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1 Special relativity, its properties and another interpretation of the principle of invariant

speed of light.

Based on Newtonian mechanics, physics was divided into thermodynam ics, rigid body

mechanics, fluid mechanics, etc., and evolved into electromagnetics that the first field

dynam ics. Later, based on electromagnetism , newtonian mechanics evolved into

Ham iltonian mechanics which were expressed in different interpretations. After that

becom ing the first quantum mechanics, evolved into late quantum mechanics incorporating

special relativity. It is a basic theory at present.

I focused on special relativity theory and general relativity theory, and changed it 's

interpretation and devised another general relativity theory. I would like to let you describe

the theory.

2 Another interpretation of the principle of invariant speed of light

The speed of light, which is an electromagnetic wave, is C= 299 792 458 m / s, and it is a

well-known fact that it is constant from any velocity coordinate. However, the apparent

speed of light changes to v = csinθ just by observing the observed coordinates diagonally. In

other words, light has the property that only the speed change in the same direction ⊿V =

C-V does not appear, which is the principle of invariant light speed.

So let's think about what happens to the speed of sound from the viewpoint of sound.

Under these conditions, there is a non-changing coordinate system that is air, and there is

no coordinate system that moves at a velocity V relative to the coordinate system called

Galileo transformation. In addition, there is no conversion represented by X´ = (C-V) X. At

that tim e, the velocity of the sound wave is constant and the apparent velocity is observed as

an angular resolution of the velocity. Therefore, I thought that if all materials were made of

light, they would naturally have properties like the law of invariant light velocity. And the

substance existing in this universe is originally traveling at the speed of light and look ing at

the observed coordinates obliquely, so it is thought that it is traveling at a speed of V = Csinθ.

In order to express that this cosm ic material is traveling at the speed of light, we will

increase the coordinates of the pythagorean theorem by one and represent the line segment

equation to four dim ensions.

(ct₀)²=X₀²+(v₁t₀)＋(v₂t)²＋(v₃t)²=X₀²+(vt₀)²

It becomes. So X₀ is

X₀= c²－ v² t₀= 1-
v
c

2
ct₀

It is represented.

If Γ=
１

１-
v

c

２
the line segment formula is



(ct₀)²=(
1
γ
ct₀)²+(vt₀)²=(

1
γ
ct₀)²+(v₁t₀)²+(v₂t₀)²+(v₃t₀)² (v=iv₁+jv₂+kv₃)

It becomes, This is the basic line segment formula.

Furthermore, if you change the expression a little and make it trigonometric

λ²=(λcosθ₀)²+(λsinθ₀)²

=(λcosθ₀)²+(λsinθ₀cosθ₁)²+(λsinθ₀cosθ₁cosθ₂)²+(λsinθ₀sinθ₁sinθ₂)²

( λ= (ct₀)² γ= 1-
ｖ

ｃ
² θ₀:4 dimensional angle θ₁,θ₂:3 dimensional angle )

cosθ₀=
1

γ
sinθ₀=

ｖ

ｃ
cosθ₁cosθ₂=

ｖ₁

ｖ
cosθ₁sinθ₂=

ｖ₂

ｖ
sinθ₁sinθ₂=

ｖ₃

ｖ

Thus, the line segment formula follows the Pythagorean theorem.

However, it will have a Lorentz transformation property slightly different from the special

relativity theory. When observing an object stopped at the stationary coordinate ct₀ from the

velocity v, the line segment of motion becomes vt₀, which is the same as Newtonian

mechanics, and the static momentum becomes
1
γ
ct₀. In the another general relativity theory,

the nature of coordinate transformation is different from that when the object is accelerated

by applying energy, but this difference will be described later. F rom now on, this Lorentz

transformation will be called another general relativity. Here, the basic line segment formula

of another general relativity is modified slightly.

(ct₀)²=(
1
γ
ct₀)²+(vt₀)² → (γct₀)²=(ct₀)²+(γvt₀)² → (ct₀)²=(γct₀)²－(γvt₀)²

It becomes, This is consistent with the conventional special relativity line segment formula. I

will describe this line segment in the future.

1

2

3

θ₂

θ₁

(θ₀ cannotbe described because it is in 4 dim ensions)



3 Consideration of the speed of light of an object traveling at a speed close to the speed of

light

In the previous section, I wrote the basic line segment formula of another general theory of

relativity, but in this section I will discuss the theory based on the Lorenz transformation

derivation method considered by Albert E instein.

Let us consider the nature of light em itted toward an object traveling at a velocity V close to

a certain speed of light.

F igure 2-1 shows light em itted from a stationary object to a stationary observer. F igure 2-2

shows the phenomenon as seen from the coordinate axis of velocity v.

In the case of F ig. 2-1, if the observer's tim e is t₁

(ct₁)²=h₀²

The left side of the equation is the distance traveled by light, and h₀ is the shortest distance

between the object and the observer. In F igure 2-2, the line segment formula is

(γct₁)²=(vγt₁)²＋ h₀²= (vt₂)²＋ h₀²

It becomes. Since these two phenomena are considered to be physically the same

phenomenon, the line segments of light must coincide when Lorentz transformation is

performed.

(ct₁)²=(vt₁)²＋ γ⁻¹h₀²＝(vt₁)²＋ 1-
v
c

2
ct₁

2
＝(ct₁)²

It becomes. In other words, the distance traveled by light does not change in either F igure 2-

1 or F igure 2-2.

(ct₁)²=(γct₂)²

Therefore, in the special relativity is that the law of invariance of light speed is maintained.

In other words, the moving object coordinates are contracted as a result of the movement,

and the moving distance itself is stretched to maintain a universal light velocity.

H ere we consider the motion of the same system based on the concept of another general

relativity described in the previous chapter. When the line segment in F ig. 2-1 is written in

another general relativity.

observer

illuminant moving in v

Observer moving on V

Emit lighth₀
h₀

illuminant

Figure 2-1 Emits light from the illuminant to the observer Figure 2-2 Light is emitted from a illuminant moving at v to an observer moving at the same speed

c
c



(ct₁)²= h₀²

In another general theory of relativity, the space through which the light passes is extended

rather than the object shrinks. Therefore, in the case of F igure 2-2, the path through which

light passes is ct₂, so the shrink ing ratio is

h₀² = (ct₂)² ― (vt₂)² h₀= c²-v² t₂
h₀
ct₂
= 1-

v
c

²=
1
γ

It becomes. At this tim e, if the ratio of the change of the light wave wavelength and the

frequency is equal, the wave speed is constant.

f₁=
1
γ
f₂ T₁=

1
γ
T₂ (f ： F requency T ： Wavelength)

h₀
ct₂

=
1
γ

h₀
ct₁
= 1-

v
c

²=
1
γ

(ct₁)²= h₀²

It becomes. The light speed invariance is maintained. This is the derivation that considered

from the observation of light in another general theory of relativity. The expression on the

left represents the progress of tim e, and the expression on the right represents the

expansion of space. Considering the movement of this Lorentz transformation object, the

path along which the light travels is considered as a stationary distance.

(ct₀)²=(
1
γ
ct₀)²+(vt₀)² → λ²=λ₀²＋ λv² (λ:4D distance λ₀:Rest distance λv:distance)

This is the basic line segment of the another general theory of relativity. H ere I will

describe another general relativistic Lorentz transformation of the line segment that has

undergone Lorentz contraction in the special relativity. When Lorentz transformation of the

moving body is performed and the relative speed is 0.

(ct₀)²=(γct₀)²－(γvt₀)² (ct₀:Rest distance γct₀:4D distance γvt₀:3D distance

↓

(γct₀)²=(ct₀)²+(γvt₀)² (γt₀=t And put)→ (ct)²=(ct₀)²+(vt)²

↓(Lorentz transformation with v)

(ct)²=(γct₀)² λ²=λ²

Next, when the observer's coordinates are Lorentz transformed

(ct₀)²＝(ct₀)²

(ct₀)²＝(γ⁻¹ct₀)²＋(－ vt₀)²

The relationship between time t₀ and t

t₀＝ γ⁻¹t

The Lorentz transformed line segment is converted further subjected to another Lorentz

transformation. This transformation is different from the Lorentz inverse transformation of

special relativity. In this transformation, humans who have undergone special relativistic

Lorentz contraction, whose speed has increased as a result of energy being added from the



outside, that are shrinking when viewed from the outside. And time is late. However, he

recognizes that he is doing the same exercise. When observe from the perspective of a shrunken

person, he recognizes that people in the outside world are extending and moving faster. This is

different from Einstein's formula where the opponent appears to be contracting from either side.

But Intuitively, the results are more consistent and the distance is consistent. In addition, when

another Lorentz transformation is performed, only the space that is the light path expands and

contracts, and the object does not contract. And this Lorentz transformation has a very

advantageous property when explaining the twin paradox, which will be described later.

4 Velocity synthesis and momentum and energy in another general relativity.

In this section, I will describe the momentum and energy of general relativity. Up to the

previous chapter, I have described the basic lines of another general theory of relativity, but

in this section I will describe the composition of velocity, momentum and energy. The basic

line of another general relativity is

(ct₀)²=(
1
γ
ct₀)²+(vt₀)² λ²=(λcosθ₀)²+(λsinθ₀)²

It is expressed. Naturally, since there is no Galilean transformation, velocity composition cannot

be expressed as v₁+v₂. Here, we consider the velocity synthesis of special relativity. In special

relativity, the composition of velocity is

v

c
=

v₁

c+
v₂

c

1+
v₁v₂

c²

sinhθ=γv coshθ=γc tanhθ=
v

c

Can be written. If tanhθ₁ is increased in phase by θ₂,

v

c
= tanh(θ₁+θ₂) =

sinh(θ₁+θ₂)

cosh(θ₁+θ₂)
=

V₁c+v₂c

c
2
+v₁v₂

=
v₁

c+
v₂

c

1+
v₁v₂

c²

It becomes. In other words, velocity synthesis in the theory of relativity is the sum of phase

angles. Based on this, we consider velocity synthesis in another general relativity. In another

general theory of relativity, speed is expressed as sinθ.

v

c
= sin(θ₁+θ₂) = sinθ₁cosθ₂+ cosθ₁sinθ₂

= 1-
v₂
c

2
v₁

c
+ 1-

v₁
c

2
v₂

c

Next. When the speed exceeds the speed of light, the equation becomes an imaginary solution.

Next, the sum of the phase angles is shown in the figure.



It becomes. In other words, it can be understood as geometry that the sum of speeds

approximates a scalar sum at a speed sufficiently lower than the speed of light. Since the three-

dimensional axis decomposition speed of light is considered as a normal speed, it is well

understood that when the speed exceeds the speed of light, an imaginary solution is obtained.

Next, let me describe the equation of momentum. It is the value that obtained by multiplying the

static mass m₀ to the base line segment and dividing it by time t₀.

(m ₀c)²=(
1
γ
m₀c)²+(m ₀v)² p²=p₀²+pv²

I would like to talk more about energy. One of the formulas for calculating energy in

classical m echanics is that the force is integrated over the distance.

E=
∂p

∂t₀
dλ=

∂(m₀C)

∂t₀
d(ct₀) =

∂(m₀C)

∂t₀
dt₀dc = m₀c²

It is obtained by the calculation. This value is a little different from the special relativity, but it

is essentially the same and will be discussed later. Also, the momentum equation p₀²+pv² must be

integrated at each distance, which will be described later.

v₁

v₂

θ₂

θ₁

v=csin(θ₁+θ₂)

c

c

Additive law of velocity

c

c

v₁

Speed conversion sufficiently slower than light speed

v₂



5 Comparison with special relativity theory of energy conservation

In this section, we compare energy handling with special relativity. This time, instead of

giving energy to the stopped object itself and accelerating it, the observer receives the energy and

accelerates it, so that it becomes an object that moves at a velocity v. The energy of each

stationary state is

E₁=m₀₁c² E₂=m₀₂c²

It becomes, Lorentz transformation that makes speed v.

