The congruence speed formula

Marco Ripà
sPIqr Society, World Intelligence Network
Rome, Italy
e-mail: marcokrt1984@yahoo.it

Published Online: 09 October 2020 Revised: 11 October 2020

Abstract: We solve a few open problems related to a peculiar property of the integer tetration \(b^a \), which is the constancy of its congruence speed for any sufficiently large \(b = b(a) \). Assuming radix-10 (the well known decimal numeral system), we provide an explicit formula for the congruence speed \(V(a) \in \mathbb{N}_0 \) of any \(a \in \mathbb{N}_1 \) that is not a multiple of 10, hypothesizing also a strict condition on \(b(a) \) to guarantee that \(V(a, b) = V(a) \) always holds. In particular, for any given \(n \in \mathbb{N} \), we prove to be true Ripà’s conjecture on the smallest \(a \) such that \(V(a) = n \).

Keywords: Tetration, Decadic number, Exponentiation, Integer sequence, Congruence speed, Conjecture, Modular arithmetic, Stable digit, Radix-10, Periodicity, General solution, Formula.

2010 Mathematics Subject Classification: 11A07, 11F33.

1 Introduction

The aim of this paper is to give a general formula for the “congruence speed” of tetration [11, 15], affirmatively answering the final conjecture stated in [14]. The properties that arise from our study [17] are valid for many different numeral systems [1, 16], but (from here on out) we assume radix-10.

First of all, let we introduce the constancy of the congruence speed of the integer tetration \(b^a \).

Definition 1. Let \(a \in \mathbb{N} - \{0, 1\} \) not be a multiple of 10. Let \(d \in \mathbb{N} \). The power tower of height \(b \in \mathbb{N} - \{0\} \) represents the integer tetration \(b^a := a^{(b-1)a} \). Given \(b^{-1}a \equiv b^a \mod 10^d \) \(\land \) \(b^{-1}a \not\equiv b^{a+b} \mod 10^{d+1} \), \(\forall b > a \geq 2 \), \(V(a, b) = V(a) \) returns the strictly positive integer such that \(b^a \equiv b^{a+b} \mod 10^{d+V(a)} \) \(\land \) \(b^a \not\equiv b^{a+b} \mod 10^{d+V(a)+1} \), and we define \(V(a) \) as the “constant congruence speed” of the base \(a \).

Now, let we assume \(a \in \mathbb{N} : a \not\equiv 0 \mod 10 \) in the rest of the paper. Since it is known [14] that \(b - 1 \geq a \geq 2 \) is a sufficient but not necessary condition for \(V(a, b) = V(a) \), let \(b > a \geq 2 \) unless differently specified.
2 A formula for the constant congruence speed of a

In the present Section we study $V(a)$, taking into account every $a \not\equiv 0 \pmod{10}$ [11]. In the first subsection, for any given $V(a) = n \in \mathbb{N} - \{0, 1\}$, we show which are the smallest bases a_1, a_2, \ldots, a_9 whose residues in modulo 10 are 1, 2, ..., 9, respectively. The second subsection is devoted to provide a general formula which maps any a whose constant congruence speed is given, for any $V(a, b) = V(a) \in \mathbb{N}$.

2.1 Finding bases with arbitrarily large $V(a)$ in the ring of the decadic integers

In order to describe the structure of $V(a, b) = V(a) \in \mathbb{N} - \{0\}$ in radix-10, for any sufficiently large base $a \not\equiv 0 \pmod{10}$, it can be useful to move the problem on \mathbb{Z}_{10}, the ring of the 10-adic integers.

Proposition 1. The 10-adic integers form a commutative ring, and we indicate it as \mathbb{Z}_{10} [2].

Proposition 2. Any positive integer can be represented as a 10-adic integer α. α can be written as an infinitely long string of digits going from right to left of a fixed digit. The aforementioned fixed digit, that we indicate as s_1, is the one which defines the congruence class (AKA residue modulo 10) of the corresponding base of the tetration b^a.

In particular, for any $n = 1, 2, 3, \ldots$, let us consider $s_{r-n}s_{(n-1)}\ldots s_2s_1 \in \mathbb{Z}_{10}$, the residues modulo 10^n which satisfy the congruence relation $s_{n+1} \equiv s_0 \pmod{10^n}$. Now, let $s_{j+2} \in \{0, 1, 2, \ldots, 9\}$ and $s_1 \in \{1, 2, 3, \ldots, 9\}$. We have that $a_{s_1} := \sum_{j=0}^{n-1} s_{j+1} \cdot 10^j \equiv a_{s_1} \equiv s_1 \pmod{10}$. Thus, a_{s_1} is a n-digits long decimal integer that has s_1 as its least significant digit.

On the other hand, we know that, $\forall a_{s_1}, \exists \alpha \in \mathbb{Z}_{10}$ such that $\alpha := \sum_{j=0}^{\infty} s_{j+1} \cdot 10^j \rightarrow a_{s_1}(n) = \sum_{j=0}^{n} s_{j+1} \cdot 10^j \equiv \sum_{j=0}^{\infty} s_{j+1} \cdot 10^j \pmod{10^n}$. This can be an efficient approach to solve the problem of finding the smallest $d_{1,3,7,9} \equiv \{1, 3, 7, 9\}(\pmod{10})$ whose constant congruence speed is equal to any given $n \in \mathbb{N} - \{0\}$.

Proposition 3. Let us consider the standard decimal numeral system (radix-10). It follows that the corresponding g-adic ring that we have to take into account is the decadic one ($g = 10$) [3], but 10 is not a prime number or a power of a prime (since 10 = 2 · 5 = $p_1 \cdot p_2$). Thus, for every odd s_1 (as defined in Proposition 2), we can find more than one polymorphic $\alpha \rightarrow a_{s_1}$ which arises when we solve in $\mathbb{Z}_{10} := \lim_{c \to \infty} \frac{\mathbb{Z}}{10^n \mathbb{Z}}$ (i.e., the set of formal series $\sum_{j=0}^{\infty} s_{j+1} \cdot 10^j, s_{j+1} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$) the fundamental equation $y^t = y$. Therefore, assuming $s_{(n+1)} \not\equiv 0, \forall s_1 \in \{1, 3, 5, 7, 9\}$, we can find two order-$n$ residues of as many polymorphic integers (i.e., $\alpha' \neq \alpha''$ such that $\alpha' \equiv \alpha''(\pmod{10})$) whose expansions modulo 10 are always characterized by a constant congruence speed equal to n (e.g., $s_1 = 7 \Rightarrow \alpha'_{s_1} = \ldots66295807$ and $\alpha''_{s_1} = \ldots92077057$ both satisfy $y^5 = y$, and $n = 7$ implies that $V(\alpha'(\pmod{10^7})) = V(66295807) = V(\alpha''(\pmod{10^7})) = V(2077057) = 7$).

