 \implies$$
$$c > R > c rad(\delta) - rad(c) > 0 \implies 1 > rad(\delta) - \frac{rad(c)}{c} > 0, \quad rad(\delta) \geq 2$$

\implies The contradiction (16)

- We suppose that $\mu_\delta < \mu_c$. In this case, from the equation (25) and as $(m, \mu_\delta) = 1$, it follows that we can write:

$$\mu_c = \mu_1 \mu_2, \quad \mu_1, \mu_2 > 1 \quad (17)$$

so that

$$m \mu_1 = \delta^2 - 3 X, \quad \mu_2 = \mu_\delta \quad (18)$$

But:

$$rad(a) = \delta - 1 = \mu_\delta rad(\delta) > rad^2(c) \implies 0 > m^2 rad^2(\delta) - \mu_2 rad(\delta) + 1$$

Let $P(Z)$ the polynomial:

$$P(Z) = m^2 Z - \mu_2 Z + 1 \implies P(rad(\delta)) < 0 \quad (19)$$

The discriminant of $P(Z)$ is:

$$\Delta = \mu_2^2 - 4 m^2 \quad (20)$$

- $\Delta = 0 \implies \mu_2 = 2m$, but $(m, \mu_2) = 1$, then the contradiction. Case to reject.

- $\Delta < 0 \implies P(Z)$ has no real roots. From (19) it follows that $P(Z) > 0, \forall Z \in \mathbb{R}$. Then the contradiction with $P(rad(\delta)) < 0$. Case to reject.

- $\Delta > 0 \implies \mu_2 > 2m \implies \frac{\mu_2}{m} > 2$. We denote $t = \sqrt{\Delta} > 0$. The roots of $P(Z) = 0$ are Z_1, Z_2 with $Z_1 < Z_2$, given by:

$$Z_1 = \frac{\mu_2 - t}{2m^2}, \quad Z_2 = \frac{\mu_2 + t}{2m^2} \quad (21)$$

We approximate t by \tilde{t}:

$$t = \sqrt{\mu_2^2 - 4m^2} = \mu_2 \left(1 - \frac{4m^2}{\mu_2^2}\right)^{\frac{1}{2}} \implies \tilde{t} = \mu_2 - \frac{2m^2}{\mu_2} > 0$$

Then, we obtain \tilde{Z}_1, \tilde{Z}_2 as :

$$\tilde{Z}_1 = \frac{\mu_2 - \tilde{t}}{2m^2} = \frac{1}{\mu_2}, \quad \tilde{Z}_2 = \frac{\mu_2 + \tilde{t}}{2m^2} = \frac{\mu_2}{m^2} - \frac{1}{\mu_2} \quad (22)$$
As $\mu_2^2 - 4m^2 > 0 \implies \mu_2^2 - m^2 > 3m^2 > 0 \implies \frac{\mu_2^2}{m^2} - 1 > 0$, we will give below the proof that $\text{rad}(\delta) > \tilde{Z}_2 \implies P(\text{rad}(\delta)) > 0$, then the contradiction with $P(\text{rad}(\delta)) < 0$; we write:

$$\text{rad}(\delta) > \frac{\mu_2^2}{m^2} - \frac{1}{\mu_2}, \quad \mu_2 > 0 \implies$$

$$\mu_2 \cdot \text{rad}(\delta) > \frac{\mu_2^2}{m^2} - 1$$

$$\delta > \frac{\mu_2^2 - m^2}{m^2} > \frac{3m^2}{m^2}$$

as $\delta > 3 \implies \delta > \frac{\mu_2^2}{m^2} - 1 > 3 \implies \text{rad}(\delta) > \frac{\mu_2}{m^2} > \frac{1}{\mu_2} > \frac{3}{\mu_2}$ \hspace{1cm} (23)

If follows $P(\text{rad}(\delta)) > 0$ and the contradiction with the conclusion of the equation \[19\].

It follows that the case $c > \text{rad}^6(c)$ and $a = \text{rad}^3(a)$ is impossible.