E₁=
１

１-
v₁

c

２
m₀₁c² = γ₁ m₀₁c² E₂=

１

１-
v₂

c

２
m₀₂c² = γ₂ m₀₂c²

It becomes. I don't feel any doubt with this alone, but think about the energy difference between

these two objects.

E₁－ E₂= m₀₁c²―m₀₂c²≠
１

１-
v₁

c

２
m₀₁c² ―

１

１-
v₂

c

２
m₀₂c²

The law of conservation of energy does not hold. This calculation seems to be related to the

paradox of two rockets. And Newtonian mechanics has the same properties. However, the

Hamiltonian of early quantum mechanics assumes Newtonian mechanics, so when the observer's

speed changes, it has the property that the intensity of the spectrum generated from the

molecule changes. However, there is no problem if energy is given by accelerating molecules. And

the coordinate transformation of the inertial system that does not give any energy from the

outside is another general theory of relativity. In the case of general relativity, the total energy

does not change due to Lorentz transformation, but changes while maintaining the relationship

between static momentum and momentum. Therefore, the energy before acceleration is equal to

the energy after acceleration.

E₁－ E₂= m₀₁c²― m₀₂c²

The law of conservation of energy is maintained. This property makes the property when dealing

with a distorted space simpler than Einstein's general theory of relativity.



6 A study of the twin paradox

The most famous paradox of special relativity is the twin paradox. Usually explained using the

acceleration motion of Einstein's general theory of relativity, but in this section we explain using

another general theory of relativity. When given that an object is accelerated by receiving energy

from a stationary coordinate system, a special relativistic Lorentz transformation is used. If t₁ is

observer time and t₂ is motor time,

(ct₁)²=(ct₁)² (Lorentz conversion at speed v)→(γct₁)²=(ct₁)²+(γvt₁)² (ct₂)²=(ct₁)²+(vt₂)²

In this case, the time t₂ of the moving body near the speed of light is delayed by t₂ = γt₁. If this

line segment is transformed into another Lorentz transformation

(γct₁)²=(γct₁)²=(ct₂)² t₂=γt₁ t₁=γ⁻¹t₂

Another Lorentz transformation for the observer

(ct₁)²=(γ⁻¹ct₁)² + (vt₁)

It becomes. In other words, the time of the moving body is delayed when viewed from the

observer of the original stationary coordinates, and the observer time is advanced faster when

viewed from the moving body. In other words, it can be considered that a physical phenomenon

called a twin effect occurs rather than a twin paradox. The Lorentz transformation formula only

for special relativity is also described.

(ct₁)²=(ct₁)² (Lorentz conversion at speed v)→(γct₁)²=(ct₁)²+(γvt₁)² (ct₂)²=(ct₁)²+(vt₂)²

Next, perform Lorentz inverse transformation

Moving body (ct₂)²=(ct₁)²+(vt₂)² → (ct₂)²=(ct₂)² (The right side is static momentum )

Observer (ct₂)²=(ct₂)² → (γct₂)²=(ct₂)²+(γvt₂)² t₁=γt₂

In order to make it easier to compare with another general relativity, it is not described in

m inkowsk i coordinates. In the case of the above equation, the tim e t₁ = γ⁻¹t₂ and t₁ = γt₂ will

exist at the same tim e. That's fine, but if you come back and forth, it 's the twin paradox that

you can observe that the opponent's tim e is delayed from the moving body and the stationary

body at the same location. In order to solve the problem , we consider the tim e delay due to

the general relativistic acceleration motion, but I am doubtful that the problem can be solved

under all conditions. On the other hand, in another general relativity theory, it can be

considered that only the tim e of an object accelerated by applying energy is delayed, so that

only an event confirm ed in an experim ent called a twin effect occurs. In other words, when a

human whose tim e is late is observed by a human whose tim e not slow, the natural result is

that the human appears to move quick ly.



７ Mathematics needed to represent a distorted 3D space

I've described another general theory of relativity in a line segment until the previous

section, but in the future I will describe another general theory of relativity in a distorted

three-dim ensional space. Before that, I will talk about the mathematics necessary for it.

7―1 4D coordinate system

I talked a little about the 4th dim ension in section 1, but I'll summarize it. F irst, suppose

that a vector λ in which a scalar quantity that can be placed in normal geometry does not

change is represented by a two-dim ensional coordinate display.

λ²=λ₁²+λ₂²=(λcosθ₁)²+(λsinθ₁)²

Furthermore, when expressed in 3D coordinate display

λ²=λ₁²+λ₂²+λ₃²=(λcosθ₁)²+(λsinθ₁cosθ₂)²+(λsinθ₁sinθ₂)²

It becomes. Explaining this equation, it can be considered that a certain dimension is

decomposed into a new dimension at an angle θ, and a new dimension is created when a certain

coordinate is decomposed with a trigonometric function. Therefore, if the vector is decomposed to

4 dimensions.

λ²=λ₀²+λ₁²+λ₂²=(λcosθ₀)²+(λsinθ₀cosθ₁)²+(λsinθ₀sinθ₁)²

λ²=λ₀²+λ₁²+λ₂²+λ₃²=(λcosθ₀)²+(λsinθ₀cosθ₁)²+(λsinθ₀sinθ₁cosθ₂)²+(λsinθ₀sinθ₁sinθ₂)²

In the case of this coordinate system , θ is rotated by the rule of adding a new coordinate

system to the sin θ axis , and thus a multidim ensional coordinate can be defined. In the

future, we will develop the theory based on this coordinate system .

Next, we will discuss complex numbers and differential operators. E xpressing the above

coordinates in vector notation

λ=iλ₀+jλ₁+kλ₂+lλ₃

F irst, consider only the two-dim ensional complex plane.

λ=λ₀+iλ₁=λsinθ₀+iλcosθ₀

H ere, by multiplying both sides by i, the phase of this vector can be advanced by 90 degrees.

λ₁

λ₃

λ₂

θ₂
θ₁



Here we use the differential operator
∂f
∂θ₀

instead of i.

λ(λ₀、
∂λ₀
∂θ₀

) = λ(λsinθ₀、λcosθ₀)

Differentiate with differential operators

∂λ
∂θ₀

= λ(λcosθ₀、―λsinθ₀)
∂λ²
∂²θ₀

= λ(-―λsinθ₀、-―λcosθ₀)
∂λ³
∂³θ₀

= λ(-―λcosθ₀、λsinθ₀)

∂λ⁴
∂⁴θ₀

= λ(λsinθ₀、λcosθ₀) = λ

Be like. This is exactly the same as the complex plane vector when multiplied by an imaginary

number.

In other words, a two-dimensional coordinate system whose scalar quantity does not change can

be expressed using the differential operator Dθ with respect to θ instead of complex numbers.The

formula is

λ(λ₀、λv) = λ(λ₀、D₀λ₀） If the phase angle is advanced 90 degrees → D₀λ(λ₀、D₀λ₀)

Can be written as follows. It is not perfect because it has not been mathematically proved like

Euler's formula, but such a representation is possible. Each phase angle has the basic formula

λ(λ₀、λ₁、λ₂、λ₃) = λ(λcosθ₀、λsinθ₀cosθ₁、λsinθ₀sinθ₁cosθ₂、λsinθ₀sinθ₁sinθ₂)

Therefore, it has the property that it can be rotated 90 degrees at the angle defined first by

partial differentiation with θ₀, θ₁, and θ₂. This is a more advantageous property than the

complex plane that can represent only two dim ensions, and it will become a four-

dim ensional basic expression method that will be useful in the future.



7―2 Wave equation

This section describes the wave equation necessary for another general relativity. There is

a formula of
∂²Φ
∂x²

=
１

c²
∂²Φ
∂t₀

as a basic form of the current wave equation, but let m e describe

another wave equation. F irst, consider the properties of a coordinate system in which

something sim ilar to a wave is transm itted at a wave velocity c.

The property is thought to be such that a certain inclination ∂Φ /∂x advances at a wave

velocity c in the coordinate system . To illustrate with a sine wave.

It becomes such a figure. In this figure, X is the distance, Φ is the potential, and t is the

tim e axis . It can be seen from this figure that when the function of the wave position is

differentiated with respect to the coordinate axis of the green dotted line, it becomes zero.

Φ (x、t)coordinate axis (Convert)→Φ (α、β)=Φ ( x
2
+t² cosθ、 x

2
+t² sinθ)

∂Φ
∂α

= 0

It can be expressed in the expression.

Next find the general solution of this wave equation. If an arbitrary coordinate is (x, t) and it

is displayed in polar coordinates.

Φ ( x
2
+t² cos(tan⁻¹

t
x
)、 x

2
+t² sin(tan⁻¹

t
x
))

The phase angle is converted to the green dotted line coordinates.

ｔ

X

Φ

θ



Φ ( x
2
+t² cos(tan⁻¹

t
x

- tan⁻¹
1
c
)、 x

2
+t² sin(tan⁻¹

t
x

- tan⁻¹
1
c
))

=Φ (α、β)

F rom this, the partial differential equation is obtained. Since Φ (α, β) is partially

differentiated by α, the solution is

AΦ (β)=AΦ ( x
2
+t² sin(tan⁻¹

t
x

- tan⁻¹
1
c
)) A ： constant

It becomes. Next, it decomposes with the addition theorem .

AΦ ( x
2
+t² sin(tan⁻¹

t
x

- tan⁻¹
1
c
))

＝ A x
2
+t

2
Φ(sin(tan⁻¹

t
x
)cos(tan⁻¹

1
c
) ― sin (tan⁻¹

1
c
)cos(tan⁻¹

t
x
))

＝ A x
2
+t

2
Φ

t

x
2
+t

2

c

1+c ²
-

x

x
2
+t

2

1

1+c ²

=
ー A

1+c ²
Φ (x － ct)

Becomes one of several general solution, which is in the form of a wave equation. This

equation is superior to the conventional wave equation a little, and has the property that the

change in frequency is not transm itted at an infinite speed even in a wave where the

vibration frequency changes at the point of x = 0. And even if it is not a periodic function,

the equation may hold.

Next, I will try to find a simple function solution using this general solution. The solution

is

Φ (x、t)=sin 2π
x
λ
―

c
λ
t Let's solve the function to be a general solution.

Φ (0、t)=sin ωt Is the initial condition and the wave speed is c, the general solution

is

Φ (x、t) = ―AΦ (x － ct)

Φ (0、t´) = Φ (t´) = ―AΦ (―ct´) = sin ωt´ -ct´ = x― ct

-―AΦ (x ― ct) = sinω -
x
c
+ t = sin2π ―

x
λ
+

ct
λ

Φ (x、t) = sin2π
x
λ
-
ct
λ

Is the solution

The new wave equation looks like this , and we will use it later in another general theory of

relativity that represents a distorted space.



7-3 Calculation of the surface volume of a 4D sphere

Here, the surface volume of a four-dim ensional sphere will be calculated using the four-

dim ensional coordinate system described in 7-1. The circum ference of the circle is 2πr, and

the surface area of the sphere is 4πr². If this is calculated in polar coordinates.

Ly = 0
2π
rdθy = 2πr

∂Lx
∂θx

＝ r

It becomes. If you think about rotating around the x axis with Lx.

∂Lx
∂θx

＝ rsinθx

In other words, the small surface area of a sphere at a certain point is

∂Ly
∂θy

∂Lx
∂θx

＝
∂²S

∂θy∂θx
＝ r²s inθx

It becomes. Integrating this

S ＝ 0
2π
r²sinθy dθy dθx = 4πr²

It becomes. As shown in the figure

Multiply by the length per unit angle in the Lx direction and the length per unit angle in the

Ly direction, and integrate each. If this formula is extended to 4 dim ensions as it is

∂Lz
∂θz

＝ rsinθxsinθy

Since there should be a circle rotating around the Z axis , the above equation is obtained.