Proposition 4. The constant congruence speed of a is well defined if and only if $10 \nmid a$ [14]. In particular, $V(a, b) = V(a) \geq 1 \Rightarrow a \geq 2$ for any sufficiently large $b \in \mathbb{N} - \{0\}$, and in this regard we point out that $b \geq a + 1$ represents a sufficient, but not a necessary, condition. Our hypothesis is that $b \geq \text{len}(a) + 2$ it is enough to ensure that $V(a, b) = V(a)$ holds for any a as above.
Conjecture 1. Let \(\text{len}(a) \in \mathbb{N} - \{0\} : 10^{\text{len}(a)-1} < a < 10^{\text{len}(a)} \) denote the number of digits of the base \(a \). \(\forall b \geq \text{len}(a) + 2, \ V(a, b) = V(a) \) (e.g., \(V(407922943, 2 \leq b \leq 10) = 9 \neq V(407922943, b \geq \text{len}(407922943) + 2) \)).

Remark 1. The statement of Conjecture 1 is certainly true for any \(a \equiv \{2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23 \}(\text{mod } 25) \), since (by References [13, 14]) \(\forall b \geq 3 \), we know that \(V(a) = V(a, b + 1) \leq V(a, b) \geq 1 \). Thus, \(V(a) = 1 \) implies that, \(\forall b \geq 3, \ V(a) = V(a, b) = 1 \geq V(a, b + 1) \geq 1 \Rightarrow V(a, b + 1) = V(a, b) = V(a) = 1 \) (e.g., \(V(2, b \geq 3) = V(2, b \geq \text{len}(2) + 2) = 1 \) is consistent with the expected result [15]).

Proposition 5. \(g = 10 = 2 \cdot 5 = p_1 \cdot p_2 \Rightarrow \gcd(p_1, p_2) = 1 \) (see Proposition 3). Since in \(\mathbb{Z}_{10} \) (which is not an integral domain) \(\exists h \neq 0 \land r \neq 0 \) such that \(h \cdot r = 0 \), it follows that, for every \(n \in \mathbb{N} \), \(5^{2^n} \cdot 2^{5^n} \equiv 0(\text{mod } 10^n) \) by the ring homomorphism \(\phi : \mathbb{Z}_{10} \to \mathbb{Z}_{10^n}^\times \). Since the sequence \(\{5^{2^n}\}_n := 5^{2^0}, 5^{2^1}, 5^{2^2}, \ldots \) converges 5-adically to 0 and 2-adically to 1 and \(\{2^{5^n}\}_\infty = 1 - \{5^{2^n}\}_\infty \) the above is the unique pair which induces the decomposition of \(\mathbb{Z}_{10} \). Thus, \(\mathbb{Z}_{10} \cong \mathbb{Z}_5 \oplus \mathbb{Z}_2 \) (where \(\oplus \) indicates the direct sum) since, for \(p \) prime, the complete ring \(\mathbb{Z}_p \) contains only the two idempotents elements 0 and 1, and the 5-adically plus 2-adically convergence implies the 10-adically convergence (by Cauchy’s convergence criterion). Hence, assume \(h(n) \equiv 5^{2^n} \) and \(r(n) \equiv 2^{5^n} \) in order to solve the fundamental equation \(y^5 = y, \) introduced by Proposition 3.

More formally: let \(\lim_{n \to \infty} \frac{\mathbb{Z}}{10^n \mathbb{Z}} \) indicate the subring of the cartesian product \(\prod_{n=1}^{\infty} \frac{\mathbb{Z}}{10^n \mathbb{Z}} \) of discrete topological spaces \(\frac{\mathbb{Z}}{10^n \mathbb{Z}} \) originated by all the sequences \((a_1, a_2, a_3, \ldots)\) such that, for every \(n \geq 1, \ a_{n+1} \equiv a_n(\text{mod } 10^n) \); we have the map \(\phi : \mathbb{Z}_{10} \to \mathbb{Z}_5 \oplus \mathbb{Z}_2, \ \phi(\alpha) \mapsto (\sum_{n=0}^{\infty} 2^n \cdot a_{n+1})_{5^n}, \sum_{n=0}^{\infty} 5^n \cdot a_{n+1})_{2^n} \) such that \(\alpha := \sum_{n=0}^{\infty} 5^n \cdot a_{n+1} \cdot 10^n \) in \(\mathbb{Z}_{10} \Rightarrow \alpha \mapsto 2^{5^n} \cdot a_{5^n}, \) and \(\alpha \mapsto 5^{2^n} \cdot a_{2^n} \) (let \(h_{m+1} := \sum_{n=0}^{m} v_{n+1} \cdot 5^n \) and \(h_{2m+1} := \sum_{n=0}^{m} w_{n+1} \cdot 2^n \), since \(\sum_{n=0}^{\infty} (5^{2^n} \cdot 2^{5^n}) = \alpha \) (mod \(2^{5^{m+1}} \)).

Given \(s_1 = 5, \) if \(h_n = 5^{2^n}(\text{mod } 10^n), \) then \(h_n = \cdots 92256259918212890625 \). [2]

Similarly, for \(s_1 = 2, r_n = 2^{5^n}(\text{mod } 10^n) \Rightarrow \lim_{n \to \infty} r_n = \cdots 804103263499879186432 \).

Now, let \(y_i(t) \) represent the \(i \) solutions in \(\mathbb{Z}_{10} \) of the equation \(y^t = y \). If \(t = 2, \) then \(\exists t : y(t) \in \{0, 1\} \iff y(2) \in \{h, 1 - r\} \), so let \(y(2) = h \) and \(y(2) = 1 - r \).

Following the path above, it is possible to verify that all the solutions of \(y^t = y \) belong to the set \(y_i(5) \) [4]. Thus, for every given \(i \) such that \(y_i(t) \in \{0, 1\}, \ y_i(5) \to a(n) = s_{n-5}(n-1) \ldots s_{2n-1} \Rightarrow V(a(n)) = k \geq n \), where \(k = n \) if and only if \(s_{(n+1)} \neq 0 \) (since \(s_{n+1} \ldots s_{2n-1} = s_{(n+1)} \ldots s_{2n-1} \text{mod } 10^n \) \(\land s_n \ldots s_2 \cdot s_1 \neq s_{(n+1)} \ldots s_{2n-1} \text{mod } 10^n \)) is a sufficient and necessary condition for \(V(a(n)) = n \).

