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Abstract 

The interval of propagation in Maxwell’s theory is lightlike. If we assume that the 

interval is timelike, instead, by introducing a fundamental length, a rich new 

theory emerges.In this article it is shown that by varying the interval with respect 

to the fundamental length, the Lienard-Wiechert (LW) potential automatically 

emerges.Then, by varying the fundamental length in the expression for the 

moment of LW potential about the interval of propagation, the total field of a 

single point charge moving with arbitrary velocity and acceleration also 

emerges.They have exactly the same form as in Maxwell’s theory but are finite 

everywhere, have finite self-effects and obey the Lorenz gauge condition.This is 

accomplished without using Maxwell’s eqs at all.Only the interval of propagation 

is used.The Lorentz force, the field Lagrangian density, the energy stress tensor, 

all have the same form, are finite everywhere and have finite self effects.This 

shows that there exist at least one consistent theory different from Maxwell’s 

theory which gives the same results while eliminating the infinities of Maxwell’s 

theory in a Lorentz covariant way. 

 

 

 

 

 

 

 

 



1 Introduction 

Maxwell’s theory is a very successful theory and it uses an interval of interaction 

which is lightlike.What has not been investigated is what happens if the interval of 

interaction is timelike but still obeys the laws of special relativity. Can such a 

theory be consistent and what does it mean? In this article, it is shown that if the 

interval is timelike , so that its square is the negative of the square of a 

“fundamental length”, it is sufficient to vary the interval with respect to the 

square of the length to obtain the Lienard Wiechert potential. The latter 

automatically appears, has the same form as the Maxwell one, is finite 

everywhere and has finite self effects. Furthermore, the moment of potential 

about the interval can be put in the form of a rotation tensor. Varying this 

rotation tensor or the moment of potential, one obtains the total field of a single 

point charge moving with arbitrary velocity and acceleration. The total field 

becomes the curl of the LW potential as expected but here it is derived from the 

rotation tensor. The LW potential also obeys the Lorenz gauge condition. Again, 

the total field has the same form as in Maxwell’s theory, is finite everywhere and 

has finite self-effects. Using the usual Maxwell formulas for the Lorentz force, the 

field Lagrangian density, and the energy stress tensor, we obtain an 

electrodynamics which is identical in form to Maxwell’s, is finite everywhere and 

has finite self effects.Yet it does not satisfy Maxwell’s eqs and does not seem to 

satisfy any differential eqs. All the physics is contained in the interval! The 

timelike nature of the interval defines a  formal 4-vector velocity of the em 

influence and a formal 3- velocity of em influence. This 3 velocity is less than the 

speed of light. This does not mean that the influence moves ,of course ,it is only a 

formal statement. It does mean however that an inertial observer can move 

instantaneously with that velocity . 

In section 2, we derive the LW potential and other formulas. In section 3, we 

derive the total field and analyze the total field, the acceleration field and the 

nonacceleration field and discuss how they are constructed. 

 

 



The notation  

4-vectors are in capital, 3-vector are not. Unit vectors are written with a caret to 

their right not on top. 4 vectors and 3 vectors have no arrows only their size 

differentiates them. The metric is [1,1,1,i] to avoid having to use covariant and 

contravariant indices, so whether an index appears as a subscript or as a 

superscript has no special meaning . Indices ijk run from 1 to 4. Indices abc if they 

occur run from 1 to 3. The summation convention for repeated indices is used 

unless specified otherwise. Dot product are specified by a dot. Cross product by 

the old fashioned x  . Examples : 4 vector E .  3 vector e. Unit 4 vector A^ , E.B dot 

product. ExB cross product. [ExB]ij = EiBj - EjBi   When the meaning is clear the 

indices will be omitted as in ExB . The speed of light c will not be put =1 unless 

doing so does not lead to confusion. 

Preliminary formulas. 

The interval of propagation (of influence, of interaction) is given by 

E = R – R’ (1a) ; R is the field point 4 vector. Its components are:  R = [r ,ict]   (1b) 

r is the 3 position vector of the field point or the 3 position r(t) of a test charge q. 

t is the instantaneous time of the field point or the test charge q. 

R’(τ’) is the retarded 4- position of the source charge q’.  

R’(τ’) = [r’(t’), ict’]  (1c) r’(t’)is the retarded 3 position of q’. t’ is the retarded time . 