I-3-3- We suppose $c > \text{rad}^6(c) \implies c = \text{rad}^6(c) + h$, $h > 0$ and $\mu_a < \text{rad}^2(a) \implies a + l = \text{rad}^3(a)$, $l > 0$. Then we obtain:

$$\text{rad}^6(c) + h = \text{rad}^3(a) - l + 1$$ \hspace{1cm} (24)

As $\text{rad}^2(c) < \text{rad}(a)$ (see I-3), we obtain the equation:

$$\text{rad}^3(a) - (\text{rad}^2(c))^3 = h + l - 1 = m > 0$$

Let $X = \text{rad}(a) - \text{rad}^2(c)$, then X is an integer root of the polynomial $H(X)$ defined as:

$$H(X) = X^3 + 3R \cdot \text{rad}(c)X - m = 0$$ \hspace{1cm} (25)

To resolve the above equation, we note $X = u + v$, then we obtain the two conditions:

$$u^3 + v^3 = m, \quad u \cdot v = -R \cdot \text{rad}(c) < 0 \implies u^3 \cdot v^3 = -R^3 \text{rad}^3(c)$$

It follows that u^3, v^3 are the roots of the polynomial $G(t)$ given by:

$$G(t) = t^2 - mt - R^3 \text{rad}^3(c) = 0$$ \hspace{1cm} (26)

The discriminant of $G(t)$ is:

$$\Delta = m^2 + 4R^3 \text{rad}^3(c) = \alpha^2, \quad \alpha > 0$$ \hspace{1cm} (27)

The two real roots of (26) are:

$$t_1 = u^3 = \frac{m + \alpha}{2}$$ \hspace{1cm} (28)

$$t_2 = v^3 = \frac{m - \alpha}{2}$$ \hspace{1cm} (29)
As \(m = \text{rad}^2(a) - \text{rad}^6(c) > 0 \), we obtain that \(\alpha = \text{rad}^2(a) + \text{rad}^6(c) > 0 \), then from the equation (27), it follows that \((\alpha = x, m = y)\) is a solution of the Diophantine equation:

\[
x^2 - y^2 = N
\]

with \(N = 4R^3\text{rad}^3(c) > 0 \). From the equations (28-29), we remark that \(\alpha \) and \(m \) verify the following equations:

\[
x + y = 2u^3 = 2\text{rad}^3(a) \tag{31}
\]
\[
x - y = -2v^3 = 2\text{rad}^6(c) \tag{32}
\]
\[
\quad \text{then } x^2 - y^2 = N = 4R^3\text{rad}^3(c) \tag{33}
\]

Let \(Q(N) \) be the number of the solutions of (30) and \(\tau(N) \) is the number of suitable factorization of \(N \), then we announce the following result concerning the solutions of the Diophantine equation (30) (see theorem 27.3 in [3]):

- If \(N \equiv 2(\text{mod } 4) \), then \(Q(N) = 0 \).
- If \(N \equiv 1 \) or \(N \equiv 3(\text{mod } 4) \), then \(Q(N) = [\tau(N)/2] \).
- If \(N \equiv 0(\text{mod } 4) \), then \(Q(N) = [\tau(N/4)/2] \).

\([x] \) is the integral part of \(x \) for which \([x] \leq x < [x] + 1 \).

Let \((\alpha', m') \), \(\alpha', m' \in \mathbb{N}^* \) be another pair, solution of the equation (30), then \(\alpha'^2 - m'^2 = x^2 - y^2 = N = 4R^3\text{rad}^3(c) \), but \(\alpha = x \) and \(m = y \) verify the equation (31) given by \(x + y = 2\text{rad}^3(a) \), it follows \(\alpha', m' \) verify also \(\alpha' + m' = 2\text{rad}^3(a) \), that gives \(\alpha' - m' = 2\text{rad}^6(c) \), then \(\alpha' = x = \alpha = \text{rad}^2(a) + \text{rad}^6(c) \) and \(m' = y = m = \text{rad}^3(a) - \text{rad}^6(c) \). We have given the proof of the uniqueness of the solutions of the equation (30) with the condition \(x + y = 2\text{rad}^3(a) \). As \(N = 4R^3\text{rad}^3(c) \equiv 0(\text{mod } 4) \) \(\Rightarrow Q(N) = [\tau(N/4)/2] = [\tau(\text{rad}^6(c).\text{rad}^3(a))/2] > 1 \). But \(Q(N) = 1 \), then the contradiction.

It follows that the case \(\mu_a \leq \text{rad}^2(a) \) and \(c > \text{rad}^6(a) \) is impossible.

