The Paradoxical Collection of Sets Explained

By Jim Rock

Abstract: We explain why there is a collection of sets, which both have and do not have largest elements.

Introduction. For all real numbers \(a \) in the open interval \((0, 1)\)
let the collection of all \(R_a = \{ y \text{ a real number} \mid 0 \leq y < a \} \)

Each set in the collection of \(R_a \) has a largest element.
Select a single \(R_a \) taken from the collection of all \(R_a \).
Along with itself this selected \(R_a \) has a group of proper subsets taken from the collection of all \(R_a \). This group of proper subsets are nested within each other. When nested within the selected \(R_a \), this group of proper subsets forms a proper subset of the selected \(R_a \).
For any two elements of the selected \(R_a \) the smaller element will be in a proper subset of the selected \(R_a \).
Thus, each \(R_a \) must contain a single largest element not in the group of its nested proper subsets taken from the collection of all \(R_a \).

No Set in the collection of \(R_a \) has a largest element.
Suppose there is a largest element \(a' \) in \(R_a \).
\(a' < (a + a')/2 < a \). Let \(b = (a + a')/2 \). Then \(b \) is in \(R_a \) and \(a' < b \).

Note: the question is not whether \(R_a \) actually contains a largest element, but whether or not the two contradictory statements about a largest element are both conclusions of valid logical arguments.

© 2021 James Edwin Rock. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

If you wish, email comments to Jim Rock at collatz3106@gmail.com.