In particular, we should note that if \(y_j(5) \) is coprime to 10 (where \(y_j(5) \) indicates a pentamorphic integer belonging to \(y_i(5) \)), then \(y_j(5) \to a_{1,3,7,9}(\text{mod } 10^n) \) is enough to find the smallest \(a \equiv \{1, 3, 7, 9\}(\text{mod } 10) \) such that \(V(a_{1,3,7,9}) \) is at least equal to \(n \) (see Proposition 6), for every \(n \geq 1 \). Hence, considering any of the aforementioned four congruence classes, the smallest base \(a(n) := a_{\min}(n) \) such that \(V(a) \geq n \) is given by
\[\bar{a}_{1,3,7,9}(n) = \begin{cases}
(1 - 2 \cdot 5^n)(\text{mod } 10^n) & \text{iff } a \equiv 1(\text{mod } 10) \\
\min \left((5^n - 2^5)(\text{mod } 10^n), -\left(5^n + 2^5\right)(\text{mod } 10^n)\right) & \text{iff } a \equiv 3(\text{mod } 10) \\
\min \left((5^n + 2^5)(\text{mod } 10^n), (2^5 - 5^n)(\text{mod } 10^n)\right) & \text{iff } a \equiv 7(\text{mod } 10) \\
(2 \cdot 5^n - 1)(\text{mod } 10^n) & \text{iff } a \equiv 9(\text{mod } 10)
\end{cases} \]

Proposition 6. Let \(h(n) = 5^2 \) and \(r(n) = 2^5 \), as usual. Assume \(t \geq 5 \) and let \(y_t(t) \) represent all the solutions in \(\mathbb{Z}_{10} \) of the equation \(y^t = y \) (i.e., \(t \in \{1, 2, 3, \ldots, 14, 15\} \)). Let \(\alpha'_{s_1} \cup \alpha''_{s_1} \) (if any) denote the subset of all the \(y_t(t) \equiv s_1(\text{mod } 10) \) which are not congruent to \(\{0, 1\} \) modulo 10^2. It follows that \(y_t(5) \ni \{\alpha'_{1}, \alpha'_{2}, \alpha'_{3}, \alpha'_{4}, \alpha'_{5}, \alpha''_{5}, \alpha'_{6}, \alpha''_{7}, \alpha'_{8}, \alpha''_{9}, \alpha''_{10}\} \), since \(y_{14}(t) : 0^t = 0 \) and \(y_{15}(t) : 1^t = 1 \) show the existence of two solutions of \(y^2 = y \) which are not included in the aforementioned subset. In order to understand how the remaining \(y_t(t) \) anticipate the recurrence rules stated in Section 2.2, it can be helpful to preliminary observe that the \(y_t(t) \) follow from
\[\lim_{n \to \infty} \frac{5^n}{5^n + 2^5} = \frac{1 + \sqrt{5}}{2} \Rightarrow y = \lim_{n \to \infty} 5^n = \lim_{n \to \infty} 5^n + 2^n = y^2 \Rightarrow y_{j_1}(2) = y_{(12,14,15)}(t) = (\alpha'_{1}, \alpha'_{9}, 0, 1) = \{-\sqrt{5}, \sqrt{5}, 1, -1\}, \text{ and we can easily verify that } \alpha'_{9} = -\alpha'_{1} = \sqrt{5} = \lim_{n \to \infty} \frac{5^n - 2^n}{5^n} \quad [5, 6]. \]

Considering \(t = 5 \), we find in a similar way all the other roots (e.g., see References [7-10] for \(\alpha'_{3}, \alpha''_{3}, \alpha'_{7}, \) and \(\alpha''_{7} \), so it is possible to conclude that \(y_{t \leq 13}(t) = 5 \) are such that \(\alpha'_{1} = -\alpha'_{3}, \alpha'_{2} = -\alpha'_{8}, \alpha'_{3} = -\alpha'_{7}, \alpha''_{3} = -\alpha''_{7}, \alpha'_{4} = -\alpha'_{6}, \alpha'_{5} = -\alpha'_{5}, \) and \(\alpha''_{9} = 1. \) Furthermore, for any \(n, \)
\[r(n)^2 + 1 = h(n)
\]
In general, as clearly explained by Michon in Reference [4], we have
\[y_{j_1}(t) = \begin{cases}
(1 - 2 \cdot 5^n)(\text{mod } 10^n) & \text{iff } i = 1 \\\n\alpha'_{2} = h - r = \ldots 455303245144122416553040789004103623499879186432 & \text{iff } i = 2 \\
\alpha'_{3} = -h - r = \ldots 528709779454848385762121375881529641333704193 & \text{iff } i = 3 \\
\alpha'_{4} = h - 1 = \ldots 57423423203896109040106619977392256259918212890624 & \text{iff } i = 4 \\
\alpha'_{5} = h = \ldots 57423423203896109040106619977392256259918212890625 & \text{iff } i = 5 \\
\alpha'_{6} = h - 1 = \ldots 4257657676910389998998933800022607743740081787109375 & \text{iff } i = 6 \\
\alpha'_{7} = -h - r = \ldots 4712960922054115161423787624184700358666295807 & \text{iff } i = 7 \\
\alpha'_{8} = h + r = \ldots 619764556823373316963702781719635923418092077057 & \text{iff } i = 8 \\
\alpha'_{9} = -r = \ldots 9544967548558775834469541260198596736500120813568 & \text{iff } i = 9 \\
\alpha'_{10} = 2 - h - 1 = \ldots 1484684646179221800821323995478451251936425781249 & \text{iff } i = 10 \\
\alpha'_{9} = -1 = \ldots 99999999999999999999999999 & \text{iff } i = 11
\end{cases} \]
\[\text{Since } \phi: \mathbb{Z}_{10} \to \frac{z}{10^n \mathbb{Z}} \text{ it follows that } \alpha = a(\text{mod } 10^n) \Rightarrow \alpha'_{s_1}(n) \equiv \alpha''_{s_1}(n) = 0. \]

Proposition 7. Let \(s_1 \in \{2, 4, 6, 8\} \) and assume \(s_{(n+1)} \neq 0. \) Let \(\alpha'_{s_1}(n) := \alpha'_{s_1}(mod \ 10^n) \). Since,
\[\forall n \geq 1, s_{(n+1)} \neq 0 \Rightarrow V\left(\alpha'_{s_1}(mod \ 10^n)\right) = n, \] we only need to compute the residues modulo \(P\left(V\left(\alpha'_{s_1}(n)\right)\right) \) (see [14], Section 5) of \(\alpha'_{s_1} \), in order to find the smallest bases \(\bar{a}_{s_1}(n) \) of the integer tetration \(b^a \) such that \(V\left(\alpha'_{s_1}(n)\right) = V\left(\bar{a}_{s_1}(n)\right) = n \) (e.g., if \(s_1 = 2 \) and \(n = 4 \), which implies that
\[s_{(4+1)} = 8 \neq 0, \text{ then } V(\alpha'_{2}(4)) = V(6432) = 4 \Rightarrow V(6432(\text{mod } 5^4)) = V(182) = V(\alpha_{2}(4)) \Rightarrow \alpha_{2}(4) = 182. \]

Sometimes, \(\alpha'_{s_{1}}(n) \pmod{5^n} \) returns residues \(\tilde{a}_{[2,4,6,8]}(n)\) which are not congruent modulo 10 to \(s_{1}\) (e.g., \(V(\alpha'_{8}(9)) = V(120813568) = 9 \Rightarrow 120813568 \equiv 1672943(\text{mod } 5^9)\) would suggest that \(\tilde{a}_{8}(9)\) is equal to 1672943, but clearly 1672943 \(\not\equiv 8(\text{mod } 10)\), and (if this is the case) we can check that \(\hat{a}_{[2,4,6,8]}(n) + k \cdot 5^n = \hat{a}_{[2,4,6,8]}(n)\) still holds for some \(k \in \mathbb{N}\) (referring to the example above, we verify that \(k = 3\) holds because \(\tilde{a}_{8}(9) + 3 \cdot 5^9 = 7532318 = \tilde{a}_{8}(9)\)).