Therefore, as before, the m inute surface volume of a point on the 4D sphere is

∂³V
∂θx∂θy∂θz

＝
∂Lx
∂θx

∂Ly
∂θy

∂Lz
∂θz

＝ r³s in²θx sinθy 0
π

0
π

0
2π
r³ sin²θx sinθy dθz dθy dθx ＝ 4π²r³

Then the value of the surface volume of the 4D sphere is 4π²r³.

z

y

x

θx

Lx

Ly

θy



8 Geodesic equations and Newtonian mechanics

F rom this section, I will express the distorted 3D space in 4D. When expressing the theory

of relativity, the object is calculated as passing through a m inimum distance (maximum

distance) between two distant points. There is a Christoffel symbol that becomes the

equation, but let's consider the geodesic equation from another point of view.

By the same token, I consider it passes through a space that fills a m inute surface volume,

not the shortest distance between two points. H ere, it is assumed that there is a m inimal

area that can be expressed by dS = dλ₂ × dλ₂, and this m inimal area moves in the direction of

dλ. Then.

dV
dλ

= dλ₁ × dλ₂
∂²V

∂λ₁∂λ₂
= dλ

It becomes. Next, there is a potential W close to the density in space, and considering its

volume integral,

∂V
∂λ

=
∂W
∂λ₁
×

∂W
∂λ₂

×
∂W
∂λ

The differential equation is as follows. A line segment in which this differential equation

takes a m inimum value or a infinitesimal value with respect to a m inute displacement λ is

considered a geodesic line. Then

∂V
∂λ

= 0 However
∂²V
∂λ²

≥ 0 At the tim e of
∂V
∂λ

= 0 When there is one solution

The m inimum value will be taken. Then

∂V
∂λ

=
∂W
∂λ₁
×

∂W
∂λ₂

×
∂W
∂λ

= 0

Is the m inimum surface volume. Further
∂W
∂λ

= F、
∂W
∂λ₁

= F₁、
∂W
∂λ₂

= F₂、If in case

∂V
∂λ

=
∂W
∂λ₁
×

∂W
∂λ₂

×
∂W
∂λ

= F₁×F₂×F = 0

F ₁=0 F ₂=0 F=0

This is the law of inertia of Newtonian mechanics. However, in this equation, if any one of

the forces of each coordinate becomes 0, the geodesic curve is satisfied. However, because λ,

λ₁, and λ₂ are linearly independent

∂W
∂λ

+
∂W
∂λ₁

+
∂W
∂λ₂

＝ 0

All term s must be zero to satisfy the relation. So Newtonian geodesic equation is

∂V
∂λ

=
∂W
∂λ₁
×

∂W
∂λ₂

×
∂W
∂λ

= F₁×F₂×F = 0

And something like this .



Here the law of gravitation is Fq=G
m₀m₁
r²

The reaction of movement is Fv=m ₁
dv
dt

so

Fq―Fv = 0

Becomes the geodesic equation in the Newtonian force field , which is Lagrangian in

Newtonian mechanics. However, in this formula, F v works as a reaction pulled by gravity,

but in reality we cannot feel such a force. In order to solve such problem s, it is considered

necessary to reconstruct the theory of gravitational field as the theory of relativity.



9 Another general relativity theory in distorted three-dim ensional space

In the previous section, Newtonian mechanics was expressed by a geodesic equation

considering the surface volume, and this is applied to another general relativity theory.

According to the equivalence principle of relativity, acceleration by gravity is considered to

be inertial motion. Albert E instein wanted to advance the ideal in the process of constructing

general relativity, but he defined the E instein tensor due to the violation of the energy

conservation law. The reason why, the acceleration of special relativity is a physical

phenomenon in which energy is received from outside and accelerated. Therefore, the

E instein tensor kept the law of conservation of energy by subtracting tensor of
1
2
centrifugal

forces. However, the acceleration of another general relativity has the property that the total

energy does not change. Therefore, a tensor that expresses centrifugal force is not necessary.

In addition, since all objects are moving at the speed of light, the object cannot be moved to

all places in the four-dim ensional space, but can be considered to be movable only to the

three-dim ensional space distorted in the fourth direction.

H ere, we use the 4D geometry described in Section 7 instead of the Riemannian geometry

to represent a distorted 3D space. The basic line equation of another general relativity is

(ct₀)²=(
1
γ
ct₀)²+(vt₀)²=(

1
γ
ct₀)²+(v₁t₀)²+(v₂t₀)²+(v₃t₀)²

It becomes. When this line segment is expressed by a differential equation,

∂λ
∂λ

2
=

∂λp₀
∂λ

2
+

∂λpv
∂λ

2
→ 1²= (γ⁻¹)²+(

v
c
)²

It becomes. Multiplying a stationary mass m ₀ to both sides

m₀
∂λ
∂λ

2
= m₀

∂λp₀
∂λ

2
+ m₀

∂λpv
∂λ

2
→(m ₀c)²=(γ⁻¹m ₀c)²+(m ₀v)²

P ²=p₀²＋ pv²=p₀²+p₁²+p₂²+p₃²

It becomes such a thing, and it becomes a conservation law of momentum . Here, considering

a point-symmetric inverse square field , the motions in question are only the velocity vl

perpendicular to the radius r and the velocity vr in the same direction as r.

∂λ
∂λ

2
=

∂λq₀
∂λ

2
+

∂λqvr
∂λ

2
+

∂λqvl
∂λ

2

For the sake of simplicity, we will consider it as a free fall motion with qvl = 0. The universal

gravitation law in Newtonian mechanics is expressed by elim inating the mass of the moving

object.

∂²λqvr
∂λ²

=
1
C²
Gm
r²

λ = ct₀



It becomes. This can be regarded as a distribution of
∂²λqvr
∂λ²

as a function of position in space.

In other words, this curvature is expressed as a change in the speed of another general

theory of relativity, think of it as inertial motion, and build an equation. This is exactly the

same idea as E instein's general theory of relativity. When formula

∂²λqvr
∂λ²

=
∂
∂λ

∂λqvr
∂λ

The equation of the moving object is
∂λ
∂λ

2
=

∂λp₀
∂λ

2
+

∂λpvr
∂λ

2

In term s of trigonometric functions

∂
∂λ

∂λqvr
∂λ

=
∂
∂λ

sinθq(λ)
∂
∂λ

∂λq₀
∂λ

=
∂
∂λ

cosθq(λ)
∂λ
∂λ

2
＝ cos²θp+sin²θp

(θq:Angle of space curvature θp:Angle of initial velocity)

Considering that the line segment of initial velocity θp changes by θq as λ advances

∂λ
∂λ

2
＝ cos²(θp―θq)+sin²(θp―θq)

It becomes an expression like this . The remaining dim ension qvl is considered to change

following the momentum conservation law. If you take it apart again

sin(θp―θq) ＝ sinθpcosθq―cosθpsinθq ＝
v

c

∂λq₀
∂λ

― 1―
v
c

2∂λqvr
∂λ

This speed change occurs when λ light years advance. In other words, the speed change after

λ light years is

∂²λqvr
∂λ²

dλ =
∂λqvr
∂λ

= sinθq(λ) = β(λvr)

Considering the distance r from the center of the law of gravitation as the three-dim ensional

distance λqvr, the velocity function β (λvr) is

∂²λvr
∂λ²

dλvr=
∂β
∂λ

dλ vr=
∂β
∂λvr

∂λvr
∂λ
dλ vr= β dβ =

1
2
β²

∂β
∂λ

dλ vr= λvr₂
λvr₁ 1

C²
GM
λvr²

dλ vr =
1
C²
GM
λvr λvr₂

λvr₁

β(λvr) =
2
C²
GM
λvr λvr₂

λvr₁



it is conceivable that. In other words, the object is moving at a constant speed, but the

coordinates are changing, so it just looks like it is accelerating. If we extend the geodesic

equation in the previous section to 4 dim ensions

∂V
∂λ

=
∂W
∂λ₀
×
∂W
∂λ₁
×
∂W
∂λ₂

×
∂W
∂λ₃

＝ 0 Fn ＝ 0 (ｎ＝ 0,1,2,3)

∂λ
∂λ

2
=

∂λ₀
∂λ

2
+

∂λ₁
∂λ

2
+

∂λ₂
∂λ

2
+

∂λ₃
∂λ

2

And expressed in momentum

Fn
c

＝
∂pn
∂λ

＝ 0 (ｎ＝ 0,1,2,3)

A line segment that satisfies this is considered a geodesic line. Simplify the problem and

solve an equation with only p₀ and pv.

F
C
＝

∂p
∂(ct₀)

＝
∂(m₀c)
∂λ

＝ 0 (The force in the direction of advance is always 0 for another

general theory of relativity.)

F₀
C

＝
∂p₀
∂(ct₀)

＝
∂(γ-¹m₀c)

∂λ
＝ m₀

∂(cosθ)
∂t₀

＝ ―m₀sinθ
∂(θ)
∂t₀

=0

Fv
C

＝
∂pv
∂(ct₀)

＝
∂(m₀v)
∂λ

＝
1
C
m₀

∂v
∂t₀

(Second law of motion) ＝ m₀
∂(sinθ)
∂t₀

＝ m₀cosθ
∂θ
∂t₀

=0

It is thought that the geodesic line has a relationship. Considering geodesic conditions with

respect to Fv here, if the stationary mass is 0, it will be satisfied naturally, if the stationary

speed is unchanged, it will be satisfied, but this tim e it is not applied. Therefore, it is

considered that the geodesic curve satisfies
∂θ
∂t₀
=0. As I wrote a while ago, in another general

theory of relativity, the angle Δθ of apparent acceleration motion is

Δθ ＝ θp―θq (θq:Angle of space curvature θp:Initial speed angle)

Therefore, the geodesic condition is that Δθ is always constant with respect to the four-

dim ensional distance. When solved

λq₀

λqvr

λ



F₀
C

＝
∂p₀
∂(ct₀)

＝―m₀sinΔθ
∂(Δθ)
∂t₀

= ―m ₀
∂(Δθ)
∂t₀

sinθpcosθq―cosθpsinθq

= ―m ₀
∂(Δθ)
∂t₀

pq´―qp´ ＝ 0 → m ＝ 0 pq´―qp´＝ 0

Fv
C

＝
∂pv
∂(ct₀)

＝ m₀cosθ
∂θ
∂t₀

=m ₀
∂(Δθ)
∂t₀

(cosθpcosθq ＋ sinθpsinθq)

= ―m ₀
∂(Δθ)
∂t₀

p´q´+qp ＝ 0 → m ＝ 0 p´q´+qp ＝ 0

(p ＝ sinθp q ＝ sinθq)

As a result, the condition of another general relativity geodesic line is very sim ilar to the

previous quantum mechanics.

10 Another general theory of relativity in Newton force fields.

In the previous section, we calculated the geodesic conditions of another general relativity

where the field shape is not concrete. In this section, we apply the universal gravitational

force field and calculate that the results are almost the same as Newtonian mechanics. In

the previous section, the law of universal gravitation was set to
∂²λqvr
∂λ²

=
1
C²
Gm
λvr²

. If you rewrite

it a little bit

∂²λqvr
∂λ²

=
4π
C²

Gm
4πλvr²

＝
4π
C²

Gm
S

(S:Surface area of a sphere of radius λvr)

It becomes. If this property represents the surface area of a sphere, not a coincidence. Since

the radius is set to a four-dim ensional distance, the circum ference ratio does not become π.

Therefore, this world is forcibly considered as a spherical shape, and the circum ference is

corrected. Considering this world as the surface volume of a four-dim ensional sphere,

considering all energy can be em itted only in the three-dim ensional direction and not

diverging in the four-dim ensional direction



Naturally, the surface area of a point with a four-dim ensional distance r is not 4πr², but a

smaller value, and the π is not constant. However, according to the figure above, for π and

π´

l ＝ 2πr₀sinθ l ＝ 2π´r ＝ 2π´(r₀θ)

∴ 2πr₀sinθ ＝ 2π´(r₀θ)

π´＝
sinθ
θ
π

It can be seen that there is a relationship. The question is what k ind of field is created by

the stationary mass, but now we will continue to consider sim ilar fields according to the law

of gravitation. Also, since the universe is considered sufficiently large, we will consider it as

π′≈π. Assum ing that the velocity function β (λvr) is superposed on the curvature of the center

mass Mq and the mass Mp of the moving body as calculated in the previous section.

