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Abstract

Properties such as the energy and momentum of a quantum object can be calculated exactly in
quantum theory, but they cannot be simulated on a classical computer. This is in part due to the fact
that  the  physical  nature  of  quantum  objects  is  not  yet  understood  (ontology  problem).
In this paper it is shown that it is possible to simulate observable properties of a quantum object on
a classical computer. For this purpose, the wave describing the quantum object is considered as a
physical element with a constant amplitude of a quarter of the Planck constant (Ψmax=h/4=const.).
As a result,  the values  of energy and momentum, as well as the de Broglie wavelength, can be
simulated without the aid of further parameters. 
This is expected to give new ideas to ontological issues.
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1   Introduction
Quantum theory  comprises  a  well-proven  mathematical
set of rules. Their physical interpretation is still controver-
sial today  [1-5,  9]. Related to this is the unsolved pro-
blem  of  simulating  observable  properties  of  individual
quantum objects on a classical computer [6].
In this paper, two simple assumptions about the nature of
a quantum object are made and it is shown that properties
such as energy, momentum and de Broglie wavelength of
a single quantum object can be simulated with it.

2   Assumptions
In the major interpretations of quantum mechanics, such
as the Copenhagen Interpretation and quantum Bayesia-
nism, the wave representing the quantum object is con-
sidered to be a mathematical entity for which there is no
equivalent in physical reality [7, 8]. 
For the purposes of simulation, the following assumptions
are made in this paper:
• The function values of the wave have the unit of action

(corresponds to the unit of angular momentum kg·m²/s).
• The amplitude of the wave is constant and has the value

of a quarter of the Planck constant h (Figure 1):
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|Ψmax|=
h
4
=const .≈1,65 ·10−34 kg·m·m / s (1)

Ψmax: Amplitude of the quantum wave

• The wave can be localized over a wide area of space. If
the absolute amounts of the function values of a ma-
ximum (wave crest or wave trough) are added over all
its locations (Figure 2), this always results in the con-
stant value of h/4.

Figure  1:  Schematic  representation of  a  quantum wave with a
constant amplitude of h/4 in one spatial dimension.

Figure  2:  Schematic  representation of  a  quantum wave in two
spatial  dimensions.  The sum of  the  absolute values  within  the
range of an amplitude (red lines) has a constant value of h/4.

Is  it  possible  to  reproduce  observable  properties  of  a
quantum object by simulating it on a classical computer
based on this assumption?

3   Simulations

3.1   Energy

In  quantum  mechanics,  calculation  of  energy  is  done
using the energy operator

Ê=iℏ ∂
∂ t

(2)

ħ: reduced Planck constant ħ = h/2π
i: imaginary unit

acting on the wave function  Ψ.  In  other  words,  it  exa-
mines the development of Ψ over time.

In the context of this simulation, we consider the wave
function  Ψ describing  the  object  not  as  an  abstract
mathematical  construct,  but  as  a  wave  with  a  constant
amplitude of  h/4 (equation  1). Based on equation  2, we
simulate  the  change  in  the  functional  values  of  such  a
wave over time, to get the value of the energy:

⟨E ⟩=| ∂∂t Ψ ( t)| (3)

Additional parameters are not required! The change in the
wave over time provides the value of the energy directly.
As an example, we use a photon as a quantum object. The
speed of propagation of this object thus corresponds to the
speed of light. We simulate the change over time of the
wave representing the photon for  different  wavelengths
(Table 1). Only amounts are considered.
For  comparison,  the  values  calculated  according  to  the
equation E=h·f are given in Table 1. Deviations from the
simulated results are possible due to the limited number
of simulation steps.
You can carry out the simulation for other wavelengths by
yourself on the author's website:
https://www.quanten-krimi.de/pop/02/?ch0040?en

Conclusion: If  a  photon is  described  as  a  wave with a
constant amplitude of h/4, the energy of the photon results
directly from the mean time change of this wave.