U’(τ’) = dR’(τ’)/dτ’ is the 4 velocity of q’. a’ = d2R’(τ’)/dτ’2 is the 4 acceleration of q’ 

The interval of influence is assumed to be timelike. 

 E.E = -l2    (1d) ;     l is a small invariant length. Not specified. Not a smallest length. 

Maxwell theory’s  interval is lightlike   E.E  = 0  

The Lienard Wiechert potential (LW) is :    



 -q’U’/(E.U’)  = [ A , iφ ]   A is the 3dim vector potential.  Φ  is the scalar potential. 

The 4 velocity of the influence is    W/c =  E/l   (1e) ; 

W.W/c2  =  - 1  (1f) ;   W/c   = [ (r- r’)/l ,  ic(t – t’)/l ]  (1g) 

W/c  = [ (w/c)(1 – w2/c2)-1/2 , i (1 – w2/c2) – 1/2 ]    (1h)  

(r – r’)/l   = (w/c)(1 – w2/c2 )
- 1/2    (1i) ;   c(t – t’)/l  = (1 – w2/c2 )- 1/2   (1j) ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 Derivation of the Lienard-Wiechert (LW) potential by varying the interval of 

propagation. 

A) Vary the interval keeping the field position constant. 

E = R –R’        E.E =- l2       dR/dl2 = 0      d(E.E)/dl2  = -1(1bis);  E.dE/dl2  = -1/2  (2) ; 

dR’/dl2 = (dR’/dτ’)dτ’/dl2 = U’dτ’/dl2  (3) ;  - (E.U’)dτ’/dl2 = -1/2  (4) ; 

finally    dτ’/dl2  =1/ 2(E.U’)  (5) ;   dR’/dl2 = U’dτ’/dl2  = U’/ 2(E.U’) ; 

-2q’dR’/dl2  =  -q’ U’/ E.U’  = 2q’dE/dl2  (6) 

Eq 6  has exactly the form of the Lienard Wiechert potential, it is finite 

everywhere and has finite self effects. It has been derived solely by varying the 

fundamental length l, without resorting to Maxwell’s eqs at all. 

Let  ALW  = [ A,iφ ]     = - q’U’/ E.U’  = - 2q’dR’/dl2  =  2q’dE/dl2  (7) 

A  is the the 3dim vector potential,  φ  is the scalar potential.  

We also have      E.A  = - q’  (8) ; 

B  Vary the field point without varying the length. 

We write E not as R-R’ but as (xi – x’i (t’))    and  ( xk – x’k )(xk – x’k ) = - l2  ; 

We also use ordinary derivatives to describe partial derivatives. 

So that  dl2/dxi  = 0   since the length is not varied.    d(E.E )/dxi = 0  

Ek ( dEk /dxi ) = Ek  [δik – dx’k  /dxi ] = 0 ;   Ei  = ( Ekdx’k /dτ’)dτ’/dxi  = E.U’ dτ’/dxi ; 

 So that       dτ’/dxi  =  Ei /E.U’   (9) ;  from eq 9 we can find important relations. 

Namely :    dx’i/dxj  =( dx’I /dτ’)dτ’/dxj   = U’i Ej  /E.U’   (10) ; 

Therefore    dx’I /dxi  = E.U’/E.U’  = 1  (11) ; 

The LW vector potential should be in the Lorenz gauge so we should have 



dAi/dxi = 0     To verify use eq7       dAi/dxi  = -2q’d(dx’I /dl2)/dxi 

= -2q’d(dx’i /dxi )/dl2 = 0 .  So our LW potential satisfies dAi/dxi =0  (12) 

The Lorenz gauge condition. Moreover it satisfies this condition because 

Of eq (11). 

From eq10 we get another important result: 

 Namely  dx’i /dxj -  dx’j /dxi  = [U’i Ej – U’jEi ]/E.U’ = -[ExU’]ij /E.U’   (12) ; 

So   q’[dx’i /dxj – dx’j/dxi ] = -q’[ExU’]ij /E.U’ = [ Ex ALW ]ij  (13) ; 

The rotation like tensor of eq13 is equal to the moment of LW potential about 

The interval of propagation. 