∂β
∂λ

=
G
C²

(Mq+Mp)

λvr²
β(λvr) =

2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

Then, for the tim e being, we will continue our discussion with this spatial curvature.

Suppose that the space is curved by the mass of the center sun and the mass of the moving

body, and that the superposition principle holds.

∂²λqvr
∂λ²

＝
G
C²

(Mq+Mp)

λvr²
→

∂λqvr
∂λ

＝
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁
∂λq₀
∂λ

＝ 1 －
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

It becomes a line segment of space like(There is no base value, which is expressed only by

the change in position velocity with respect to the distance from the start of the moving

body.). As shown in the previous section, geodesic conditions are

∂W
∂λ₀
×

∂W
∂λvr

×
∂W
∂λvl

×
∂W
∂λ

＝ 0 Fn ＝ 0 (n=0,vr=1,vl=2)

p´q´+qp ＝ 0

pq´―qp´ ＝ 0

θ
r₀

ｌ

r



(p:move momentum of sinθp p´:
∂p
∂θ

is the cosθp of the move momentum )

(q:The center space momentum , sinθq q´:
∂q
∂θ

is the center space momentum of cosθq)

cos(θp―θq)＝ p´q´+qp ＝
∂λp₀
∂λ

1 －
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

+
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁
∂λp₁
∂λ

＝ 0

sin(θp―θq)＝ pq´―qp´＝
∂λp₁
∂λ

1 －
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

―
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁
∂λp₀
∂λ

＝ 0

It becomes a formula like, calculate
∂β
∂λ

as Lagrangian

∂ sin(θp―θq)
∂λ

＝
∂²λp₁
∂λ²

1 －
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

+
∂λp₁
∂λ

∂
∂λ

1 －
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

―
∂
∂λ

2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁
∂λp₀
∂λ

―
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁
∂²λp₀
∂λ²

cosθq ＝ 1 －
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

sinθq ＝
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

And put

∂²λ₁
∂λ²

＝
∂²λp₁
∂λ²

cosθq+
∂λp₁
∂λ

∂
∂λ
(cosθq) ―

∂
∂λ

sinθq
∂λp₀
∂λ

― sinθq
∂²λp₀
∂λ²

---①

Here we calculate the center space momentum

∂
∂λ
(cosθq) ＝ ― sinθq

∂θq
∂λ

θq ＝ sin⁻¹βq And put

∂θq
∂λ

＝
∂θq
∂βq

∂βq
∂λ

＝
1

1―βq²
―

G
C²

(Mq+Mp)

λvr²

∂
∂λ
(cosθq) ＝ ― sinθq

∂θq
∂λ

＝
βq

1―βq²

G
C²

(Mq+Mp)

λvr²
---②

Also

∂
∂λ
(sinθq) ＝ cosθq

∂θq
∂λ

＝ cosθq
∂
∂βq

(sin⁻¹βq)
∂βq
∂λ

＝ cosθq
1

1―βq²
―

G
C²

(Mq+Mp)

λvr²
＝ ―

G
C²

(Mq+Mp)

λvr²
----③

Next, calculate the move substance motion

∂λp₁
∂λ

＝ sinθp ＝ βp And put

∂²λp₁
∂λ²

＝
∂
∂λ
(sinθp)＝ cosθp

∂θp
∂λ

＝ cosθp
∂
∂βp

(sin⁻¹βp)
∂βp
∂λ

＝
∂βp
∂λ

---④

∂²λp₀
∂λ²

=
∂
∂λ
(cosθp) ＝ ― sinθp

∂θp
∂λ

＝
―βp

1―βp²

∂βp
∂λ

---⑤

Therefore, substituting ② ③ ④ ⑤ into ①



∂²λ₁
∂λ²

＝
∂βp
∂λ

1―βq²+βp
βq

1―βq²

G
C²

(Mq+Mp)

λvr²
― ―

G
C²

(Mq+Mp)

λvr²
1―βp² ― βq

―βp

1―βp²

∂βp
∂λ

＝ 1―βq² + βq
βp

1―βp²

∂βp
∂λ

― 1―βp² + βp
βq

1―βq²

∂βq
∂λ

Since βp << 1 and βq << 1 in the normal speed range

∂²λ₁
∂λ²

≒ 1+ βpβq
∂βp
∂λ

― 1+ βpβq
∂βq
∂λ

＝ 0

∂βp
∂λ

―
∂βq
∂λ

= 0 or (Mp)
∂V
∂λ

+
G
C²

(Mq+Mp)Mp

λvr²
＝ 0

(βp ＝
∂P₁
∂λ

βq ＝

2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

Mp:Stationary mass of the moving substance Mq:Stationary mass of the center)

It becomes, The result approximates Newtonian mechanics in the normal velocity region. In

a distorted three-dim ensional space with the property βp = βq, it agrees with Newtonian

mechanics. In other words, if the gravitational field angle and the momentum angle are

equal, it is almost identical to Newtonian mechanics. In other words, inertial acceleration is

a value that appears when a substance traveling in a distorted space passes through a stable

location, and the moving body moves so that the phase angle between the spatial and the

velocity is always constant.

11 Energy conservation laws in another general theory of relativity

In Section 5, we talked about the energy conservation law in another general theory of

relativity. F irst, total energy E is

E=
∂p

∂t₀
dλ=

∂(m₀C)

∂t₀
d(ct₀) =

∂(m₀C)

∂t₀
dt₀dc = m₀c²

However, the static energy and k inetic energy on the right side are calculated using the law

of conservation of momentum .

∂pv
∂t₀

＝
∂(m₀v)
∂t₀

=
∂Wv
∂λv

→ Wv ＝
v

0

∂(m₀v)

∂t₀
d(vt₀) ＝

1
2
m₀v²

∂W₀
∂λ₀

＝
∂p₀
∂t₀

＝
∂(γ⁻¹m₀c)

∂t₀
= m₀c²

∂(γ⁻¹)
∂λ

＝ m₀c²
∂(cosθ)
∂λ

＝ m₀c²
∂(cosθ)
∂λ₀

∂λ₀
∂λ

＝ m₀c² cosθ
∂(cosθ)
∂λ₀

Since the static momentum is 0 at the speed of light, integration from the speed of light to v

is performed.



W₀＝ m₀c² 0

sin⁻¹
v

c
cosθ

∂(cosθ)

∂λ₀
d(λ₀) ＝ m₀c² ２

π

sin⁻¹
v

c
cosθd(cosθ) ＝ m₀c²

1
2
cos²θ

sin⁻¹
v

c

２

π

＝
1
2
m₀c² 1―sin²θ

sin⁻¹
v

c

２

π

＝
1
2
m₀c²－

1
2
m₀v²

Wv+W₀＝
1
2
m₀c²

It becomes the calculation. This value is half of m₀c², but if C is calculated as a variable, it will be

the same value, so there is no problem. Next, the calculation is performed in the same way as

Einstein. The momentum conservation law is

(m ₀c)²=(γ⁻¹m ₀c)²+(m ₀v)² So deform

(m ₀c²)²=(γ⁻¹m ₀c²)²+(cm ₀v)²

(γm ₀c²)²=(m ₀c²)²+(cγp)² (m ₀c²)²=(γ⁻¹m ₀c²)²+(cp)²

The left one is E instein's energy conservation law, and the right one is another general

relativity theory energy conservation law. Next, transform the expression on the right

(m ₀c²)²=( 1-
v
c

² m₀c²)²+(cm₀v)²＝ 1-
v
c

2
m₀²c⁴＋ m₀²c⁴

v
c

2
＝ m₀²c⁴

And it can be seen that it almost agrees with the value obtained by integration. However,

s ince the value obtained by integration is divided into static energy and k inetic energy

components, it can be applied to Schrodinger's equation and the like. Also, the energy value

is
1
2
, but this is considered to be the same property that the energy is halved in Dirac's

equation.

12 Relativistic Doppler effect

This section describes the relativistic Doppler effect as before.

The blue line is an object moving at speed v, and the red line represents the progress of light. Τ is

ct₀

x₀ x

contact 1 x₁ t₁

contact 2 x₂ t₂

τ



considered as the wavelength of light. Contact 1 receives light first, and contact 2 thinks that one

cycle of wave travels. Then the formula is

x₁＝ x₀＋ vt₁＝ ct₁

x₂＝ x₀＋ vt₂＝ c(t₂－ τ)

When the above equation is transformed

t₂－ t₁＝
c

c―v
τ

This is the formula for the Doppler effect when the wave source is stationary. Furthermore, if

Lorentz transformation is applied to this equation, the space where light travels is extended and

the time of light is shortened.

t₂´－ t₁´＝ γ⁻¹(t₂－ t₁)

t₂´－ t₁´ is the light period τ´ seen from the moving object

τ´＝ γ⁻¹(t₂－ t₁)＝ γ⁻¹
c

c-v
τ

τ´

τ
＝

1+β

1-β

This is consistent with Einstein's formula. In other words, the Doppler effect due to the reduction

of the object and the Doppler effect due to the expansion of the space work the same for light

observation. After this, the general formula of another general relativity will be derived, but at

that time, the expansion and contraction of this space will be taken into account. Next, the

calculation method of the lateral Doppler effect is calculated assuming that the light emitted

from the Lorentz-contracted object has already undergone Lorentz contraction, which is exactly

the same as the conventional special relativity theory.

τ´

τ
＝

1－ βcosθ

1－ β²

It becomes. In addition, if the speed of the moving body is accelerated by the gravitational field,

the relativistic Doppler effect does not occur

τ´

τ
＝1 － βcosθ (when emission space is flat)

It becomes such a formula.



13 Special relativity as part of another general relativity

In this way, the another general relativity is a steady-state equation of motion where the

total possession momentum of the object does not change, and the special relativity is a

transient equation of motion where the total momentum changes. Calculate the equation for

accelerating the line of general relativity by applying energy from outside. The line of motion

observed by the observer accelerating to velocity v is

(m ₀c)²=(
1
γ₁
m₀c)²+(m ₀v₁)² Minkowsk i space-tim e (

1
γ₁
m₀c)²=(m ₀c)²―(m ₀v₁)²

(m ₀c)²=(γ₁m ₀c)²―(γ₁m ₀v)² E xpressed as a hyperbolic function

(m ₀c)²=(m ₀c coshθh1)²―(m ₀c sinhθh1)²

When this equation is converted into Lorentz contraction by the speed increase,

(m ₀c)²=(m ₀c cosh(θh1+θh2))²―(m ₀c sinh(θh1+θh2))²

coshθh1＝
１

１-
v₁

c

２
＝ γ₁ coshθh2＝ γ₂ sinhθh1＝ γ₁β₁ sinhθh2＝ γ₂β₂ And put

(m ₀c)²=(m ₀c(γ₁γ₂＋ γ₁γ₂β₁β₂))²―(m ₀c(γ₁γ₂β₁＋ γ₁γ₂β₂))²

It becomes such a conversion. Since the component of momentum conservation in general

relativity is the first term on the right side, of both sides are transposed by Lorentz

contraction,

(m ₀c)²= m₀c
1

γ₁γ₂＋ γ₁γ₂β₁β₂

2
＋ m₀c

γ₁γ₂β₁＋ γ₁γ₂β₂

γ₁γ₂＋ γ₁γ₂β₁β₂

2

(m ₀c)²= m₀c
1

cosh(θ₁+θ₂)

2
＋ m₀c tanh(θ₁+θ₂)

2

(m ₀c)²= γ⁻¹ m₀c
2
＋ m₀c tanhθ

2

This is consistent with the calculation of Lorentz contraction using the additive law of

velocity in special relativity. In other words, it absorbs energy from the outside and becomes

faster than the speed of light. In order to maintain the speed of light, the distance is

shortened and the moving body tim e is also delayed, the behavior is thought to be Lorentz

contraction, in which tim e and space shrink . This is an assumption, but we believe that the

gravitational field is extended or contracted by the amount of expansion or contraction of a

force field such as another electromagnetic field . F or example, when energy is exchanged

m₀c

γ₁m₀v₁

γ₁m₀c γm₀c

γm₀v

θh1
θh＝θh1＋θh2

m₀c



between a playground and an electromagnetic field , I think that the speed of light is

protected as the interaction between the motion field and the electromagnetic field , and at

the same tim e it satisfies the law of conservation of energy.