3.2   Momentum

In quantum mechanics, calculation of momentum is done
using the momentum operator

p̂x=−i ħ ∂
∂x

(4)

acting on the wave function  Ψ.  The  development  of  Ψ
over space is therefore considered. We limit ourselves to
one spatial dimension x.
Based on equation 4, we simulate the local change in the
functional  values  of a wave with constant  amplitude of
h/4 to get the value of the momentum:

⟨ px ⟩=| ∂∂x Ψ (x)| (5)

The results of the simulations using a photon can also be
found in table 1. In the last column, the values calculated
using the equation  p=h/λ are given for comparison. You
can test it by yourself:
https://www.quanten-krimi.de/pop/02/?ch0070?en

Conclusion: If  a  photon is  described  as  a  wave with a
constant amplitude of  h/4, the momentum of the photon
results directly from the mean local change of this wave.

https://www.quanten-krimi.de/pop/02/?ch0070?en
https://www.quanten-krimi.de/pop/02/?ch0040?en


3

λ [nm] Energy [kg·m·m/s·s] Momentum [kg·m/s]

simulated
mean temporal change of the quantum wave

calculated
E=h·f

simulated
mean local change in the quantum wave

calculated
p=h/λ

Red light 700 2,838 · 10-19 2,838 · 10-19 9,466 · 10-28 9,466 · 10-28

Blue light 450 4,414 · 10-19 4,414 · 10-19 1,472 · 10-27 1,472 · 10-27

UV 300 6,622 · 10-19 6,621 · 10-19 2,209 · 10-27 2,209 · 10-27

Table 1: Energy and momentum of photons of different wavelengths λ. The values simulated on the basis of a quantum wave of con -
stant amplitude are highlighted in yellow. The calculated values are given for comparison.

3.3   De Broglie wavelength of an 
electron

As the next quantum object we consider an electron. To
do this, we build on the model of a photon used for the
simulation as a quantum wave with a constant amplitude
of h/4.
An electron, together with a positron, can be created from
a photon by pairing. We investigate whether observable
properties of an electron can also be simulated within the
framework of the assumption made in equation 1.
The simplified model used for the purpose of the simula-
tion represents an electron as a superposition of a the back
and  forth  light  wave.  The  wavelength  of  these  "inner"
waves (the two upper waves in Figure 3) is 2,4 10⋅ -12m in

the  case  of  an  electron  that  is  not  moving  (Compton
wavelength  of  the  electron).  This  corresponds  to  about
twice  the  wavelength  of  the  photon  required  for  pair
formation.
When  this  object  moves  relative  to  an  observer,  the
optical Doppler effect occurs: The wavelength of the par-
tial wave in the direction of movement decreases:

(6)

λ0: Wavelength of the inner wave when the object is at rest
λF: Wavelength of the inner wave in the direction of movement
v: Speed of the object
c: Speed of light

Figure 3: Superposition of two waves of different wavelengths and opposite directions of propagation. The enveloping wave (envelope)
is shown in red.

speed
of the electron [m/s]

Wavelength of the inner
wave in the direction of

movement [m]

Wavelength of the inner
wave opposite to the direc-

tion of movement [m]

Wavelength of
enveloping wave [m]

De Broglie wavelength of
an electron

according to λ=h/p  [m]

10000 2,426229·10-12 2,426391·10-12 7.274·10-8 7.274·10-8

15000 2,426189·10-12 2,426432·10-12 4.849·10-8 4.849·10-8

80000 2,425663·10-12 2,426958·10-12 9.092·10-9 9.092·10-9

Table 2: De Broglie wavelength of an electron for different speeds. Values determined by superimposing two waves (yellow) and results
calculated according to λ=h/p (last column).

λF=λ0√ 1− v
c

1+ v
c
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The wavelength of the partial wave against the direction
of movement increases:

(7)

λb: Wavelength of the inner wave against the direction of movement

We obtain the frequencies f of the inner waves by means
of the relationship f=c/λ (c: speed of light).
As a result of the superposition of the partial waves, an
enveloping  wave  forms  ("envelope",  Figure  3  below).
Their frequency fE results from:

f E=
f F−f B

2
(8)

Table 2 shows the wavelengths of the envelope obtained
by simulation for some speeds. For comparison, you will
find the values calculated using λ=h/p.
You can also carry out this simulation by yourself:
https://www.quanten-krimi.de/pop/06/?ch0040?en

4   Motivation of some formulas
Now  there are completely different  options available to
determine the energy and momentum of  a quantum ob-
ject:
- by calculation using the equations E=h·f and p=h/λ.
- by simulating the mean temporal or local change of a

wave with a constant amplitude of h/4.
Is there any connection?

