A Paradoxical Collection of Sets

By Jim Rock

Abstract: We exhibit a collection of sets, which both have and do not have largest elements.

Introduction. For all real numbers a in the open interval $(0, 1)$
Let the collection of $R_a = \{ y \text{ a real number} \mid 0 \leq y < a \}$

Each set in the collection of R_a has a largest element.
For each a in $(0, 1)$ the group of proper subsets of R_a from the collection of all R_a are nested inside each other in descending order. Each R_a must contain one and only one element a' that is not in a proper subset from among the collection of all R_a. Otherwise, since the proper subsets are all nested inside each other, each R_a would be a proper subset of itself.

a' is the largest element of R_a.

No Set in the collection of R_a has a largest element.
Suppose there is a largest element a' in R_a.

$a' < (a + a')/2 < a$. Let $b = (a + a')/2$. Then b is in R_a and $a' < b$.

Note: the question is not whether R_a actually contains a largest element, but whether or not the two contradictory statements about a largest element are both conclusions of valid logical arguments.

© 2021 James Edwin Rock. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
If you wish, email comments to Jim Rock at collatz3106@gmail.com.