The improvement of the electrical conductivity of usual metals is limited by the purity of the metal and the ability to grow single crystal structures. Also, it was observed that the AC conductivity of the metal increases when the frequency of the electrical current applied on the conductor increases. Here, we show that the pure Magnesium metal can exhibit an ultrahigh electrical conductivity when it is subjected to 360K temperature, and an electrical current with frequency of the order of 10THz.

Key words: Ultra-conductivity, Pure Magnesium, THz.

INTRODUCTION

There is a search for conductors with ultrahigh electrical conductivity because they can lead to higher efficiency and less energy consumption in a wide range of applications.

By embedding graphene in metals (Cu, Al, and Ag), it was recently obtained a maximum electrical conductivity three orders of magnitude higher than the highest on record (more than 3,000 times higher than that of Cu, i.e., \(\equiv 10^{11} \text{S/m} \)) is obtained in such embedded graphene [1]. The improvement of the electrical conductivity of usual conductors is basically limited by the purity of the metal. However, experimental studies show that the AC conductivity of some metals increases when the frequency of the electrical current applied on the metal increases [2]. It is here shown that the pure Magnesium metal can exhibit an ultrahigh electrical conductivity when it is subjected to electrical current with frequency greater than 1THz. Why prioritize the Magnesium? First because, is relatively easy to obtain Magnesium highly pure (99.999%). Second because, ultra-conductive Magnesium can be fundamental for the building of several novel devices, such as Gravitational Motors, Gravitational Thruster of Fluids, production of Microgravity environments, and a Cooling and Heating Gravitational System [3].

THEORY

The AC electric conductivity is the electrical conductivity that arises when a DC source is applied on the conductor. Thus, total electrical conductivity of a conductor is given by [2].

\[
\sigma_{\text{total}} = \sigma_0 + \sigma_{\text{AC}} \quad (1)
\]

where \(\sigma_0 \) is the part of the total conductivity which value is frequency-independent and temperature-dependent, it which arises from the drift mobility of electric charge carriers. So \(\sigma_0 \) is actually DC electrical conductivity; \(\sigma_{\text{AC}} \) is the part of the total conductivity which value is the frequency- and temperature- dependent, it which arises from the drift mobility of electric charge carriers; usually \(\sigma_{\text{AC}} \) is expressed by

\[
\sigma_{\text{AC}} = \sigma^* \left(\frac{\omega}{\omega_0} \right)^s = k\sigma_{\text{DC}} \left(\frac{\omega}{\omega_0} \right)^s = \sigma_{\text{DC}} \left(\frac{\omega^s}{\omega_0^s} \right) \quad (2)
\]

where \(\sigma^* \) and \(s \) are composition – and temperature-dependent parameters; \(0 < s < 1 \) [2].

\[w = 2\pi f_c \omega_c = 2\pi f_c \], where \(f_c \) is a critical value to be determined.

Substitution of Eq. (2) into Eq. (1) gives

\[
\sigma_{\text{total}} = \sigma_{\text{DC}} \left(1 + \frac{f^s}{f_c^s} \right) \quad (3)
\]

Therefore, the total electrical conductivity of a conductor is directly proportional to the frequency \(f \) of the electrical current applied on the conductor [4].

In the particular case of \(f^s / f_c^s >> 1 \) Eq. (3) reduces to

\[
\sigma_{\text{total}} \cong \left(\frac{f}{f_c} \right)^s \sigma_{\text{DC}} \quad (4)
\]

Experimental studies have revealed that
below 10 GHz the frequency as well as the temperature effect is negligible \([2]\) (this point to a value of the order of 10 GHz for critical frequency \(f_c\) at room temperature). At higher temperature, however, there is an increasing contribution resulting from ion mobility and crystal imperfection mobility. Also, at a higher temperature, conductivity effect becomes dominant. As the temperature increases, AC electrical conductivity increase due to increase in the drift mobility of thermally activated electrons \([3]\), and reaches a maximum value at around 360K (87°C), then decreases with temperature \([2]\). On the other hand, since Eq. (2) tells us that

\[
\omega_c = \frac{\omega_0}{k} = \frac{\left(2\pi f_0\right)}{k} = \left(2\pi f_c\right)
\]

where \(k = \sigma^*/\sigma_{DC}\) (See Eq. 2). Then, Eq. (5) gives

\[
f_c = \frac{f_0}{k} = f_0 \left(\frac{\sigma_{DC}}{\sigma^*}\right)
\]

or

\[
f_c = f_0 \left(\frac{\sigma_{DC}}{\sigma^*}\right)^{\frac{1}{k}}
\]

It is well-known that \(\sigma^*\) is temperature – dependent, and that it increases much more with the increase of the temperature than \(\sigma_{DC}\) \([2]\). Therefore, based on Eq. (7), we can conclude that \(f_c\) strongly decreases with the increasing of the temperature. Consequently, also around 360K the value of the critical frequency \(f_c\) should reach the maximum decrease, reducing down to some MHz (or less). Under these conditions, for \(f = 10THz\), the factor \(f/f_c\) (See Eq. 4) should reach a value of the order of \(10^6\). Increasing therefore, the total electrical conductivity of the Magnesium for a value of the order of \(10^{13} S/m\), since the DC electrical conductivity of Mg is about \(2.2 \times 10^7 S/m\). Note that the ultra-conductivity in this case is about 100 times higher than the record of \(\approx 10^{11} S/m\), which it was obtained in the case of embedded graphene, mentioned in the introduction of this paper.

When Magnesium is in its metal form it will burn very easily in air. However, in order to start the reaction (the burning) the Magnesium metal needs a source of energy. The flame provides a source of heat so that the Magnesium metal atoms can overcome their activation energy. The ignition temperature of Magnesium is approximately 744 K (471 °C).

Glass ampoule (Magnesium in this ampoule with argon will remain shiny forever.)

Fig. 1 – Ultra-conductive Magnesium - Magnesium metal 99.999% pure should exhibits an electrical conductivity of the order of \(10^{13} S/m\) when subjected to 360K temperature, and an electrical current with frequency of the order of 10THz.

CONCLUSION

Only experimental studies can determine with precision the value of \(f_c\) at 360K. Thus, in conclusion, we suggest that experiments be carried out in order to verify the theoretical results here obtained.

References

[3] De Aquino, F. (2021) Deceasing of Gravitational Mass of the Magnesium subjected to an Alternating Magnetic Field of Extremely Low Frequency. Available at: https://hal.archives-ouvertes.fr/hal-03120208