C When a test charge q is present at the field point  E= R(τ) – R’(τ’) 

The source charge q’ is always connected to test charge q via E so the trajectories 

R(τ) and R’(τ’) depend on each other through E. This means that τ’=τ’(τ) 

And τ = τ(τ’). We do not vary l2 in what follows. 

Therefore:  d(E.E)/dτ =0  ;    E.dE/dτ = 0 ;   E.U - E.U’dτ’/dτ =0 

E.U/E.U’  = dτ’/dτ  (14)   ;    E.U dτ   =  E.U’ dτ’  (15) ; 

What about d(E.E)/dxi ?  We keep l2 constant and xi  = xi(τ) 

So       d(E.E)/dxi   =0 = [xk – x’k  ][dxk /dxi – dx’k/dxi] 

=[ xk – x’k][δik – U’k dτ’/dxi ] ;   Ei = (E.U’)dτ’/dxi  ; 

So   dτ’/dxi (τ) =  Ei/E.U’   (16) ;   This is the same as eq 9 for the field point as it 

should.  What about dτ/dxi ?    dτ’/dxi  = (dτ’/dτ)dτ/dxi  =[E.U/E.U’]dτ/dxi 

= Ei/E.U’    ;   dτ/dxi =Ei /E.U  (17) ; 

 



 

3 Derivation of the total field of a single point charge moving with arbitrary 

velocity and acceleration. 

A  Varying the moment of LW potential about the interval of propagation, by  

varying l2  keeping the field point constant. 

Write   d[ExA]ij /dl2 = 2q’d[ExdE/dl2]/dl2 = 2q’[Exd2E/(dl2)2  ]= -2q’[Exd2R’/(dl2)2 ] 

= [ExdA/dl2]ij  (18) ;       d[ExA]/dl2 = [ExdA/dl2] = -2q’[Exd2R’/d(l2)2 ]  (19) ; 

It remains to calculate  d2R’/(dl2)2  . Since  dR’/dl2 =U’/2E.U’  

and  dU’/dl2  = a’dτ’/dl2 = a’/2E.U’  where a’ is the 4 acceleration of q’, 

and with  d(E.U’)/dl2  =[ E.a’ – U’.U’ ]dτ’/dl2  we eventually get, making sure not to 

set c=1 but keeping it as c to avoid computational errors. 

The result : d2R’/d(l2) = {[1+E.a’ /c2 ]U’/c +( a’/c )(E.U’/-c2)}/4(E.U’/-c)3  (20) ; 

Eq20  gives: 

  d(ExA)/dl2 = -(q’/2){Ex[(1+E.a’/c2)U’/c +(a’/c)(E.U’/-c2)]}(E.U’/-c) -3  (21) 

-2d[ExA]/dl2  = q’{Ex[(1+E.a’/c2)U’/c +(a’/c)(E.U’/-c2)]}(E.U’/-c)-3 = Fij  
total  (22); 

This is the required result. Except for the factor of -2 eq22 is the variation of the 

moment of LW potential about the interval of propagation. Our notation is 

slightly different than the textbook ones ( see the references.). 

From eq13  we have: -2q’d[dx’i/dxj – dx’j/dxi ]/dl2 = -2d[ExA]/dl2  

=[ dAi/dxj – dAj/dxi ]   = Fij  
total  (23) ;        We have interchanged the variations 

d/dl2 with the partial derivative d/dxi in eqs13 and22.  

We have just proved that varying the moment of potential gives the total field as 

the 4dim curl of the vector potential. 



B The total field, the acceleration field, the non-acceleration field. 

From eq 22, the total field can be written as: 

Fij
tot  = q’[ExU’h */c]ij(E.U’/-c)-3  (24) 

With   U’h */c =  [(1+ E.a’/c2)U’/c + (a’/c)(E.U’/-c2 ] (24bis) ; 

Eq24 is broken down into      Fij
total = Fij

acc + Fij
nonacc     (25) ; 

Where  Fij
nonacc  = q’[ExU’/c](E.U’/-c)-3   (26) ; 

F 
ij

acc    =   q’[Ex{(E.a’/c2)U’/c +(a’/c)(E.U’/-c2)}](E.U’/-c)-3   (26bis) ; 

The Lorentz force will as usual be   F = qFijUj/c. The field Lagrangian density 

And the energy-stress tensor will be taken as having the same form as  

Maxwell’s. Again, they will be finite everywhere and have finite self effects. 