II- We suppose that \(\text{rad}(c) < \mu_c \leq \text{rad}^2(c) \) and \(\mu_a > \text{rad}^6(a) \):

II-1- Case \(\text{rad}(c) < \text{rad}(a) \): As \(c \leq \text{rad}^3(c) = \text{rad}^2(c).\text{rad}(c) \Rightarrow c < \text{rad}^2(c).\text{rad}(a) \Rightarrow c < R^2 \)

II-2- Case \(\text{rad}(a) < \text{rad}(a) < \text{rad}^2(a) \): As \(c \leq \text{rad}^3(c) = \text{rad}^2(c).\text{rad}(c) \Rightarrow c < \text{rad}^2(c).\text{rad}(a) \Rightarrow c < R^2 \)

II-3- Case \(\text{rad}^2(a) < \text{rad}(c) \):

II-3-1- We suppose que \(a \leq \text{rad}^6(a) \Rightarrow a \leq \text{rad}^2(a).\text{rad}^4(a) \Rightarrow a < \text{rad}^2(a).\text{rad}(c)^2 = R^2 \Rightarrow a < R^2 \Rightarrow 1 + a \leq R^2 \), but \((c, a) = 1\), it follows \(c < R^2 \).
Progress in The Proof of The Conjecture $c < \text{rad}^2(abc)$ - Case : $c = a + 1$

II-3-2. We suppose $a > \text{rad}^6(a)$ and $\mu_c \leq \text{rad}^2(c)$. Using the same method as it was explicated in the paragraphs I-3-2, I-3-3 (permuting a,c), we arrive at a contradiction. It follows that the case $\mu_c \leq \text{rad}^2(c)$ and $a > \text{rad}^6(a)$ is impossible.

2.3.4 III - Case $\mu_c > \text{rad}^2(c)$ and $\mu_a > \text{rad}^2(a)$

We can write $c > \text{rad}^3(c) \Rightarrow c = \text{rad}^3(c) + h$ and $a = \text{rad}^3(a) + l$ with $h,l > 0$ positive integers.

III-1. We suppose $\text{rad}^3(a) < \text{rad}^3(c)$. We obtain the equation:

$$\text{rad}^3(c) - \text{rad}^3(a) = l - h + 1 = m > 0$$ (34)

Let $X = \text{rad}(c) - \text{rad}(a)$, from the above equation, X is a real root of the polynomial:

$$P(X) = X^3 + 3RX - m = 0$$ (35)

As above, to resolve (35), we put $X = u + v$, then we obtain the two conditions:

$$u^3 + v^3 = m$$ (36)
$$uv = -R < 0 \Rightarrow u^3 \cdot v^3 = -R^3$$ (37)

Then u^3, v^3 are the roots of the equation:

$$H(Z) = Z^2 - mZ - R^3 = 0$$ (38)

The discriminant of $H(Z)$ is:

$$\Delta = m^2 + 4R^3 = (\text{rad}^3(c) + \text{rad}^3(a))^2 = \alpha^2, \quad \text{taking} \quad \alpha > 0 \Rightarrow \alpha = \text{rad}^3(c) + \text{rad}^3(a)$$ (39)

From the equation (39), we obtain that $(\alpha = x, m = y)$ is a solution of the Diophantine equation:

$$x^2 - y^2 = N$$ (40)

with $N = 4R^3 > 0$ and $N \equiv 0 \pmod{4}$. Using the same method as in I-3-3-, we arrive to a contradiction.

III-2. We suppose $\text{rad}(c) < \text{rad}(a)$. We obtain the equation:

$$\text{rad}^3(a) - \text{rad}^3(c) = h - l - 1 = m > 0$$ (41)

Let $X = \text{rad}(a) - \text{rad}(c)$, from the above equation, X is a real root of the polynomial:

$$P(X) = X^3 + 3RX - m = 0$$ (42)

As above, to resolve (42), we put $X = u + v$, then we obtain the two conditions:

$$u^3 + v^3 = m$$ (43)
$$uv = -R < 0 \Rightarrow u^3 \cdot v^3 = -R^3$$ (44)
Then u^3, v^3 are the roots of the equation:

$$H(Z) = Z^2 - mZ - R^3 = 0 \quad (45)$$

The discriminant of $H(Z)$ is:

$$\Delta = m^2 + 4R^3 = (\text{rad}^3(c) + \text{rad}^3(a))^2 = \alpha^2,$$

taking $\alpha > 0 \Rightarrow \alpha = \text{rad}^3(c) + \text{rad}^3(a) \quad (46)$

From the equation (46), we obtain that $(\alpha = x, m = y)$ is a solution of the Diophantine equation:

$$x^2 - y^2 = N \quad (47)$$

with $N = 4R^3 > 0$ and $N \equiv 0 \pmod{4}$. Using the same method as in I-3-3-, we arrive to a contradiction.

It follows that the case $\mu_c > \text{rad}^2(c)$ and $\mu_a > \text{rad}^2(a)$ is impossible.

We can announce the following theorem:

Theorem 1 (Abdelmajid Ben Hadj Salem, 2020) Let a, c positive integers relatively prime with $c = a + 1$, then $c < \text{rad}^2(ac)$.

References