In particular, if \(s_{1} = 6\), the condition \(\hat{a}_{6}(n) = 5^n + 1\) trivially comes from the exclusion of the residue 1 (furthermore, \(V(1) = 0 [14]\)). Thus, \(s_{1} = 6 \Rightarrow k = 1\) for any \(n\), while \(s_{1} = 4 \Rightarrow k = 0\).

This concludes the proof that, for every \(n \geq 1\), \(\exists! k \in \mathbb{N}_{0} : \alpha'_{[2,4,6,8]}(n) - k \cdot 5^n = \hat{a}_{[2,4,6,8]}(n)\).

Finally, if \(s_{1} = 5\), we can find bases \(\alpha'_{5}(n) < \alpha'_{5}(n)\) and \(\alpha''_{5}(n) < \alpha''_{5}(n)\) with a constant congruence speed at least equal to \(n\), by simply taking into account that \(P'(\alpha'_{5}(n)) = P'(\alpha''_{5}(n)) = 5 \cdot 2^{n+1}\) (see [14], Section 5), and introducing the additional condition \(n > 2\).

Thus,
\[
V\left(\alpha'_{5}(n) \pmod{10 \cdot 2^n}\right) \geq n \land V\left(\alpha''_{5}(n) \pmod{10 \cdot 2^n}\right) \geq n,
\]
(3)

and Equation (3) let us confirm the validity of Equation (5) (e.g., if \(n = 20\), then \(\alpha'_{5}(20) = 92256259918212890625\) is congruent modulo \(10 \cdot 2^{20}\) to 9437185 and \(V(9437185) = 20\), while \(V\left(\alpha''_{5}(20) \pmod{10 \cdot 2^{20}}\right) = V(6291455) = 21 > n\)).

2.2 Bases \(a_{s_{1}} \equiv s_{1}(\text{mod } 10)\) characterized by a given \(V(\alpha_{s_{1}}) = n, \forall n \in \mathbb{N}\)

Let \(\tilde{a}(n) := \min_{\alpha} \{a : V(a) = n\}, \forall n \in \mathbb{N} \setminus \{0\}\). Let \(a_{s_{1}}(n) \equiv s_{1}(\text{mod } 10)\) for every \(s_{1} \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}\). Consequently, \(\forall n \geq 1, \tilde{a}_{s_{1}}(n) = \min_{\alpha} (a_{s_{1}} : V(a_{s_{1}}) = n)\).

We show that Equations (4) is true for any \(n \geq 2\) (i.e., \(n \geq 2 \Rightarrow a_{5}(n) = \tilde{a}(n)\)).

\[
\tilde{a}(n) = \min \left(2^{n} \cdot 2 \cdot \cos \left(\frac{\pi (n-1)}{2}\right) - 4 \cdot \sin \left(\frac{\pi (n-1)}{2}\right) + 5\right) + 1,
\]
(4)

\[
2^{n} \cdot \left(4 \cdot \sin \left(\frac{\pi (n-1)}{2}\right) - 2 \cdot \cos \left(\frac{\pi (n-1)}{2}\right) + 5\right) - 1.
\]

Hence,
\[
\tilde{a}(n) = \begin{cases}
2^{n} \cdot \left(5 + 2 \cdot \sin \left(\frac{\pi n}{2}\right) + 4 \cdot \cos \left(\frac{\pi n}{2}\right)\right) + 1 & \text{ iff } n \equiv \{2, 3\}(\text{mod } 4) \\
2^{n} \cdot \left(5 - 2 \cdot \sin \left(\frac{\pi n}{2}\right) - 4 \cdot \cos \left(\frac{\pi n}{2}\right)\right) - 1 & \text{ iff } n \equiv \{0, 1\}(\text{mod } 4)
\end{cases}
\]
(5)

Now, assume \(b > a \geq 2\) (as usual), even if we are strongly persuaded that also \(b \geq \text{len}(a) + 2\) represents a sufficient condition for \(V(a, b) = V(a)\), as predicted by Conjecture 1 [1, 16]. Then, for any given \(n \in \mathbb{N} \setminus \{0, 1\}\), \(V(a_{s_{1}}(n)) = n\), \(\forall s_{1} \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}\), if and only if Equations (6), (7), (8), (10), (11), (14), (15), (16), and (17) are satisfied.

\[
a_{1}(n) = \begin{cases}
\left(2^{4 \cdot 5^{n+1} + 1} - 1\right)(\text{mod } 10^{n}) + j_{n} \cdot 10^{n}, \forall j_{n} \neq \left(\frac{2^{4 \cdot 5^{n+1} + 1} - 1}{\frac{10^{n}}{10}}\right) & \text{mod } 10^{n} \\
10^{n} + 1 + k \cdot 10^{n}, \forall k \equiv \{0, 1, 2, 3, 4, 5, 6, 7, 8\}(\text{mod } 10)
\end{cases}
\]
(6)

Since \((k + 1) \cdot 10^{n} + 1 > \left(2^{4 \cdot 5^{n+1} + 1} - 1\right)(\text{mod } 10^{n})\) is always true, Equation (6) implies that if \(n : \left(2^{4 \cdot 5^{n+1} + 1} - 1\right)(\text{mod } 10^{n}) \not\equiv \left(2^{4 \cdot 5^{n+1} + 1} - 1\right)(\text{mod } 10^{n+1})\), then \(\exists a_{1}(n) \equiv \left(2^{4 \cdot 5^{n+1} + 1} - 1\right)(\text{mod } 10^{n})\). Thus, if the \((n + 1)\)-th rightmost digit of \(\alpha'_{1}\) (see Equation (2)) is nonzero, then the unique base \(a_{1}(n) \leq \left(2^{4 \cdot 5^{n+1} + 1} - 1\right)(\text{mod } 10^{n})\) corresponds to the desired \(\tilde{a}_{1}(n)\).
In general, \(\forall n \geq 2 \), we have that \(a_1(n) \equiv 51 \pmod{10^2} \Rightarrow V(a_1) = \{ n : (2^n \mid (a_1 + 1) \wedge 5^n \mid (a_1 - 1)) \wedge (2^{n+1} \mid (a_1 + 1) \vee 5^{n+1} \mid (a_1 - 1)) \} \), while \(a_2(n) \equiv 1 \pmod{10^2} \Rightarrow V(a_2) = \{ n : (10^n \mid (a_1 - 1) \wedge 10^{n+1} \mid (a_1 - 1)) \} \), and these are the only cases for \(s_2 = 1 \).

