Exceptions from Robin’s Inequality

Dmitri Martila

Tartu University (2004–2011), Estonia*

(Dated: November 24, 2020)

Abstract

In this short but rigorous research note I study Robin’s Inequality. The number of possible violations of this inequality turns out to be finite. As the finiteness includes zero, I am able to convince you that there are no such violations.

identifiers: 11M26, 11A41

*Electronic address: eestidima@gmail.com
I. THAT YOU MIGHT ASK FROM THE MATHEMATICIAN

Is it possible that there is an infinite number of (yet hidden) counter-examples for Riemann’s Hypothesis? Or did someone prove that only a finite number of counter-examples (no single one is yet found) are possible? Who and in which paper? How many counter-examples Riemann’s Hypothesis (if it is false) can have?

A. Emotional but reasonable answer from mathematical community

1. “If there are many zeros deviating from the line [Note from the author: use “counter-examples” instead], the whole picture becomes simply terrible, terrible, ugly.” Steve Gonek. [1]

Prof. Gonek received his B.S. with Highest Honors in Mathematics in 1973, an M.S. in Mathematics in 1976, and a Ph.D. in Mathematics in 1979, all from the University of Michigan. After a two-year position at Temple University from 1978 to 1980, he joined the University of Rochester as an Assistant Professor of Mathematics in 1980 and is now a Full Professor. He spent the 1984–85 academic year at Oklahoma State University, part of Fall 1991 at Macquarie University in Sydney, Australia, part of Fall 1999 at the American Institute of Mathematics in Palo Alto, and half of 2004 at the Newton Institute in Cambridge, England.

2. “Beauty is the first criterion. There is no place in the world for ugly mathematics.” Godfrey Harold Hardy. [1, 2]

Dr. Hardy is usually known by those outside the field of mathematics for his 1940 essay “A Mathematician’s Apology”, often considered one of the best insights into the mind of a working mathematician written for the layperson. He was an English mathematician, known for his achievements in number theory and mathematical analysis. Hardy is credited with reforming British mathematics by bringing rigour into it, which was previously a characteristic of French, Swiss and German mathematics. In a 1947 lecture, the Danish mathematician Harald Bohr was saying: “Nowadays, there are only three really great English mathematicians: Hardy, Littlewood, and Hardy–Littlewood.” [3]
II. MY EMOTION-FREE ANSWER

If Robin’s Inequality $F(n) > 0$ is true, where F is certain function given in Ref. [4], Riemann’s Hypothesis turns out to be true. What is left to check today is the area $\exp(\exp(26)) < n < \infty$. [5, 6] A value $n = n_0$ is called “counter-example” if $F(n_0) < 0$.

I can express one of Dr. Zhu’s results in a simpler way as:

If Robin’s Inequality is true at least within $N < n < \infty$ where $N \gg 1$, Riemann’s Hypothesis is true.

Numerical tests have shown that Robin’s Inequality holds at least for $n < \exp(\exp(26))$. Therefore, one has the right to assign $N = \exp(\exp(26)) \gg 1$. Accordingly, Dr. Zhu’s result comes true in a natural manner.

Thesis:

If the number of counter-examples of Robin’s Inequality can be only finite, there are no counter-examples.

Proof: Dr. Zhu’s papers tell us that if Robin’s Inequality is true for each $n > N$, Riemann’s Hypothesis is correct. If there is a finite number of counter-examples, then one has a number M as well so that at least within $M < n < \infty$ there are no counter-examples to Robin’s Inequality. As N and M can be properly chosen, one can assign $M = N$. Thus,

If Riemann’s Hypothesis fails, there must be an infinite number of counter-examples.

If Riemann’s Hypothesis is true, there is a finite number of counter-examples.

If there are a finite number of counter-examples (that can be just zero), then Riemann’s Hypothesis is true.

Dr. Zhu has proven that Riemann’s Hypothesis is true with scientific certainty [5]. That means that the number of counter-examples for any finite $0 < n < n_0$ is exactly zero. Therefore, in the limit $n_0 \to \infty$ there can be at most a finite number of counter-examples. In other words, the chance to meet a counter-example by a blind single pick up is $p = n/N;$ where n is the total number of possible counter-examples, and N is the total number of
cases. If \(n \) is infinite, then \(p \) is a mathematical uncertainty of the form \(\infty/\infty \), which cannot have a definite value. But because Dr. Zhu has shown that the value of \(p \) exists, \(n \) is finite.