Next, let 's consider the law of motion, which we considered as special relativity. The

momentum pv of special relativity is

pv ＝ γm ₀V

It can be expressed as, but the force Fv is considered to be the momentum differentiated by

four-dim ensional distance, since the ratio of the change in momentum to the four-

dim ensional distance is considered Lorentz contraction,

Fv
C
＝

∂pv
∂λ

＝ m₀c
∂
∂λ

v

c

１-
v

c

２
＝ m₀c

∂
∂λ

sinhθh ＝ m₀c
∂
∂θh

sinhθh
∂(θh)

∂λ
---- ①

(s inθh＝
γv
γc
＝ tanhθh cosθ ＝

1
γ
＝

1
coshθh

tanθh＝ γ
v
c
＝ sinhθh Relationship exists)

Here we calculate the derivative of the phase angle of the hyperbolic function.

∂(θh)

∂λ
=

∂(cosh
-1
γ)

∂λ
=

1

γ

１-
1

γ

2

∂γ
∂λ

=
cosθ

１-cos²θ

∂γ
∂λ

=
cosθ
sinθ

∂γ
∂λ

=
1
γβ

∂γ
∂λ

The derivative of the phase angle of the trigonometric function is

∂(θ)
∂λ

=
∂(sin

-1
β)

∂λ
=

1

１- β
2

∂β
∂λ

=
1

１-sin²θ

∂β
∂λ

=
1

cosθ

∂ １-cos²θ

∂λ
= γ

1

2 １―
1

γ

2

2

γ
3

∂γ
∂λ

=
1
γ²

1
β
∂γ
∂λ

That is , between θh and θ
∂θh
∂λ

= γ
∂θ
∂λ

There will be a relationship

So the ①formula is

∂pv
∂λ

＝ m₀c coshθhγ
∂θ
∂λ

= m₀c γ³
∂β
∂λ

→ Fv ＝ γ³m₀
∂v
∂t₀

And such an expression. Next, the force F of the four-dim ensional momentum is obtained.

Since it is a Lorentz contracting motion system , the four-dim ensional momentum changes.

Because force F exists differently from another general relativity,

p ＝ γm ₀c →
F
C
＝

∂p
∂λ
＝ m₀c

∂
∂λ

1

１-
v₁

c

２
＝ m₀c

∂
∂λ

coshθh ＝ m₀c
∂
∂θh
(coshθh)

∂(θh)

∂λ

＝ m₀c sinhθ γ²
1
c
∂v
∂λ

→ F ＝ γ³m₀
∂v
∂t₀

sinθ

is the value obtained by decomposing the force in the three-dim ensional momentum

direction. This is thought to be because the acceleration of special relativity is acceleration in

three-dim ensional space. In other words, force can be thought of as the reaction when an

object receives energy from another moving body or force field , and moves out of geodesic.

The reaction is the value obtained by differentiating the four-dim ensional distance that has

advanced the momentum in each direction as a parameter.



Fn ＝ c
∂pn
∂λ

(n ＝ 0,1,2,3)

It becomes.

14 Summary of Newtonian theory of relativity

In this section, we summarize the properties explained in another theory of relativity.

・ F irst law Law of inertia(Another general relativity)

An object perform ing a certain motion does not change its four-dim ensional momentum

unless it receives external energy interference. The velocity is the speed of light. When the

properties at that tim e are geometrically expressed, the object passes through a position

where the retained energy per surface volume of the traveling section is m inimal. If its

properties are briefly described, it can be expressed that the force in all directions becomes

zero. The apparent acceleration and deceleration due to gravity is inertial motion. In the

expression

p²＝(m ₀c)²=(
1
γ
m₀c)²+(m ₀v)² p ＝ const

∂W
∂λ₀
×
∂W
∂λ₁
×
∂W
∂λ₂

×
∂W
∂λ₃

＝ 0 Fn ＝ 0 (ｎ＝ 0,1,2,3)

∂p₁
∂λα₁

+
∂p₂
∂λα₂

+
∂p₃
∂λα₃

=0 (αn＝ sin sin⁻¹
∂λｎ
∂λ

+ Δθq(λ)+cos⁻¹
v0n
c

)

p´q´+qp ＝
∂P₀
∂λ

∂Q₀
∂λ

+
∂Q₁
∂λ

∂P₁
∂λ

＝ 0

pq´―qp´ ＝
∂P₁
∂λ

∂Q₀
∂λ

―
∂Q₁
∂λ

∂P₀
∂λ

＝ 0

(αn:What converted motion coordinates to speed of light)

(p´:Cosθp of the momentum of the moving body)

(p:
∂p
∂θ

is the sinθp component of the moving body momentum )

(P ₀:Moving distance of moving body P ₁:3D distance of moving body)

(q´:Cosθq of the momentum of the central object)

(q:The sinθq component of the momentum of the central object)

(Q₀:Static distance of the central object Q₁:3D distance of central object)

It becomes something.



・ Second law Law of motion(Special relativity)

When a force is applied to an inertial system , the object increases its velocity while

Lorentz contracting. The equation when the force is applied in three dim ensions is

Fv ＝ γ³m₀
∂v
∂t₀

However γ ＝
１

1－
v

c

2
To be

It becomes.

・ Third law Action reaction law(Special relativity)

An object moving in a certain inertial system receives a reaction when it moves out of the

inertial system . When expressed by an expression.

Fn ＝ c
∂pｎ
∂λ

(n ＝ 0,1,2,3)

It becomes. In summary, this is the case, and with respect to the second and third laws, only

the calculation of the line segment where the stationary momentum is constant is performed.

P robably, there is also a movement that increases the resting momentum while keeping the

three-dim ensional momentum constant. The expression in the third column of the first law

indicates that an object travels at the speed of light in the four-dim ensional direction.

Derivation of the formula in the third column will be described in the next section.

15 Generalization of another general relativity

In the previous section, another theory of relativity was described as three laws of motion

sim ilar to Newtonian mechanics. In this section, I will generalize it. Although the motion in

the gravitational field has been described in the previous section, the equation of motion

cannot be described in the force field in which the mass field at the origin changes with

tim e.If all field displacements travel at the speed of light, then the displacement of the

gravitational field must also travel at the speed of light. In other words, in the case where

the mass of the origin changes over tim e, the change over tim e of the gravitational field is

transm itted at the speed of light, and the object that inertially moves in synchronization

with the wave should also swing. This concept is exactly the same as E instein, but uses the

mathematics of the four-dim ensional space and the above-m entioned wave equation as

mathematics representing general formulas. The wave equation is

∂Φ(x , t)
∂α

= 0 Φ (x、t)＝ Φ (α、β)

=Φ ( x
2
+t² cos( tan⁻¹

t
x

- tan⁻¹
1
c
)、 x

2
+t² sin( tan⁻¹

t
x

- tan⁻¹
1
c
))



The meaning is that a wave transm itted at the speed of light will be zero when

differentiated by coordinates converted to the speed of light(Differentiating with the green

coordinate axis gives 0). This equation is applied to an object that freely falls on a mass point.

Assum ing that the mass of a mass point oscillates and that the variation in mass diverges

outward at the speed of light according to the four-dim ensional distance. The gravitational

field of an object moving at the speed of light in the direction of its divergence is not directry

affected by the temporal vibration of the mass, but becomes a value dependent on the value

of the mass at a certain tim e point, and when differentiated by the coordinates of the normal

component, the function of the position with respect to the space should be 0. If you show it

in a diagram

ｔ

X

Φ

θ



That is , it is considered that the momentum Pn, which is a function of the four-dim ensional

coordinate system , is differentiated by the coordinate α of the red line, its value is 0. In the

drawing, the red line is in a three-dim ensional direction, but the coordinates used in the

equation are in a four-dim ensional direction. In order for the four-dim ensional coordinate

system to have this property, the coordinate system must be point-symmetric with respect to

the origin. A field that satisfies Gauss 's theorem is point symmetric, and this coordinate

system exists . F irst, ignoring Gauss 's theorem , considering the equation only by acceleration

of momentum

∂p(λ₀,λvr,λvl)
∂αt₀

＝ 0 α ＝ sin sin⁻¹
∂λvr
∂λ

+ Δθq(λ)+cos⁻¹
v₀
c

sin⁻¹
∂λvr
∂λ

: Speed angle before light speed coordinate conversion

Δθq(λ): Angle of inertial acceleration distributed as a function of position

cos⁻¹
v₀
c

: The initial speed is angled and the phase is shifted by
π
2
. This conversion

converts the initial velocity v₀ to the speed of light.

It becomes something. Let's solve this equation and see that it becomes a line segment of the

another general theory of relativity described so far. F or simplicity, calculate the

circum ferential velocity Vl as 0(Consider only free-fall components).

p( λ₀ ,λvr)＝ p(α、β) →
∂p(α,β)
∂α

＝ 0 →

p(β)＝ q cos sin⁻¹
∂λvr
∂λ

+ Δθq(λ)+cos⁻¹
v₀
c

--‐‐①

The change in the mass at the origin is propagated outward at the

speed of light, and when differentiated on this coordinate axis, gravity

becomes zero

Wave traveling at the speed of light c

If the observation coordinates are moved at the speed of light in

the same direction as the gravity wave, the shape of gravity will

be a constant value with similarity

Smaller according to the inverse

square law



is a temporary solution, but breaks down. ① Summarizing the first and third term s on the

right side of the equation

cosθvr ＝ cos(θv ＋ θv₀)＝
∂λ₀
∂λ

v₀
c

―
∂λvr
∂λ

1-
v₀
c

² ----②

Here, θv₀ ′ =
π
2
+ θv₀ holds. As shown in the figure

And using this relationship to transform the formula

∂λ₀
∂λ

v₀
c

―
∂λvr
∂λ

1-
v₀
c

² ＝ cosθv cosθv₀ ― sinθv sinθv₀ ＝ cosθv sinθv₀´ + sinθv cosθv₀´

cosθvr ＝ cos(θv ＋ θv₀) ＝ sin(θv+θv₀´) ＝ sinθvr´ ----③

It can be seen that such a relationship holds. So, if we apply equation ③to equation ②

cos(θvr ＋ Δθ(λ))＝ cosθvr cosΔθ(λ) + sinθvr sinΔθ(λ)

cosθvr ＝ sinθvr´ sinθvr ＝ ―cosθvr´

cosθvr cosΔθ(λ) ―sinθvr sinΔθ(λ)＝ sinθvr ´cosΔθ(λ) + cosθvr´ sinΔθ(λ)

cos(θvr ＋ Δθ(λ))＝ sin(θvr´+Δθ(λ))＝ sin(θv ＋ θv₀´+Δθ(λ))

And the general solution is

q(λ₀、λvr)＝ f(s in(sin⁻¹
∂λvr
∂λ

＋ sin⁻¹
v₀
c
+ θ(λ))

This is a line segment of another general theory of relativity that has been described so far.If

the origin mass fluctuates, it appears as a change in θ (λ),
∂λvr
∂λ

changes to satisfy the wave

equation. Now consider the property of
∂q(λ₀,λvr,λvl)

∂α
. As shown in Section 10, the gravitational

field can be thought of as a point-symmetric field that satisfies the same Gaussian law as

Newtonian mechanics.Then, when
∂q(0,vr,vl)

∂α
is integrated with the surface area Sλ

θv₀
θv₀´

c²－ v₀²

v₀

c

θv₀´

θv₀



surrounded by the equal distance of the four-dim ensional distance (λ = ct₀), the value is

considered to be 0.