It follows that, \(\forall n \geq 2, 10^n + 1 \geq a_2(n) > 5^n + 1 \) (since \(\forall n \in \mathbb{N} : 5^n + 1 \equiv 1 \pmod{10} \)).

Similarly to Equation (6), if \(s_2 = 9 \), we have

\[
a_9(n) = \begin{cases} (2 \cdot 5^{2n} - 1)(\pmod{10^n}) + j_n \cdot 10^n, & \forall j_n \neq (2 \cdot 5^{2n+1} - 1)(\pmod{10^n}) - (2 \cdot 5^{2n-1})(\pmod{10^n}) \\
10^n - 1 + k \cdot 10^n, & \forall k \equiv \{0, 1, 2, 3, 4, 5, 6, 7, 8\}(\pmod{10^n}) \end{cases}
\]

(7)

As previously shown, if \(n : (2 \cdot 5^{2n} - 1)(\pmod{10^n}) \neq (2 \cdot 5^{2n+1} - 1)(\pmod{10^n}) \), then \(\exists! a_9(n) \leq (2 \cdot 5^{2n} - 1)(\pmod{10^n}) \). Thus, \(\forall n \geq 2 \), we have that \(a_9(n) \equiv 49 \pmod{10^2} \Rightarrow V(a_9) = \{ n : (2^n \mid (a_9 - 1) \wedge 5^n \mid (a_9 + 1)) \wedge (2^{n+1} \mid (a_9 - 1) \vee 5^{n+1} \mid (a_9 + 1)) \} \), while \(a_9(n) \equiv 99 \pmod{10^2} \Rightarrow V(a_9) = \{ n : (10^n \mid (a_9 + 1) \wedge 10^n + 1 \mid (a_9 + 1)) \} \).

Consequently, \(\forall n \geq 2, 10^n > a_9(n) > 5^n - 1 \).

We point out that, as shown in Proposition 6 (see the case \(s_{(n+1)} = 0 \)),

\[
n : \frac{(2^{4 \cdot 5^{n+1} + 1} - 1)(\pmod{10^n}) - (2^{4 \cdot 5^{n+1}} - 1)(\pmod{10^n})}{10^n} \equiv 0 \pmod{10^n}
\]

\[
\Rightarrow (2^{4 \cdot 5^{n+1} + 1} - 1) \equiv (2^{4 \cdot 5^{n+1} + 1} - 1)(\pmod{10^n}) \Rightarrow V((2^{4 \cdot 5^{n+1} + 1} - 1)(\pmod{10^n})) > n,
\]

and similarly

\[
n : \frac{(2 \cdot 5^{2n+1} - 1)(\pmod{10^n}) - (2 \cdot 5^{2n} - 1)(\pmod{10^n})}{10^n}
\]

\[
\Rightarrow (2 \cdot 5^{2n} - 1) \equiv (2 \cdot 5^{2n+1} - 1)(\pmod{10^n}) \Rightarrow V((2 \cdot 5^{2n} - 1)(\pmod{10^n})) > n
\]

(e.g., \(V(163574218751) = V((2^{4 \cdot 5^{12} + 1} - 1)(\pmod{10^{12}})) = 13) \).

Let us consider the case \(s_1 = 5 \). From [14], we know that, \(\forall n \in \mathbb{N} \setminus \{0, 1\} \),

\[
a_5(n) = \begin{cases} 2^n \cdot \left(5 + 2 \cdot \sin \left(\frac{\pi}{2} \cdot n\right) + 4 \cdot \cos \left(\frac{\pi}{2} \cdot n\right)\right) + 1 + k \cdot 5 \cdot 2^{n+1}, & \forall k \in \mathbb{N}_0 \\
2^n \cdot \left(5 - 2 \cdot \sin \left(\frac{\pi}{2} \cdot n\right) - 4 \cdot \cos \left(\frac{\pi}{2} \cdot n\right)\right) - 1 + k \cdot 5 \cdot 2^{n+1}, & \forall k \in \mathbb{N}_0
\end{cases}
\]

(8)

Equation (8) implies that

\[
\tilde{a}_5(n) \leq 9 \cdot 2^n + 1,
\]

(9)

and the last inequality (trivially) holds because, \(\forall n \in \mathbb{N} \),

\[
\max \left(\pm x \cdot \cos \left(\frac{\pi}{2} \cdot n\right) \pm y \cdot \sin \left(\frac{\pi}{2} \cdot n\right)\right) = \max(|x|, |y|).
\]

If \(s_1 = 4 \) or \(s_1 = 6 \), for the reasons already discussed in the previous subsection, we have, respectively,

\[
a_4(n) = 5^n - 1 + k \cdot 2 \cdot 5^n, \forall k \equiv \{0, 1, 3, 4\}(\pmod{5});
\]

(10)

\[
a_6(n) = 5^n + 1 + k \cdot 2 \cdot 5^n, \forall k \equiv \{0, 1, 3, 4\}(\pmod{5}).
\]

(11)

Equations (10)&(11) imply that, \(\forall n, a_4(n) = a_6(n) - 2 \).

Thus, \(\min(\tilde{a}_4(n), \tilde{a}_6(n)) = \tilde{a}_4(n) = 5^n - 1 \).
Now, we study the cases $s_1 = 2$ and $s_1 = 8$. We have,
\[
V(a_{(2,8)}) = \{ n : (5^n | (a_{(2,8)}^2 + 1) \land 5^{n+1} \nmid (a_{(2,8)}^2 + 1) \}
\]
\[
\Rightarrow a_{(2,8)}(n) = \sqrt{5^n \cdot c_{a_{(2,8)}}(n) - 1}. \quad (12)
\]

Since $c_{a_{(2,8)}}(n) \in \mathbb{N} - \{0\}$ for any n, Equation (12) states that $\min(\tilde{a}_2(n), \tilde{a}_8(n)) \geq \sqrt{5^n - 1}$.

More specifically, picking any value of n, the constraint that $c_{a_{(2,8)}} = \frac{a_{(2,8)}^2 + 1}{5^n}$ have to return a positive integer (as a) let us calculate the solutions (taking the natural logarithm) from
\[
n = \frac{\ln(\frac{a_{(2,8)}^2 + 1}{5^n})}{\ln(5)}. \quad (13)
\]

Equation (13) provides also a valid upper bound for the constant congruence speed of $a_{(3,7)}$, since, for every \bar{n}, $a_{(2,3,7,8)}^2 + 1 = \prod_{p \neq 5} p_j^{a_j} \cdot 5^\bar{n} \geq \prod_{p \neq 5} p_j^{a_j} \cdot 5^{V(a_{(2,3,7,8)})}$ (where p_j represents the prime divisors of $a_{(2,3,7,8)}^2 + 1$ which are not equal to 5, while every q indicates how many times the corresponding p appears in the factorization of $a_{(2,3,7,8)}^2 + 1$ [16]).

