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Abstract

Extensive experimental tests of the Bell inequality have been con-
ducted over time and the test results are viewed as a testimony to quantum
mechanics. In considering the close tie between quantum mechanics and
statistical theory, this paper identifies the mistake in previous statistical
explanation and uses an elegant statistical approach to derive general for-
mulas for two-particle Bell tests, without invoking any wavefunctions. The
results show that, for the special case where the spins/polarizations are in
the same, opposite, or perpendicular directions, the general formulas de-
rived in this paper convert to quantum predictions, which are confirmed by
numerous experiments. The paper also investigates the linkages between
the statistical and quantum predictions and finds that vector decomposi-
tion and probability law are at the heart of both approaches. Based on
this finding, the paper explains statistically why the local hidden variable
theory fails the Bell tests. The paper has important implications for quan-
tum computing, quantum theory in general, and the role of randomism
and realism in physics.

Keywords: Bell inequality, probability law, quantum mechanics, real-
ism, local hidden variable theory

1 Introduction

The extensive study on Bell tests originated from the 1935 paper by Einstein
et al [26], which claimed that physical reality can be predicted with certainty
and that the uncertain nature of quantum prediction is due to incomplete in-
formation or the act of local hidden variables. Bohm [4] proposed a thought
experiment to test the local hidden variable (LHV) theory and quantum mech-
anism, but this thought experiment was impractical to implement. In 1964,
John Bell [1] developed the Bell inequality from the LHV theory as a testing
tool: if the inequality is violated, the LHV theory is disproved. In 1969 Clauser
et al [14] extended the Bell inequality to an experimentally testable version.
Freedman and Clauser[5], Aspect [23, 24] and many others used this version to
test the inequality and convincingly rejected it. Numerous experiments on Bell
tests [10, 34, 35, 32, 38, 15, 20, 37, 17, 21, 36, 6, 13, 12, 22] have been conducted
to close the ‘loopholes’ in testing. Since almost all testing results are consistent
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with the quantum mechanical prediction, they are viewed as a testimony to
quantum mechanism.

It is well known that quantum mechanics has a close tie with probability the-
ory. The author suspects that both quantum mechanics and statistics mechanics
may essentially be the same in the case of the Bell tests, and therefore iden-
tified the mistakes in previous statistical explanation and derived a statistical
prediction for two-particle Bell tests. It is revealed that the quantum prediction
of the Bell test results is a special case of the statistical prediction. By com-
paring the statistical and quantum derivations, the author further demonstrates
that the essence of quantum prediction is probability law, and that quantum
entanglement in two-particle Bell tests is nothing mysterious but an alternative
expression for statistical correlation (i.e. there is no difference between statisti-
cal and quantum correlations). When the correlated particles are separated and
facing different conditions (e.g. polarizers of different orientations), probability
law can still maintain their correlation.

The paper is organized as follows: Section 2 demonstrates the deterministic
or uncorrelated nature of the Bell inequality and reveals the mistakes in the
previous statistical approach. Based on a general case of spin or polarization,
Section 3 derives a statistical prediction for Bell tests for all possible uncor-
related and correlated particle pairs. Section 4 explores the linkage between
the quantum and statistical predictions, while Section 5 uses the statistical ap-
proach to explain the results of representative two-particle Bell tests. Section 6
concludes the paper.

2 Deterministic or uncorrelated nature of the
Bell inequality

Realism and localism play a key role in deriving the Bell inequality. The
usual assumption for derivation is that at location A, a setting a (e.g. the
direction of the spin/polarization analyser) leads to an experimental outcome
A(a), while setting b at location B leads to outcome B(b), with the joint outcome
being E(a,b)=A(a)B(b). Since a setting leads to an outcome with certainty, the
outcome is predetermined by the settings. This fits with the idea of determinism
or realism. Moreover, the outcome at a location is determined only by the setting
at that location, e.g. A(a) is determined by local setting a at location A, not
by setting b at location B. This is localism.

If settings a and b can be changed to a’ and b’, respectively, we can have joint
outcomes: E(a,b’)=A(a)B(b’), E(a’,b)=A(a’)B(b), and E(a’,b’)=A(a’)B(b’).
We further assume that the detected outcome at any setting is between -1 and
+1, namely |A| ≤ 1, |B| ≤ 1. With these assumptions, we can have:

E(a, b)− E(a, b′) = A(a)B(b)−A(a)B(b′)

= A(a)B(b)−A(a)B(b′) + [A(a)B(b)][A(a′)B(b′)]− [A(a)B(b)][A(a′)B(b′)]
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or

E(a, b)− E(a, b′) = A(a)B(b)[1 +A(a′)B(b′)]−A(a)B(b′)[1 +A(a′)B(b)] (1)

In absolute value, we can write:

|E(a, b)− E(a, b′)| ≤
|A(a)B(b)| ∗ |(1 +A(a′)B(b′)|+ |A(a)B(b′)| ∗ |1 +A(a′)B(b)| (2)

We have changed the negative sign at the right-hand side of eq. 1 to a
positive sign in eq.2 because A(a)B(b’) can be negative. Since the values of
A(a), B(b), A(a’), and B(b’) are all between -1 and 1, we have |A(a)B(b)| ≤ 1
and |A(a)B(b′)| ≤ 1. As such, the inequality can be written as:

|E(a, b)− E(a, b′)| ≤ |1 +A(a′)B(b′)|+ |1 +A(a′)B(b)|
= 2± |A(a′)B(b′) +A(a′)B(b)|

or
|E(a, b)− E(a, b′)| ≤ 2± |E(a′, b′) + E(a′, b)| (3)

