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Abstract
Using the wave function of a free particle we obtain a solution of the Schrodinger equation for a
class of potentials.

1 Time dependent accelerating frame of reference

Consider an accelerating frame of reference F' with coordinates z’, ¢ and an inertial frame of reference
F with coordinates x,t. The coordinates of the frames being related by

¥=x—ft) t'=t (1)

Since dz’ = dx and position probabilites are the same for " and F we have for the wave function ¢(x, t)
with respect to F and corresponding wave function ¢’(z’,¢’) with respect to F’ that [1]
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Consequently there is a real valued function §(z,t) such that
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With respect to F let the wave function ¢ (z,t) satisfies the Schrédinger equation
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With respect to F' we have an additional force m f(t) and hence an additional potential m.f (t)z’ + V().
The wave function ¢/ (2’,t") then satisfies the Schrédinger equation
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and on substituting (3) in (5) and using (4) and (6) gives
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We have . X
Ba,t) =mf(t)x + /0 [Vo(s) —mf(s)f((s) — 5mf(s)*)ds + C (8)
is the unique solution of (7) satisfying the initial condition [2]
B(x,0) =mf(0)z +C (9)



2 Space and time dependent velocity

Let ve(x,t) be a smooth function in variables €, x,t. Require v.(z,0) = 0. Define X (u;t) to be the curve

x(t) such that
dz

dt
and x(0) = u. Require that the curves are defined for all £ and the curves do not intersect. We then
have a frame of reference F, with coordinates x,t. such that

= vc(x, 1) (10)

e = Xc(z;t) te=t (11)
Let t(x,t) satisfy (4). Let Vi(z.,t.) be the potential in these coordinates. We have
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Let ¢ (., t.) be the wave function satisfying the Schrodinger equation in z., t. coordinates and ¢ (x,0) =
¥(x,0). Let B(xo;€) be the set of points xg — € < & < 2y + €. Choose v(z,t) so that for u € B(xg;¢€)

Xe(u;t) = Xo(wo; t) +u — xg (13)
Let F be a frame of reference with coordinates #,t related to coordinates x,t of F by

The potential in these coordinates is mXy (& : )2 + Vo(£). Let {D\(@, t) be the wave function satisfying
the Schrédinger equation with this potential and ¢(z,0) = ¥(z,0). We have by (8) a §(z,t) such that
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hence for points (X,(u;t),t) where u € B(xo;€) we have
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Define coordinates ' = xo,t’ = to. Let ¢/(2/,t") = 1ho(a’,t'). Now z; is arbitrary and let §(x,t) be the

limit of B\(:c, t) as € — 0 so we get

p
%(x, t) = mug(z,t) (17)

Require v(z,t) — 0 as v — —oo. We then have §(z,t) — 0 as © — —oo hence by (17)

B(x,t) = / " o t)du (18)
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Consequently ,
’l/}/<l‘/, t/> _ 6_%f*°°1}0(u’t)du’¢(l’, t) (19)
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