As shown in Section 2.1, we can easily improve the aforementioned upper bound referring to the commutative ring of the 10-adic integers, giving an explicit formula for $V(a_{(3,7)}) = n$ in the same way as we have already done for $V(a_{(1,9)})$. For this purpose, let $V(a_{(3,7)}) = n \leq \bar{n}$.

Since $a_7 = h - r = \alpha_3'$ and $a_7'' = h + r = -\alpha_3''$ (where $h(n) \approx 5^2$ and $r(n) \approx 2^{5^n}$), if $s_1 = 3$, then
\[
a_3(n) = \begin{cases}
(5^n - 25^n)(\bmod 10^n) + j_n \cdot 10^n, & \forall j_n \neq \frac{(5^{2n+1} - 25^{n+1})(\bmod 10^{n+1}) - (5^{2n} - 25^n)(\bmod 10^n)}{10^n} \\
-(5^n + 25^n)(\bmod 10^n) + j_n \cdot 10^n, & \forall j_n \neq \frac{(5^{2n+1} + 25^{n+1})(\bmod 10^{n+1}) - (5^{2n} + 25^n)(\bmod 10^n)}{10^n}
\end{cases},
\]
while the case $s_1 = 7$ is covered by Equation (15)
\[
a_7(n) = \begin{cases}
(5^n - 25^n)(\bmod 10^n) + j_n \cdot 10^n, & \forall j_n \neq \frac{(5^{2n+1} - 25^{n+1})(\bmod 10^{n+1}) - (5^{2n} - 25^n)(\bmod 10^n)}{10^n} \\
(5^n + 25^n)(\bmod 10^n) + j_n \cdot 10^n, & \forall j_n \neq \frac{(5^{2n+1} + 25^{n+1})(\bmod 10^{n+1}) - (5^{2n} + 25^n)(\bmod 10^n)}{10^n}
\end{cases}. \quad (15)
\]

Furthermore (as a consequence of Proposition 6), $a_{(3,7)}(\bar{n}) \neq (a_{(3,7)}(\bmod 10^\bar{n}) + 5 \cdot 10^{\bar{n}-1})(\bmod 10^\bar{n}) \Rightarrow V(a_{(3,7)}) = \{ \bar{n} : (2^\bar{n} | (a_{(3,7)}^2 - 1) \land 5^\bar{n} | (a_{(3,7)}^2 + 1)) \land (2^{\bar{n}+1} \nmid (a_{(3,7)}^2 - 1) \lor 5^{\bar{n}+1} \nmid (a_{(3,7)}^2 + 1)) \};$ in particular, $a_{(3,7)}(\bar{n}) = (a_{(3,7)}(\bmod 10^\bar{n}) + 5 \cdot 10^{\bar{n}-1})(\bmod 10^\bar{n}) \Rightarrow \bar{n} - 1 \leq V(a_{(3,7)}(b)) \leq \bar{n}$ for any sufficiently large $b(a)$ (e.g., if Conjecture 1 holds, then $b \geq \text{len}(a) + 2$ is a sufficient condition for $V(a_{(3,7)}(b)) = V(a_{(3,7)})$).

It follows that, $\forall n \geq 2$, $\min(\tilde{a}_3(n), \tilde{a}_7(n)) > \sqrt{5^n - 1}$ (since $5^n - 1$ is even).

In order to complete the (constant) congruence speed map, we only need a formula for $a_2(n)$ and $a_8(n)$, as shown in Equations (6), (7), (8), (10), (11), (14), and (15).

Let $\gamma_2(n) := (2^n(\bmod 10^n))(\bmod 5^{n+1})$. Let $\gamma_8(n) := (-2^n(\bmod 10^n))(\bmod 5^{n+1})$.

Consequently, $5^n | (\gamma_2(n) + \gamma_8(n))$. Let $u_2(n)$ be equal to
\[
\begin{cases}
2 \cdot m & \text{if } \gamma_2(n) \equiv 2(\bmod 10), & \text{where } m \in \mathbb{N}_0 : \gamma_2(n) > 2 \cdot m \cdot 5^n \land \gamma_2(n) < 2 \cdot (m + 1) \cdot 5^n \\
2 \cdot m - 1 & \text{if } \gamma_2(n) \equiv 7(\bmod 10), & \text{where } m \in \mathbb{N}_0 : \gamma_2(n) > (2 \cdot m - 1) \cdot 5^n \land \gamma_2(n) < (2 \cdot m + 1) \cdot 5^n.
\end{cases}
\]
Let \(u_8(n) \) be equal to
\[
\begin{align*}
2 \cdot m & \iff \gamma_8(n) \equiv 8 \pmod{10}, & \text{where } m \in \mathbb{N}_0 : \gamma_8(n) > 2 \cdot m \cdot 5^n \land \gamma_8(n) < 2 \cdot (m + 1) \cdot 5^n \\
2 \cdot m - 1 & \iff \gamma_8(n) \equiv 3 \pmod{10}, & \text{where } m \in \mathbb{N}_0 : \gamma_8(n) > (2 \cdot m - 1) \cdot 5^n \land \gamma_8(n) < (2 \cdot m + 1) \cdot 5^n .
\end{align*}
\]

Then, \(\forall n, \)
\[
\begin{align*}
a_2(n) &= \gamma_2(n) - u_2(n) \cdot 5^n + k \cdot 2 \cdot 5^n, & \forall k \not\equiv \frac{a_2(n+1) - a_2(n)}{2 \cdot 5^n} \pmod{5}; \\
a_8(n) &= \gamma_8(n) - u_8(n) \cdot 5^n + k \cdot 2 \cdot 5^n, & \forall k \not\equiv \frac{a_8(n+1) - a_8(n)}{2 \cdot 5^n} \pmod{5},
\end{align*}
\]
where \(a_2(n) := \gamma_2(n) - u_2(n) \cdot 5^n \), and \(a_8(n) := \gamma_8(n) - u_8(n) \cdot 5^n .
\]
Moreover, \(\forall n \in \mathbb{N} - \{0\} \), we have \(a_2(n) = 2 \cdot 5^n \cdot (\beta(n) - a_8(n)) \), where \(\beta(n) \in \{1, 2\} \).

In conclusion, if \(V(a) = 1 \), then
\[
a(1) \equiv \{2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23\} \pmod{25}.
\]

Therefore, we have mapped all the bases \(a \) such that \(V(a, b) = V(a) = n \).