4.1   E=h·f

According to the simulation in chapter  3.1, the value of
the  energy  of  a  quantum  wave  results  from  the  mean
change of the wave over time This statement should be
formulated mathematically. We only consider amounts.
The wave function for a harmonic wave that only depends
on time t is:

Ψ (t)=Ψmax⋅sin(2π⋅ t
T

) (9)

Ψmax = Maximum value (amplitude) of Ψ, T = period duration

The 1st derivative with respect to the time t gives: 

Ψ (t) '=Ψmax⋅
2π
T

⋅cos(2 π⋅ t
T

) (10)

In  order  to  determine  the energy,  we require  the  mean
value Ψ(t)' of this function. The mean value of a unidirec-
tional  cosine function can be determined from its max-
imum value:

Ψ '= 2
π
⋅Ψ 'max (11)

For the sake of clarity, we omit the amount symbols.
We require the maximum value Ψ'max. In equation 10, Ψ'

is  greatest  when  the  cosine  has  its  maximum  possible
value of 1:

Ψ (t) 'max=Ψmax⋅
2π
T

⋅1 (12)

Ψ (t) 'max=Ψmax⋅
2π
T

(13)

Inserting equation 13 into equation 11, we have:

Ψ (t) '=2
π
⋅Ψmax⋅

2 π
T

(14)

Ψ (t) '=Ψmax⋅
4
T

(15)

The  period  T corresponds  to  the  reciprocal  of  the  fre-
quency:

T=1
f

(16)

With this we replace T in equation 15:

Ψ (t) '=Ψmax⋅4⋅f (17)

According to the assumption in equation 1, the amplitude
of a quantum wave corresponds to a quarter of the Planck
constant h. With this we replace Ψmax in equation (17):

Ψ (t) '=h
4
⋅4⋅f (18)

Ψ (t) '=h⋅f (19)

The mean time change of a quantum wave can therefore
be calculated from the product h·f. According to the simu-
lation in chapter 3.1, this change over time corresponds to
the energy E of a quantum wave:

Ψ (t) '=h⋅f=E (20)

Conclusion: The equation E=h·f results from the assump-
tion that a quantum object is described as a wave with a
constant  amplitude  of  h/4.  The  energy  of  the  quantum
object corresponds directly to the mean temporal change
of the wave.

4.2   p=h/λ

According to the simulation in chapter  3.2, the momen-
tum  of  a  quantum  wave  results  from  the  mean  local
change of the wave. This statement should also be formu-
lated mathematically.
The wave function for a harmonic wave that only depends
on one spatial dimension x is:

λb=λ0 √ 1+ v
c

1−v
c

https://www.quanten-krimi.de/pop/06/?ch0040?en
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Ψ (x)=Ψmax⋅sin(2π⋅x
λ
) (21)

Ψmax = Maximum value (amplitude) of Ψ, λ = wavelength

The 1st derivative of equation 22 with respect to the loca-
tion x results in:

Ψ (x) '=Ψmax⋅
2 π
λ

⋅cos(2 π⋅x
λ
) (22)

In order to determine the momentum, we require the mean
value  Ψ(x)' of  this function (equation 11).  For this,  we
have  to  determine  the  maximum  value  of  the  1st
derivative  Ψ'max. In equation  22,  Ψ' is greatest when the
cosine has its maximum possible value of 1:

Ψ (x) 'max=Ψ max⋅
2π
λ

⋅1 (23)

Ψ (x) 'max=Ψ max⋅
2π
λ

(24)

We insert equation 24 into equation 11:

Ψ (x )'=2
π
⋅Ψmax⋅

2π
λ

(25)

Ψ (x )'=Ψmax⋅
4
λ

(26)

According to the assumption in equation 1, the amplitude
of a quantum wave corresponds to a quarter of the Planck
constant h. With this we replace Ψmax in equation 26:

Ψ (x )'=h
4
⋅4
λ

(27)

Ψ (x )'=h
λ

(28)

The mean local change of a quantum wave can therefore
be  calculated  from  the  quotient  h/λ.  According  to  the
simulation in chapter 3.2, this local change corresponds to
the momentum p of a quantum wave:

Ψ (x )'=p=h
λ

(29)

Conclusion: The equation p=h/λ results from the assump-
tion that a quantum object is considered to be a wave with
a  constant  amplitude  of  h/4.  The  momentum  of  the
quantum object  corresponds  directly  to  the  mean  local
change of the wave.

5   Summary
In order to simulate observable properties of a quantum
object on a classical computer, the assumption was made
that a quantum object can be described as a wave with a
constant  amplitude  of  h/4 (h =  Planck  constant).  The
energy of the quantum object then results directly from
the mean temporal change of the wave, the momentum
from its  mean local  change.  If  a  model  in the form of
opposing  light waves is used for quantum objects with a
rest mass, the speed-dependent wavelength of the envel-
oping  wave  corresponds  to  the  de  Broglie  wavelength
observed.
The assumptions made here could allow a deeper under-
standing of what quantum objects actually are.
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