Sλ

⬚ ∂ｑ(λ₀、λvr、λvl)

∂ sin sin⁻¹
∂λvr

∂λ + Δθq(λ)+cos⁻¹
v₀

c t₀
dSλ ＝ 0

However, s ince this is Gauss ' law, if the condition of this λ line segment is λ (λβ, λα₁, λα₂, λα₃)

∂q
∂λα₁

＋
∂q
∂λα₂

＋
∂q
∂λα₃

＝ 0
∂q
∂λβ

≠ 0

Can be rewritten as

Here, λα₁, λα₂, and λα₃ are obtained by converting the motion according to the free fall

motion into light speed coordinates and are considered to be three-dim ensional coordinates.

∇α ・ p=0

This is sim ilar to Bianchi's identity in E instein's general theory of relativity. Next, assum ing

that the momentum p falls freely in this coordinate system ,

∂p
∂λα₁

＋
∂p
∂λα₂

＋
∂p
∂λα₃

＝ 0
∂p
∂λβ

≠ 0

And put together

∂q
∂λα₁

＋
∂q
∂λα₂

＋
∂q
∂λα₃

＝ κ
∂p
∂λα₁

+
∂p
∂λα₂

+
∂p
∂λα₃

----④

It looks like this . In this formula, the left side represents the field created by the central

body mass as virtual momentum , the right side is the momentum of free fall at the

coordinates. Since the right and left sides of the equation are both 0, any value of κ may be

used. However, s ince the equation cannot be deformed as it is , the coefficient κ is determ ined

so that the equation can be deformed. F irst, consider the momentum p of a moving object.

Wp=
∂p

∂t₀
dλ ＝

∂(m₀C)

∂t₀
d(ct₀) ＝

∂(m₀C)

∂t₀
dt₀dc ＝

1

2
Mp₀c² (Mp₀：Moving mass of moving body)

1

2
Mp₀c²＝

1

2
Mp₀c²－ Mp₀v² ＋

1

2
Mp₀v²

The force Fp on the left side of this equation is 0, but the value on the right side changes

virtually, so

Fp²＝ Fp₀²＋ Fpv² →

∂
∂λ

1

2
Mp₀c²

2
＝

∂
∂λ₀

1

2
Mp₀c² ―

1

2
Mp₀v²

2
＋

∂
∂λv

1

2
Mp₀v²

2

And such an expression. Next, consider the pseudo-momentum Q produced by a stationary mass.

In Section 10, we calculated the spatial distribution of acceleration using
G
C²

Mp₀＋ Mq₀

λ²
, but in this

section we use
4πG

c⁴

(Mp₀＋ Mq₀)c²

4πλ²
to compare with Einstein's theory of general relativity.



Fqv＝
4πG

c⁴

Mp₀(Mp₀+Mq₀)c²

4πλ²
→

∂λqv
∂λ

＝
4πG

c⁴

(Mp₀+Mq₀)c²

4πλ²
dλ ＝

4πG

c⁴
∇ (Mp₀+Mq₀)c²dλ

Becomes. If we give virtual mass 1 and consider it as virtual momentum,

∂q₀
∂λ

2
＋

∂qv
∂λ

2
＝

4πG

c⁴

2

∂λ₀
∂λ
＝

4πG

c⁴
―

∂qv
∂λ

2

You can think of a line segment like

∂q
∂λ

2
=

4πG

c⁴

2

It can also be. This is an extension of the calculation in Section 10 and acceleration is distributed

in space as distortion of space, and that moving an object along it is inertial acceleration. Also,

considering that Gauss's law is satisfied, a potential of 4πGc⁴m₀c² is distributed over a surface

area having the same distance λ. Here, the position momentum is taken as the distortion of the

virtual space, and the equation is calculated. The Lagrangian of the space described in Section 10

has the form F₀-F₁ = 0, but if we consider that the force F resulting from the momentum p and

the position momentum q holds,

Fq´´－ Fp´´＝ 0 →
4πG

c⁴
∇(Mp₀+Mq₀)c² ―

1

2

∂
∂λ
(mp₀c²)＝ 0

∇(Mp₀+Mq₀)c² ＝ Fq´
4πG

c⁴
Fq´ ＝ Fq ,

∂
∂λ
(mp₀c²) ＝ Fp´ , Fp´ ＝

8πG

c⁴
Fp

4πG

c⁴
Fq´ ＝

1

2
Fp →

8πG

c⁴
Fq´ ＝ Fp´ → Fq ＝

8πG

c⁴
Fp

Becomes. In this equation, the unit based on the position and momentum on the left side is based

on a value corrected by the universal gravitational constant, and the right side is a value based

on m₀c². That is, if the distortion of the space is described based on the total energy of the moving

body momentum, it is too large, so the force is corrected to a force corresponding to the universal

gravitational constant. As a result, the units of momentum and position momentum were unified.

Substituting κ into the wave equation ④

∂q
∂λα₁

＋
∂q
∂λα₂

＋
∂q
∂λα₃

＝
8πG

c⁴

∂p
∂λα₁

+
∂p
∂λα₂

+
∂p
∂λα₃

----⑤

It becomes such an expression. This is the same form as Einstein's theory of general relativity. The

calculations so far have been to express the line segments of another general relativity in four-

dimensional geometry instead of Riemannian geometry. Therefore, it can be said that the form of the

expression itself is almost the same.

As we have found so far, the right side and the left side are both 0, so the reft side and right side is

united with = and the equation is made. The transformation that the left side changes according to

the right side is mathematically possible, but not in the way of thinking about the equation. The right



side also becomes 0 without permission, and the left side also becomes 0 without permission. We

want to process it into an equation in which the momentum p and the position momentum q change

while maintaining the mutual relationship, and further modify the equation. As described in section

10, the position momentum and the momentum move while maintaining a constant phase angle in

the inertial motion system.

pq´―qp´＝ 0 , p´q´+qp ＝ 0

If we use a matrix to combine this into a single expression

P＝ p

cosθp -sinθp

sinθp cosθp
Q＝ q

cosθq -sinθq

sinθq cosθq

P×Q＝ pq

cosθpcosθq-sinθpsinθq -(sinθpcosθq+cosθpsinθq)

sinθpcosθq+cosθpsinθq cosθpcosθq-sinθpsinθq

＝ pq

cos(θp+θq) -sin(θp+θq)

sin(θp+θq) cos(θp+θq)
＝Φ

Can be written. In other words, when expressed by the wave equation

∂Φ

∂α
＝ 0

∂Φ

∂β
≠ 0 Φ＝ pq

cos(θp+θq) -sin(θp+θq)

sin(θp+θq) cos(θp+θq)

α ＝ sin sin⁻¹
∂λvr
∂λ

+ Δθq(λ)+cos⁻¹
v₀
c

β ＝ cos sin⁻¹
∂λvr
∂λ

+ Δθq(λ)+cos⁻¹
v₀
c

----⑥

It becomes an expression like this . The general formula of another general relativity is

completed for the tim e being by ⑥. The mass that generates the gravitational field in this

equation is calculated not by the static mass {γm ₀} but by the absolute mass m ₀.

16 Extension of another general relativity

In the previous section, another general theory of relativity was treated as a wave equation,

and it was an equation to be satisfied in a fluctuating gravitational field . By the way, it is

understood that this physical quantity Φ has a property sim ilar to the wave function of

Schrodinger's equation. H ere, the current Φ is a two-dim ensional coordinate. So if you



expand to 4D coordinates

Φ＝ Φ

cosθ₀ -sinθ₀ 0 0

sinθ₀ cosθ₀ 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 cosθ₁ -sinθ₁ 0

0 sinθ₁ cosθ₁ 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 cosθ₂ -sinθ₂

0 0 sinθ₂ cosθ₂

θ₀： Static momentum angle θ₁θ₂：Momentum angle

Matrix product like. Here, if the value of
∂Φ

∂β
can be calculated, it is considered to be completed as

an equation.

First, we will consider the α axis. The α-axis is obtained by transforming a force field radiating

from a mass point into light velocity coordinates in a direction of divergence. In other words, if

the gravitational force becomes zero when differentiated by the speed of light in the divergent

direction, the equation holds. Conversely, a wave completely perpendicular to the event horizon

will emerge without being affected by the black hole. The formula for the velocity of the

gravitational field is

∂λvr
∂λ

＝
2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

But I think about Mp. We consider that the mass that gives rise to the gravitational field is

not the absolute mass Mp but there is the rest mass γ⁻¹Mp. Then, as the moving body

accelerates, the gravitational field created by the moving body itself becomes smaller. This

property seem s to be in good agreement with the property shown by another general theory

of relativity. And its loses rest mass as it falls into a black hole and eventually breaks down

to light that have momentum of m ₀c and falls into a black hole. Then, only the gravitational

field formula of the moving body is

∂λvr
∂λ

＝＝
1
γ

2
C²

GMp

λvr λvr₂

λvr₁

It becomes such an expression. In this equation, it can be seen that the expansion rate of the

gravitational field at the speed of light is infinite. In other word the curvature is zero. And

the property that the space expands by conjunction with the resting momentum is in good

agreement with the property that the space expands as it approaches the speed of light. If

this property can be applied to the field created by the central static mass which is the

center of the gravitational field ,
∂Φ

∂α
＝ 0 can be realized. When viewed from an observer in the

same coordinate system as the stationary object, the stationary mass of the moving object

decreases, but the central mass does not change, and therefore the gravitational field does not

change. Then, it may be assumed that the gravitational field viewed from the moving body



changes due to the Doppler effect due to the speed of the moving body. Doppler effect is

τ´＝ γ⁻¹(t₂－ t₁)＝ γ⁻¹
c

c-v
τ

It becomes. H ere, the
c

c-v
component is a normal Doppler effect without relativistic effects .

This means that if the receiving object is stationary, the wavelength of the light will not change,

but if it is moving, the moving spectrum will arrive slower or faster and the Doppler effect will

occur. We assume that the Doppler effect of light causes the gravitational field to expand and

contract, and that the magnitude of gravity changes. So suppose the distance traveled as an

object is zero. In the expression

t₂＝
Δx

c
＋ τ Δx→０ t₂＝ τ

The nonrelativistic Doppler effect becomes zero at the minimum length Δx. In other words, the

wavelength of light is

λ´＝
1

γ
λ

The light seen from an object moving at the speed of light is extended to infinity. At this time, it

is assumed that the gravitational field is also extended to infinity at the same ratio.

∂λvr
∂λ

＝
1
γ

2
C²

GMq

λvr λvr₂

λvr₁

At this tim e, considering the mass Mp of the moving body

∂λvr
∂λ

＝
1
γ

2
C²

G(Mq+Mp)

λvr λvr₂

λvr₁

It can be transformed into the following equation. In other words, if the curvature of the

space is constructed according to this concept, the differentiation in the light velocity

conversion coordinates in the falling direction will be completely zero. This equation shows

that the acceleration applied to the motion field at the same speed of light as the direction of

the gravitational field is zero. If it is lim ited to the speed of light, the virtual force will be

applied only in the right angle direction. If you think so, gravity is an outer product, not an

inner product, which has properties sim ilar to Lorentz force in an electromagnetic field . In

other words, it feels like an inner product in the three-dim ensional direction, but when

considering the four-dim ensional direction, it is the virtual force that acts only on the

orthogonal component of the motion field and the gravitational field . As a result, the

differential value of the α component becomes 0 and another general relativity general

formula is

∂Φ

∂α₁
+

∂Φ

∂α₂
+

∂Φ

∂α₃
＝ 0



∂Φ

∂β
≠ 0

∇αΦ=0 If it is a two-dim ensional component Φ＝ pq

cos(θp+θq) -sin(θp+θq)

sin(θp+θq) cos(θp+θq)

If you write up to 4 dimensions Φ＝ pq

cosθ₀ -sinθ₀ 0 0

sinθ₀ cosθ₀ 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 cosθ₁ -sinθ₁ 0

0 sinθ₁ cosθ₁ 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 cosθ₂ -sinθ₂

0 0 sinθ₂ cosθ₂

It was very simple. This represents the law of conservation of energy itself, which means

that the law of conservation of energy is equivalent to the law of invariance of light speed.