The constant congruence speed formula that we have shown in the present section confirms also Hypothesis 1 and Hypothesis 2, stated in Reference [14], as \(V(a) \geq 2 \Rightarrow \mathcal{P}(V(a)) = 10^{V(a)+1} \) (see [14], Equation (10)). So, we are finally ready to prove that \(n \geq 2 \Rightarrow a_{\{1,2,3,4,5,6,7,8,9\}}(n) = a_5(n) = \left(2^n \cdot ((-1)^{n-1} + 2) - i^{n(n-1)}\right) \), and this will be the goal of Section 3.

\section{Smallest \(a(n) \) for any \(V(a_{\{1,2,3,4,5,6,7,8,9\}}) = n \)}

In this section, we prove the last conjecture stated in [14].

\begin{thm}
Let \(a(n) := \min\{a_{\{1,2,3,4,5,6,7,8,9\}} : V(a_{\{1,2,3,4,5,6,7,8,9\}}) = n\} \). \(\forall n \in \mathbb{N} - \{0,1\} ,
\[
\tilde{a}(n) = \begin{cases}
2^n \cdot \left(5 + 2 \cdot \sin \left(\frac{\pi \cdot n}{2}\right) + 4 \cdot \cos \left(\frac{\pi \cdot n}{2}\right)\right) + 1 & \text{iff } n \equiv \{2, 3\} \pmod{4} \\
2^n \cdot \left(5 - 2 \cdot \sin \left(\frac{\pi \cdot n}{2}\right) - 4 \cdot \cos \left(\frac{\pi \cdot n}{2}\right)\right) - 1 & \text{iff } n \equiv \{0, 1\} \pmod{4}
\end{cases}
\]
If \(n = 0 \), then \(a(n) = \tilde{a}(n) = 1 \); while \(\tilde{a}(1) = 2 \).
\end{thm}

\begin{proof}
From Section 2.2 (see Equations (6) to (17)), we know that, \(\forall n \geq 2 ,
\[
\begin{align*}
\tilde{a}_1(n) &> 5^n + 1; \\
\tilde{a}_9(n) &> 5^n - 1; \\
\tilde{a}_{\{4,6\}}(n) &\geq \min\{\tilde{a}_4(n), \tilde{a}_6(n)\} = \tilde{a}_4(n) = 5^n - 1; \\
\tilde{a}_{\{3,7\}}(n) &\geq \min\{\tilde{a}_3(n), \tilde{a}_7(n)\} > \sqrt{5^n - 1}; \\
\tilde{a}_{\{2,8\}}(n) &\geq \min\{\tilde{a}_2(n), \tilde{a}_8(n)\} > \sqrt{5^n - 1}.
\end{align*}
\]
Hence,
\[
\tilde{a}_1(n) > \tilde{a}_2(n) > \tilde{a}_3(n) > \tilde{a}_4(n) > \tilde{a}_5(n) > \tilde{a}_6(n) > \tilde{a}_7(n) > \tilde{a}_8(n) > \tilde{a}_9(n) > \tilde{a}_5(n) \geq \sqrt{5^n - 1}.
\]
\end{proof}
On the other hand, Equation (9) implies that \(\forall n \in \mathbb{N} - \{0, 1\} : \tilde{a}_5(n) > 9 \cdot 2^n + 1, \) since
\[
\tilde{a}_5(n) = \begin{cases}
2^n \cdot \left(2 \cdot \cos \left(\frac{\pi \cdot (n-1)}{2}\right) - 4 \cdot \sin \left(\frac{\pi \cdot (n-1)}{2}\right) + 5\right) + 1 & \text{iff } n \equiv \{2, 3\}(\text{mod } 4) \\
2^n \cdot \left(4 \cdot \sin \left(\frac{\pi \cdot (n-1)}{2}\right) - 2 \cdot \cos \left(\frac{\pi \cdot (n-1)}{2}\right) + 5\right) - 1 & \text{iff } n \equiv \{0, 1\}(\text{mod } 4).
\end{cases}
\]

Thus, in order to prove the main statement of Theorem 1, it is sufficient to check the inequality \(\sqrt{5^n - 1} > 9 \cdot 2^n + 1, \) observing that it is certainly true for every \(n \geq 20 \) (since \(\sqrt{5^n - 1} = 9 \cdot 2^5 + 1 \Rightarrow 19.693374 < x < 19.693375 \)). So we only need to verify that, \(\forall n \in \{2, 19\} \), \(\tilde{a}_5(n) < \bar{a}_{\{1,2,3,4,6,7,8,9\}}(n) \), and the values are listed in Table 1 (see Equations (6) to (17)).

<table>
<thead>
<tr>
<th>(n = V(\alpha))</th>
<th>(\bar{a}_5(n))</th>
<th>(\bar{a}_{{1,2,3,4,6,7,8,9}}(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\not\exists)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>182</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>3124</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>1068</td>
</tr>
<tr>
<td>7</td>
<td>385</td>
<td>32318</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>390624</td>
</tr>
<tr>
<td>9</td>
<td>1535</td>
<td>280182</td>
</tr>
<tr>
<td>10</td>
<td>1025</td>
<td>3626068</td>
</tr>
<tr>
<td>11</td>
<td>6145</td>
<td>23157318</td>
</tr>
<tr>
<td>12</td>
<td>4095</td>
<td>120813568</td>
</tr>
<tr>
<td>13</td>
<td>24575</td>
<td>1220703124</td>
</tr>
<tr>
<td>14</td>
<td>16385</td>
<td>1097376068</td>
</tr>
<tr>
<td>15</td>
<td>98305</td>
<td>11109655182</td>
</tr>
<tr>
<td>16</td>
<td>65535</td>
<td>49925501068</td>
</tr>
<tr>
<td>17</td>
<td>393215</td>
<td>762939453124</td>
</tr>
<tr>
<td>18</td>
<td>262145</td>
<td>355101282318</td>
</tr>
<tr>
<td>19</td>
<td>1572865</td>
<td>19073486328124</td>
</tr>
</tbody>
</table>

Table 1: Comparison between the smallest \(\alpha(n) \) congruent modulo 10 to 5, whose constant congruence speed is equal to \(n \leq 19 \), and the minimum \(\alpha(n) \equiv \{1, 2, 3, 4, 6, 7, 8, 9\}(\text{mod } 10) \).

As it follows from Equations (9) and (18), \(\forall n \in \mathbb{N} - \{0, 1\} \), \(\bar{a}(n) := \bar{a}_{\{1,2,3,4,5,6,7,8,9\}}(n) = \tilde{a}_5(n) \).

