Every Real Number Has a Unique Predecessor

By Jim Rock

Abstract: We explain why every real number has a unique predecessor.

Introduction. For all real numbers a in the open interval (b, c)
let the collection of all $R_a = \{ y \text{ a real number} \mid b \leq y < a \}$

Each set in the collection of R_a has a largest element.
Select a single R_a taken from the collection of all R_a.
Along with itself this selected R_a has a group of proper subsets taken from the collection of all R_a. This group of proper subsets are nested within each other. When nested within the selected R_a, this group of proper subsets forms a proper subset of the selected R_a.
For any two elements of the selected R_a the smaller element will be in a proper subset of the selected R_a.
Thus, each R_a must contain a single largest element not in the group of its nested proper subsets taken from the collection of all R_a. That unique largest element is the immediate predecessor of a.

© 2021 James Edwin Rock. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
If you wish, email comments to Jim Rock at collatz3106@gmail.com.