Also, in the gravitational field for which this calculation was performed, the parallel energy

components of the energy waves do not interact with each other, and only the orthogonal

components interact. Furthermore, it seem s that this property may define a dim ension. In

other words, if there is a wave that interacts only when it is orthogonal to all components of

the wave function existing in the three-dim ensional space distorted in the four-dim ensional

direction, it can be said that it is a new dimension.

16 Calculation of the basis value of another general relativity space

Until now, the Lagrangian of the speed of light with respect to the divergence direction of

the momentum function Φ was calculated to be 0, and the wave equation was calculated.

H ere, the differentiation of the β axis will be considered.

Since the α axis is the speed of light in the direction of the gravitational field converted to

the speed of light, the β axis can be expressed as

β ＝ cos sin⁻¹
∂λvr
∂λ

+ Δθq(λ)+cos⁻¹
v₀
c

It can be seen that the coordinates represent stationary coordinates. Now consider the

prototype of the wave equation described in section 7-2. The equation was obtained

assum ing that the property that the value becomes 0 when differentiated on the α axis is a

wave equation. It can be seen that differentiating on the β-axis results in differentiation at

coordinates where the wavelength is m inimal. The following is shown in the figure. In other

words, it is considered that the base value of the gravitational field can be calculated by

obtaining the value on the β-axis .



Here, we consider the differentiation of the β-axis with a basic wave function.

Φ(x， t)＝ sin
2π

λ
x-ct Differentiate the function represented by with β axis

β＝ x
2
+t² sin(tan⁻¹

t
x

- tan⁻¹
1
c
)

＝
-1

c
2
+1

(x － ct)

Is Φ

Φ(x， t)＝ sin
2π

λ
x-ct ＝ sin -

2π

λ
c
2
+1 β

∂Φ

∂β
＝－

2π

λ
c
2
+1 cos

2π

λ
x-ct

X axis

t axis

Φaxis

βaxis

αaxis

P roceed at the speed of light



And this value is the form of the basis of the wave function.

Apply this to the gravitational field equation

∂Φ(α , β)

∂β
In Although ∇α ・ Φ=0

So

∂Φ(α,β)

∂β
＝

∂Φ(β)

∂β
Becomes

Here, Φ (β) is a function in which the combined momentum Φ is divided into an orthogonal axis

having a constant value and a light axis.

∂Φ(α,β)

∂β
＝

∂Φ(β)

∂β
＝ f(β)

And summing up the equations

(∇α+Ｄβ)・ Φ(β,α)＝ (∇α+Ｄβ)・Φ(β,α)dSα ＝ f(β)

It becomes the form. The meaning is that the synthetic momentum Φ becomes 0 when

differentiated at the speed of light in the direction of divergence of the source of the gravitational

field, and becomes a function of β when differentiated at stationary coordinates. Also consider

that the solution is ( PQ dβ) which is the inverse operation from the answer. Applying Gauss's

theorem here.

(∇α+Ｄβ)・Φ(β,α)dSα＝
∂Φ(β)

∂β
dSα

If the center mass of the gravitational field does not change, the right side is considered to be a

constant,

(∇α+Ｄβ)・Φ(β,α)dSα＝ ΦSα Φ ＝m₀C （ If you take space-time as Q=1 ）

It can be seen that the shape is very similar to Dirac's equation.

Here, let us consider the energy of Q (virtual momentum of a mass point at the center). The

energy of Q is stationary as seen from the observer

Eq ＝
1
γ
Mqc²＝Mqc² Should be. If the mass that creates the gravitational field is a static

mass, if all the mass diverges into space as gravitational waves, no energy should remain

there. In other words, it can be considered that this value must be equal to the gravitational

field energy of the entire space. If the space is closed in one dim ension

Qｄ λ＝Mqc²T ＝ nh (T ： The time that takes Q to go around)

Which is similar to de Broglie's law. This idea is extended to three-dimensional space.

F irst, assuming that this world is closed 3D, the surface volume of the 4D sphere mentioned

above can be considered as the most stable candidate for closed 3D space. Assuming that these

lines of force diverge from a certain point



(∇α・ Q)ｄ S ＝ Fq(const) ＝ 4πGMq

You can think like this. When expressed as a three-dimensional sphere

The idea is as follows. Unlike the law of universal gravitation, the force field was forced to close,

it becomes possible to perform the circular integration in the λ direction. And its value must be

Mqc²

Fq dλ＝ 4πGMqcT ＝ Mqc²

T ＝
c

4πG

Becomes(It is calculated to be 11.3 billion light years.). That is, it can be considered that the

sphysical quantity Q on the Gaussian surface has a constant value. In the case of this formula,

we are considered that space to distorted in the λ direction is a force. However, in the case of

another general relativity, this calculation cannot be performed because the vector of the

distortion in each direction is always 0. Therefore, it is assumed that the stationary momentum

Q is distributed on the Gaussian surface.

(∇α+Ｄβ)・Φ(β,α)dSα＝ f(β)Sα＝P(QSα)

QSα in this equation can be considered as the momentum distributed on the Gaussian surface,

and if this value is a constant value Q ′, the above equation becomes

(∇α+Ｄβ)・Φ(β,α)dSα＝ PQ' ＝ PMq₀c

The solution is rough

Φ(β,α)＝ P ・
Q(β)

sα

It looks like. Also different to the solution of another general relativity, the conservation of

θ
r₀

dS

λ

When the force distributed in this circle is

integrated over the circum ference, its value is

4πGMq.



resting momentum cannot be realized only by the path of the moving body, it is an expression

that it is established on the Gaussian surface of the coordinates. Although the movements can be

expressed by the formulas so far, this writing style was proposed for consistency with De

Broglie's law.

17 Another general relativity for motion with vectors other than the direction of inertial

acceleration

So far, the equation of motion with the initial velocity only in the direction of free fall has been

described. This section describes the equations of motion that have vectors other than the

bending direction.

First, let us consider how another general relativity behaves in a space that has a constant

acceleration only in a certain direction. First, describe the line segment

(v₀,v₁,v₂,v₃) ＝
∂λ₀

∂λ
,

∂λ₁

∂λ
,

∂λ₂

∂λ
,

∂λ₃

∂λ
＝

∂λ₀

∂λ
,

∂λv

∂λ
･
∂λ₁

∂λv
,

∂λv

∂λ
･
∂λ₂

∂λv
,

∂λv

∂λ
･
∂λ₃

∂λv

(v₀,v₁,v₂,v₃) ＝(cosθ₀₁ , sinθ₀₁cosθ₁₂ , sinθ₀₁sinθ₁₂cosθ₂₃ , sinθ₀₁sinθ₁₂sinθ₂₃)

It becomes. Also, if the distortion of the space is only one direction, the dimension does not need

to be 4 to express this motion, but 3 dimensions is enough

(v₀,Vvr,Vvl) ＝
∂λ₀

∂λ
,

∂λvr

∂λ
,

∂λvl

∂λ
＝

∂λ₀

∂λ
,

∂λv

∂λ
･
∂λvr

∂λv
,

∂λv

∂λ
･
∂λvl

∂λv

(v₀,Vvr,Vvl) ＝(cosθ₀₁ , sinθ₀₁cosθrl , sinθ₀sinθrl)

Is the coordinate system. As shown in the figure

It looks like this.

Now consider acceleration. There is a distance λ in the four-dimensional direction other than

the distance in the three-dimensional direction. Since the space is curved only in the direction of

the R axis, the speed in the direction of the L axis doesn't change until the three-dimensional

speed becomes the speed of light.（ At the speed of light, all vectors exist in the 2D plane of the L-

Laxis

0axis

Raxis

V₀

Trajectory of the fall

The initial value of Vr is set to 0

Phase angle changes with falling



R plane.） Therefore, it is considered that the changing vector should have a speed
∂λvr

∂λ
other

than the L direction. This velocity is the decomposition component of the four-dimensional

velocity into the R-0 plane. Until now, all four-dimensional velocities were moving in the

direction in which space was distorted. From this time, a component in the undistorted direction

is also generated, and it is necessary to consider a component that does not accelerate even if it

advances in the four-dimensional distance. If the movement in the distorted direction is
∂λvr

∂λ
and

the movement in the undistorted direction is
∂λvl

∂λ

∂λr

∂λ

2

＋
∂λvl

∂λ

2

＝
∂λ

∂λ

2

The relationship holds. It is assumed that the phase angle changes by a amount with respect to

the movement of λr to the R-0 plane.

In order to execute this Lorentz transformation, the value of the coordinate system is

transformed.

(v₀,Vvr,Vvl) ＝
∂λ₀

∂λ
,

∂λvr

∂λ
,

∂λvl

∂λ
＝

∂λ₀

∂λ
,

∂λv

∂λ
･
∂λvr

∂λv
,

∂λv

∂λ
･
∂λvl

∂λv

＝
∂λ₀

∂λr
･
∂λr

∂λ
,

∂λvr

∂λr
･
∂λr

∂λ
,

∂λvl

∂λ

＝(cosθ₀₁cosθ₁₂ , sinθ₀₁cosθ₁₂ , sinθ₁₂)

∂λr

∂λ

2

＋
∂λvl

∂λ

2

＝ cos²θ₁₂＋ sin²θ₁₂＝
∂λ

∂λ

2

∂λ₀

∂λr

2

＋
∂λvr

∂λr

2

＝ cos²θ₀₁＋ sin²θ₀₁＝
∂λr

∂λr

2

This is consistent with the conventional coordinate system, but the way that the variables are

placed is different. In this coordinate system, the phase is converted by λvr while setting the

parameter to λr. Here, the equation is written as
∂λvr

∂λr
＝ gλvr.

∂λvl

∂λ
＝ const (

∂λv

∂λ
≦c)

∂λvr

∂λr
･
∂λr

∂λ
＝ sin sin⁻¹

∂λvr₀

∂λr₀
－ sin⁻¹gλvr cos cos⁻¹

∂λr₀

∂λ
(λv≦c)

∂λ₀

∂λr
･
∂λr

∂λ
＝ cos sin⁻¹

∂λvr₀

∂λr₀
－ sin⁻¹gλvr cos cos⁻¹

∂λr₀

∂λ
(λv≦c)

The formula is as follows. That is, the four-dimensional momentum is divided into two

directions (0−Vr Vl), and (0−Vr) is further divided into two directions. Thereafter, the phase angle



is converted in the direction of the component
∂λvr

∂λr
in which the space is distorted, and the

velocity is changed. This equation holds when the three-dimensional speed is less than the speed

of light, and when the speed exceeds the speed of light, the rest mass of the moving body becomes

zero. So it is assumed that the equation of the Doppler effect of light is applied.