Therefore, in order to complete the proof, it is sufficient to observe that \(V(2) = 1 \) and \(V(1) = 0 \) (see [14]). \(\square \)

Corollary 1. Let \(\bar{a}(n) := \min(\alpha_{\{1,2,3,4,5,6,7,8,9\}}) : V(\alpha_{\{1,2,3,4,5,6,7,8,9\}}) = n \), and let \(i^2 = -1 \).

\[
\bar{a}(n) = 2^n \cdot ((-1)^{n-1} + 2)^{i^n \cdot (n-1)}.
\]

(19)

Proof. The statement of Corollary 1 easily follows from Theorem 1.
Since, in September 2020, Bruno Berselli noted that Sequence A337392 of the OEIS is given by \(a(n) = (2 - (-1)^n) \cdot 2^n + i^{(n+1) \cdot (n+2)} \) (see Formula in Reference [12]), it trivially follows that Equation (5) can be further simplified if we prove the claim;

\[
\bar{a}(n) = \begin{cases}
2^n \cdot \left(5 + 2 \cdot \sin \left(\frac{\pi \cdot n}{2} \right) + 4 \cdot \cos \left(\frac{\pi \cdot n}{2} \right) \right) + 1 & \text{iff } n \equiv \{2,3\} \pmod{4} \\
2^n \cdot \left(5 - 2 \cdot \sin \left(\frac{\pi \cdot n}{2} \right) - 4 \cdot \cos \left(\frac{\pi \cdot n}{2} \right) \right) - 1 & \text{iff } n \equiv \{0,1\} \pmod{4}
\end{cases}
\]

\[
= 2^{n+1} + \left(\sin \left(\frac{\pi \cdot (n+1) \cdot (n+2)}{2} \right) \right) - 2^n \cdot \sin(\pi \cdot n) \cdot i - 2^n \cdot \cos(\pi \cdot n) + \cos \left(\frac{\pi \cdot (n+1) \cdot (n+2)}{2} \right). \quad (20)
\]

Hence \(2^n \cdot \cos(\pi \cdot n) - i \cdot 2^n \cdot \sin(\pi \cdot n) = -2^n \cdot e^{i\pi n} \) implies that

\[
\bar{a}(n) = 2^{n+1} - 2^n \cdot e^{i\pi n} + e^{i\frac{\pi}{2} \cdot (\pi \cdot (n+3) + 2)}. \quad (21)
\]

Since \(e^{i\pi} + 1 = 0 \Rightarrow e^{i\frac{\pi}{2}} = i \) and \(e^{i\pi n} = (-1)^n \), it follows that

\[
\bar{a}(n) = 2^{n+1} - 2^n \cdot (-1)^n + i^{(n+3) + 2}. \quad (22)
\]

Thus, Berselli’s formula is correct and we have

\[
\bar{a}(n) = 2^{n+1} + 2^n \cdot (-1)^{n-1} - i^n \cdot (n+3). \quad (23)
\]

Therefore, in order to confirm Equation (19) and conclude the proof, it is sufficient to observe that \(i^{n \cdot (n+3)} = i^{n \cdot (n-1)}. \)

\[\Box \]

Remark 2. Corollary 1 provides also a short proof of Theorem 1, since

\[
\bar{a}(n) = 2^n \cdot ((-1)^{n-1} + 2) - i^n \cdot (n-1) \leq 2^n \cdot (1 + 2) + 1. \quad (24)
\]

Thus, \(\sqrt{5^n - 1} > 3 \cdot 2^n + 1 \) holds for any \(n \geq 10. \)

Corollary 2. \(\forall n \in \mathbb{N} - \{0,1\} \) and \(\forall k \in \mathbb{N}_0, \)

\[
a_5(n) = \left((2^n \cdot ((-1)^{n-1} + 2) - i^n \cdot (n-1)) \lor (2^n \cdot ((-1)^n + 8) + i^n \cdot (n-1)) \right) + k \cdot 10 \cdot 2^n. \quad (25)
\]

Proof. Equation 5 and Corollary 1 (Berselli’s formula) imply that

\[
a_5(n) = 2^n \cdot ((-1)^{n-1} + 2) - i^n \cdot (n-1) + k \cdot 10 \cdot 2^n \cup \left\{ \begin{aligned}
2^n \cdot \left(5 + 2 \cdot \sin \left(\frac{\pi \cdot n}{2} \right) + 4 \cdot \cos \left(\frac{\pi \cdot n}{2} \right) \right) + 1 + k \cdot 10 \cdot 2^n & \text{ iff } n \equiv \{0,1\} \pmod{4} \\
2^n \cdot \left(5 - 2 \cdot \sin \left(\frac{\pi \cdot n}{2} \right) - 4 \cdot \cos \left(\frac{\pi \cdot n}{2} \right) \right) - 1 + k \cdot 10 \cdot 2^n & \text{ iff } n \equiv \{2,3\} \pmod{4}
\end{aligned} \right.
\]

Since, \(\forall n \geq 2, \) it easy to verify (as shown in the proof of the aforementioned Corollary 1) that

\[
= 2^n \cdot \left(2^3 + \cos(\pi \cdot n) + i \cdot \sin(\pi \cdot n) \right) + \cos \left(\frac{\pi \cdot n \cdot (n - 1)}{2} \right) + i \cdot \sin \left(\frac{\pi \cdot n \cdot (n - 1)}{2} \right)
\]

\[
= 2^n \cdot ((-1)^n + 8) + i^n \cdot (n-1),
\]

the statement of Corollary 2 follows. \(\Box \)
4 Conclusion

The congruence speed of the integer tetration \(b^a \) certainly does not depend on \(b, \forall a \in \mathbb{N} - \{0\} \) which is not a multiple of 10, if \(b \) is larger than \(a \) (i.e., the criterion \(b > a \) always holds), and we conjecture that a stricter sufficient condition for \(V(a, b) = V(a) \) is \(b \geq \text{len}(a) + 2 \). Thus, let us take any \(b = b(a) \) that assures that \(V(a, b) = V(a) \); then Equations (6), (7), (10), (11), (14), (15), (16), (17), and (25) return the set of all the bases \(a \) whose (constant) congruence speed is any given \(V(a) \in \mathbb{N} - \{0\} \), and we know from [14] that \(V(a) = 0 \leftrightarrow a = 1 \). Under any additional constraint on specific congruence classes modulo 10 for \(a \), we can easily find \(\bar{a}(V(a)) \), the smallest \(a \equiv \{1, 2, 3, 4, 5, 6, 7, 8, 9\}(\text{mod } 10) \) whose constant congruence speed is equal to any given positive integer. Since \(\bar{a}(0) = 1, \bar{a}(1) = 2 \), and \(\bar{a}(V(a) \geq 2) = 2^n \cdot (\pm 1)^{n-1} + 2 - i^n(n-1) \) [12], we can finally conclude that the conjecture stated in Reference [14] is true.

In the present paper we only considered radix-10, but our results can be clearly extended to different numeral systems, as shown by [1] which was inspired by [16]; this observation suggests a topic for the next research article.

References