It will be shown in a future work that they have, each, a geometrical 

interpretation. 

C Some properties of the  three fields. 

Let S = [(E.a’/c2 )U’/c + (a’/c)(E.U’/-c2)]   (27)  ; 

Fij
acc  =q’[ExS](E.U’/-c)-3   (28) ;     We have    S.E =0  (29) ; 

S is a vector lying in the U’,a’ plane, perpendicular to E . 

In components         Si  =   (U’/c x a’/c2)ij Ej   (30) ; 

Now project E perpendicularly onto the U’, a’ plane. Call the projection T. 

T = (E.a’^)a’^  + (E.U’/-c)U’/c      (31) ;  where a’^  is a unit vector in the a’ 
direction. We easily find     S.T  = 0     (32) ; 

Now take a vector D perpendicular to the U’, a’ plane. 



D = E – T    (33) ;   D = [E –( E.a’^ )a’^   + (E.U’/c)U’/c]  (34) 

In components        Di  =  [ δij  -  a’i ^ a’j^  + U’I U’j /c2 ]Ej   (35) ; 

The vectors S, T, D  should be mutually perpendicular to each other. 

This means   T.D = T.S = S.D = 0  (36) ;  To check this use eq33  

If D.T  = E.T – T.T = 0  ;   then  E.T = T.T  ;   

 E.T  = (E.a’^)2  - (E.U’/c)2  ;  T.T = (E.a’^)2 – (E.U’/-c)2 ;  This proves that D.T =0 ; 

D.S = E.S  - T.S = 0  ; using eqs28 and32,  so eq 36 is proved. 

We also have   Fij
tot  = q’[ Ex (S + U’/c)]ij (E.U’/-c)-3   (37) ;  

And    U’h*/c   =  [S + U’/c ]  (38) ;     [U’h*/c – U’/c] = S    (39) ; 

A dual can also be defined: 

U’h*dual/c = (1 + E.a’/c2)a’^  +(a’/c)(E.U’/-c2)U’/c    (40) ; 

U’h*dual/c – a’^ = (E.a’/c2)a’^  + (a’/c)(E.U’/-c2)U’/c 

=  (a’/c2)[(E.a’^)a’^  + (E.U’/-c)U’/c ]  =  (a’/c2)T     (41) ; 

Finally:    U’h*dual/c  -  a’^     =  (a’/c2)T    (42) ; 

The purpose of all these formulas, in addition to their intrinsic geometric interest, 

is to eventually obtain a  velocity unit 4 vector U’h /c  which will permit the 

elimination of the explicit  4 acceleration  in the total field. This derivation is quite 

intricate and requires referring to geometrical constructions involving a 

hyperboloid  of two sheet foliation of Minkowski spacetime as well as a 

hyperboloid  of one sheet foliation of Minkowski spacetime. It will therefore be 

done in a separate publication. 

  



 

4 Conclusion 

We have shown in this article that Maxwell’s electrodynamics in the Lorenz gauge 

is not unique to Maxwell’s theory. There exist a consistent theory based solely on 

a timelike interval of propagation which gives the same results in the sense that 

they have the same form, are finite everywhere and have finite self effects. We 

are not dealing with a cutoff, the theory is Lorentz invariant so no artificial cutoff 

is needed, it is built into the theory. No wave eq is derived so we are not dealing 

with a massive photon or similar entities. We are outside of differential 

equations. Everything is contained in the interval.The “fundamental length “ is 

unspecified but must be small enough not to contradict all known experiments 

where classical electrodynamics is valid. 

The Lienard Wiechert potential is derived by varying the interval. Once the 

potential is derived it is natural to take its moment about the interval. Doing this 

gives the total field by varying the moment of LW potential and also allows us to 

prove that it is the curl of the potential. The Lorenz gauge condition is also 

derived from the interval. The timelike interval implies the existence of a formal 3 

velocity of influence which is less than that of light.  

In future articles all the entities of electrodynamics : the potential, the fields, the 

Lorentz force, the field Lagrangian density and the energy stress tensor will be 

rewritten entirely in terms of 4 velocities and projective relative 4 velocity vectors 

and tensors,their geometric meanings explicated, and they will be connected to  

hyperboloid of one sheet and of two sheet foliations of Minkowski spacetime 

which involve virtual geodesic hyperbolic motions. 
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