We have described the equation of motion with all components in the simple case. Based on this,

the equation of motion for Gaussian field is described. The components of the movement are as

described above

(v₀,Vvr,Vvl) ＝
∂λ₀

∂λ
,

∂λvr

∂λ
,

∂λvl

∂λ
＝

∂λ₀

∂λ
,

∂λv

∂λ
･
∂λvr

∂λv
,

∂λv

∂λ
･
∂λvl

∂λv

＝
∂λ₀

∂λr
･
∂λr

∂λ
,

∂λvr

∂λr
･
∂λr

∂λ
,

∂λvl

∂λ

＝(cosθ₀₁cosθ₁₂ , sinθ₀₁cosθ₁₂ , sinθ₁₂)

it becomes. However,
∂λvr

∂λ
is the velocity to the mass direction. It is assumed that the curvature

of the space occurs with respect to
∂λvr

∂λr
as in the above-described calculation formula. The only

difference is that the vector in the Vvl direction has no conservation and changes according to the

falling speed. If only the falling component is expressed by the formula

∂λvr

∂λr
･
∂λr

∂λ
＝ sin sin⁻¹

∂λvr

∂λr
+ sin⁻¹

∂λvr₀

∂λr₀
+ sin⁻¹θ₀₁(λr) cos cos⁻¹

∂λr

∂λ
+ cos⁻¹

∂λr₀

∂λ
----①

( sin⁻¹
∂λvr

∂λr
： Actual Vr speed sin⁻¹

∂λvr₀

∂λr₀
： Vr initial speed sin⁻¹θ₀₁(λr)： Spatial distortion

cos⁻¹
∂λr

∂λ
： Combined vector of actual V₀ and Vvr cos⁻¹

∂λr₀

∂λ
： Initial velocity of composite

vector of V₀ and Vvr)

It looks like this. There is no component whose value does not change unlike the case of

parabolic motion, and the only constraints are that the four-dimensional velocity is the speed of

light and that the space is bent in the direction of the central field. As an interaction with the

change due to the bending of the space, the equation should be such that each component

fluctuates while keeping the four-dimensional speed of light. For the time being, to find an

equation, let's look for an equation in which ① is a solution. Assume that ① is the first term of

line segment

∂λvr

∂λr
･
∂λr

∂λ

2
+

∂λvl

∂λ

2
＝

∂λv

∂λ

At that time, there exists a coordinate α that becomes ① when differentiated. For that reason

α＝ cos sin⁻¹
∂λvr

∂λr
+ sin⁻¹

∂λvr₀

∂λr₀
+ sin⁻¹θ₀₁(λr) cos cos⁻¹

∂λr

∂λ
+ cos⁻¹

∂λr₀

∂λ



＝ sin sin⁻¹
∂λvr

∂λr
― cos⁻¹

∂λvr₀

∂λr₀
+ sin⁻¹θ₀₁(λr) cos cos⁻¹

∂λr

∂λ
+ cos⁻¹

∂λr₀

∂λ

And can be transformed. Also

α＝ sin sin⁻¹
∂λvr

∂λr
― cos⁻¹

∂λvr₀

∂λr₀
+ sin⁻¹θ₀₁(λr) cos cos⁻¹

∂λr

∂λ
+ cos⁻¹

∂λr₀

∂λ
----②

∂Φ

∂α
＝ 0

Can be considered. Here, the meaning of equation ① is considered. cos⁻¹
∂λvr₀

∂λr₀
is the one that

sets the 0-direction component of the initial velocity of the 0-Vr component of the initial velocity

to 0, It is considered that cos⁻¹
∂λr₀

∂λ
directs all vector directions to the 0-Vr direction. In other words,

the transformation is the same as the differentiation on the light-velocity falling axis described in

Section 15. However, since the information of the initial velocity in the λl direction is held, the

conditions are included when finding the solution. Also, the β-axis differential operator for

finding the basis of the waveform is considered in the same way.

β²＝ cos² sin⁻¹
∂λvr

∂λr
－ cos⁻¹

∂λvr₀

∂λr₀
+ sin⁻¹θ₀₁(λr) cos² cos⁻¹

∂λr

∂λ
+ cos⁻¹

∂λr₀

∂λ

＋ sin² cos⁻¹
∂λr

∂λ
+ cos⁻¹

∂λr₀

∂λ

∂Φ(α,β)

∂β
＝

∂Φ(β)

∂β
＝ Φ´(const)

It becomes something to say. This means that differentiation is performed at the stationary

coordinates as in section 15. To summarize as an expression.

(v₀,Vvr,Vvl) ＝
∂λ₀

∂λ
,

∂λvr

∂λ
,

∂λvl

∂λ
＝

∂λ₀

∂λr
･
∂λr

∂λ
,

∂λvr

∂λr
･
∂λr

∂λ
,

∂λvl

∂λ

＝(cosθ₀₁sinθ₁₂ , sinθ₀₁cosθ₁₂ , sinθ₁₂)

α＝ sin sin⁻¹
∂λvr

∂λr
― cos⁻¹

∂λvr₀

∂λr₀
+ sin⁻¹θ₀₁(λr) cos cos⁻¹

∂λr

∂λ
+ cos⁻¹

∂λr₀

∂λ

β²＝ cos² sin⁻¹
∂λvr

∂λr
－ cos⁻¹

∂λvr₀

∂λr₀
+ sin⁻¹θ₀₁(λr) cos² cos⁻¹

∂λr

∂λ
+ cos⁻¹

∂λr₀

∂λ

＋ sin² cos⁻¹
∂λr

∂λ
+ cos⁻¹

∂λr₀

∂λ

(∇α+Ｄβ)・Φ(β,α)dSα＝ ΦSα＝ P(QSα)

QSα＝ Q´



(∇α+Ｄβ)・Φ(β,α)dSα＝ P(QSα)＝ PQ´＝ PMqc

This is the general formula of another general relativity. As you can see, it has a shape very

similar to Dirac's equation.

17 Relativity and early quantum mechanics

In the previous chapter, we described one form of the general formula of another general

relativity pursuing the simplicity of the formula. This section describes relativity and early

quantum mechanics. The relation between momentum and resting momentum in another

general relativity was similar to Poisson bracket. Therefore, when the calculation is performed, it

is understood that such a property is often present. Let's start with de Broglie's law.

pdλ ＝ nh

When the momentum is in a steady state and is rotating around a mass, it can be considered as

a wave. Then, when the wave of the momentum in the steady state is integrated along the path,

it becomes an integral multiple of the Planck constant. This is applied to the theory of relativity.

pdλ ＝ (m₀c)dλ ＝
(m₀c²)

c
dλ ＝

E
c
dλ ＝ nh

E dλ ＝ nhc

It can be understood that such a relationship can be converted. Since p is considered to be a

four-dimensional momentum, E is always constant with respect to the traveling direction when

considering another general relativity theory. If you transform the formula based on that

E ＝
nhc

λ
＝

nhc

ct₀
＝

nh

t₀

Here, if it is the period when the object makes one round of the mass field,

E ＝
nh

T₀
＝ nhν （ ν ： Frequency）

It is an equation that is the energy of quantum mechanics and the energy of photons. In other

words, rewriting De Broglie's theorem a little.

E dT₀ ＝ m₀c²dT₀ ＝ nh

Furthermore, the relationship between momentum and Planck's constant is

p ＝
E
c
＝

nhν
c

＝
nh
λ



It is possible to easily find the basic properties for obtaining various general formulas of

quantum mechanics. In the case of motion that is not an inertial frame, the value of E changes

according to the second law of motion in another general theory of relativity. Also, the existence of

one quantum can be expressed as 1, assuming that the four-dimensional momentum is always

constant and the energy is discrete in the inertial motion system, if the minimum unit is set to 1,

it can be considered that it can be considered as a probability. But its essence is the law of

conservation of energy. Here, please recall the energy formula of another general relativity.

1
2
E ＝ E₀＋ Ev＝

1
2
m₀c²―

1
2
m₀v² ＋

1
2
m₀v²

Considering this
1
2
E as E ', it is considered to be the energy of the positive matter, and p =

nh
λ
is

applied.

λ ＝
h

2m₀(hν―E₀)

It can be applied directly to the formula that Schrodinger's equation is based. Schrodinger's

equation was said to be non-relativistic, but in fact it is somewhat relativistic. The theory of

quantum mechanics which were born by deforming the Newtonian Hamiltonian so as to match

blackbody radiation, and another relativity born according to the rules of Newtonian dynamics

calculation and the law of invariance of light speed, can be said to be exactly the same theory.

18 Relativity and Heisenberg's equation of motion

Now that we have derived the basic properties of quantum mechanics from the theory of

relativity, I will consider Heisenberg's equation of motion, one of the general equations of

quantum mechanics.

dp
dt
＝－

2π i
h
(pH―Hp)

dq
dt
＝－

2π i
h
(qH―Hq)



Is Heisenberg's equation of motion. Looking at this equation, it can be seen that it is very

similar to the equation of the law of another theory of relativity. The three-dimensional force Fv

in special relativity is

dp
dt
＝ γ³m₀

dv
dt₀

＝ m₀c coshθhγ
∂θ
∂λ

＝ m₀c coshθh
∂θh
∂λ

Here, assuming that the phase angle θh is (θhp―θhq), dividing into the original momentum p

and the position momentum q that changes the momentum

dpv
dt
＝ γ³ m₀

dv
dt₀

＝m₀c(cosh(θhp―θhq))
d(θhp―θhq)

dλ
＝m₀c(coshθhp coshθhq―sinhθhp sinhθhq)

d(θhp―θhq)

dλ

＝
1
q
(pcoshθhp qcoshθhq―psinhθhp qsinhθhq)

d(θhp―θhq)

dλ

It becomes. This means that elementary particles orbiting in a certain orbit in an inertial state

receive energy and move to a slightly higher energy state, where they pass through an unstable

geodesic line. And on the geodesic line, it is assumed that (θhp-θhq) makes a periodic motion with

the relation of 2πνt₀, and assuming that q is momentum related to position, the relational

expression of q = nhνc can be substituted.

dpv
dt
＝

c
nhν

(pq―(qv) (pv))
1
c
2πν

dpv
dt
＝

2π
nh

(pq―(qv) (pv))

dp₀
dt
＝

c
nhν

(p(qv)―q(pv))
1
c
2πν

dp₀
dt
＝

2π
nh

(p(qv)―q(pv))

p:4D momentum of moving body pv:Exercise amount

q:Four-dimensional spatial momentum of force field qv:Spatial momentum of force field

It is a form very similar to Heisenberg's equation of motion. However, since there is no

agreement, it will be a future consideration. As mentioned above, the spatial momentum of the

force field exists in space based on Gauss's theorem. The result of moving with its distribution

and phase matched is inertial motion. However, this formula is an unstable force calculation

because it is a special theory of relativity. It is thought that the unstable force drops to a stable

level immediately after moving to the next higher energy level. Calculation of stable force

becomes another general relativity.

F₀ ＝
∂p₀
∂t₀

＝―m₀csinΔθ
∂(Δθ)
∂t₀

= ―m ₀c
∂(Δθ)
∂t₀

sinθpcosθq ＋ cosθpsinθq

= ―
1
q
∂(Δθ)
∂t₀

pvq₀＋ q₀pv ＝―
2π
nh

pvq₀＋ q₀pv

Fv ＝
∂pv
∂t₀

＝ m₀ccosΔθ
∂(Δθ)
∂t₀

= ―m ₀c
∂(Δθ)
∂t₀

cosθpcosθq ＋ sinθpsinθq

= ―
1
q
∂(Δθ)
∂t₀

p₀q₀＋(qv)(pv) ＝―
2π
nh

p₀q₀＋(qv)(pv)



It looks like this . This should be the equation for calculating the force that creates a stable

state. In this equation, the phase angle is changed to Δθ = (θp + θq). This is because the tim e

derivative of (θp−θq) becomes 0, so that it is changed to (θp + θq) to do a periodic function.

These equations have only described the results of the calculations, but have not yet been

checked to see if they match the actual values. That will be a future consideration.

references

納得する相対性理論 松田 卓也 二間 瀬敏史

量子力学の冒険 ピッポファミリークラブ

よく見る相対論の誤解 遠藤龍介 山形大学理学部

website

http://www.wannyan.net/scidog/webmaster.htm

https://eman-physics.net/quantum /contents.htm l

etc

Apology

I'm sorry, I can’t use English, then this paper is written by google translation.

If this paper has weird English translation, for that reason I can hand over the Japanese

paper to need.