On the right-hand side of eq.3, we used the ‘±’ sign because both A(a’)B(b’)
and A(a’)B(b) can be negative (leading to negative sign) or positive (leading to
positive sign). There are two boundaries in the above inequality. If the lower
boundary is satisfied, the inequality holds, so we have arrived at the Bell in-
equality:

|E(a, b) + E(a′, b′) + E(a′b)− E(a, b′)| ≤ 2 (4)

To incorporate a hidden variable into the inequality, most researchers intro-
duce a random variable. For example, Bell [1, 2] and Clauser et al [14] added
to the experiments a hidden variable λ, which has a normalized probability
distribution: ∫ ∞

−∞
p(λ)dλ = 1

With the added hidden variable, Bell [1, 2] obtained the expected values of
coincidence at the different settings a, a’, b and b’ as follows:

E(a, b) =

∫ ∞
−∞

A(a, λ)B(b, λ)p(λ)dλ (5)

E(a, b′) =

∫ ∞
−∞

A(a, λ)B(b′, λ)p(λ)dλ (6)

E(a′, b) =

∫ ∞
−∞

A(a′, λ)B(b, λ)p(λ)dλ (7)

E(a′, b′) =

∫ ∞
−∞

A(a′, λ)B(b′, λ)p(λ)dλ (8)
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Using the same procedure that was used to derive the Bell inequality for eq.3
(the deterministic case), Bell ([2] , p178-179) derived (the notations are slightly
changed for contemporary readers):

E(a, b)− E(a, b′) =

∫ ∞
−∞

A(a, λ)B(b, λ)p(λ)dλ−
∫ ∞
−∞

A(a, λ)B(b′, λ)p(λ)dλ

=

∫ ∞
−∞

[A(a, λ)B(b, λ)−A(a, λ)B(b′, λ) +A(a, λ)B(b, λ)A(a′, λ)B(b′, λ)

−A(a, λ)B(b, λ)A(a′, λ)B(b′, λ)]p(λ)dλ

=

∫ ∞
−∞

A(a, λ)B(b, λ)[1 +A(a′, λ)B(b′, λ)]p(λ)dλ

−
∫ ∞
−∞

A(a, λ)B(b′, λ)[1 +A(a′, λ)B(b, λ)]p(λ)dλ (9)

In terms of absolute value, we have:

|E(a, b)− E(a, b′)| ≤ |
∫ ∞
−∞

A(a, λ)B(b, λ)[1 +A(a′, λ)B(b′, λ)]p(λ)dλ|

+ |
∫ ∞
−∞

A(a, λ)B(b′, λ)[1 +A(a′, λ)B(b, λ)]p(λ)dλ|

≤ |
∫ ∞
−∞

[1 +A(a′, λ)B(b′, λ)]p(λ)dλ|+ |
∫ ∞
−∞

[1 +A(a′, λ)B(b, λ)]p(λ)dλ|

= 2± |E(a′, b′) + E(a′, b)|

Rearranging the above inequality as before, we can obtain the same inequal-
ity as eq. 4.

From the above derivation one may notice that the same term
∫∞
−∞ p(λ)dλ

is added to each outcome of the different settings and then this term is filtered
out in the end by the definition of expected values in eqs. 7 and 8. As such,
the added hidden variable and probability are only additional statistical noise,
which does not change the deterministic nature of the resulting inequality.

Later, Bell and others [28, 3, 8] moved on to a version of the Bell inequal-
ity based on joint and conditional probabilities. However, they used the same
assumption that the distribution of hidden variable λ is UNRELATED to local
settings. This assumption apparently contradicts the concept of a local variable.
Ironically, this assumption is often regarded as a feature of a local variable. Myr-
vold et al [29] used a different approach. Instead of concerning the probability
distributions of λ conditioned on settings, they conditioned the experimental
outcomes on hidden variable λ. Since they assigned no statistical property to
λ, its behaviour is unknown, so its role in their derivation is negligible, or not
essential at least.

To present a genuine statistical event, one should allow the probability den-
sity λ to vary with the local settings. In other words, the probability of value
λ must be conditioned on the settings, i.e. for settings a and b, we have the
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probability p(λ|a) and p(λ|b), respectively. The probability of the joint outcome
of settings a and b should be p(λ|a, b). Similarly, we have p(λ|a, b′), p(λ|a′, b),
p(λ|a′, b′) for other joint settings. As such, the expected joint detection should
be:

E(a, b) =

∫ ∞
−∞

A(a, λ)B(b, λ)p(λ | a, b)dλ

E(a, b′) =

∫ ∞
−∞

A(a, λ)B(b′, λ)p(λ | a, b′)dλ

E(a′, b) =

∫ ∞
−∞

A(a′, λ)B(b, λ)p(λ | a′, b)dλ

E(a′, b′) =

∫ ∞
−∞

A(a′, λ)B(b′, λ)p(λ | a′, b′)dλ

Using this new definition of expected values, the terms for the probability
of λ are different for each joint setting and thus cannot be filtered out. As a
result, the Bell inequality cannot be derived.

However, one may further assume that the joint probability of outcome at
joint setting a and b is the multiplication of probabilities of outcomes at each
setting, namely:

p(λ|a, b) = p(λ|a)p(λ|b) (10)

where 0 ≤ p(λ|a) < 1, 0 ≤ p(λ|b) < 1, and
∫∞
−∞ p(λ|a)dλ =

∫∞
−∞ p(λ|b)dλ = 1.

Applying the same method for joint settings a and b’, a’ and b, and a’ and
b’, we have:

p(λ|a, b′) = p(λ|a)p(λ|b′)

p(λ|a′, b) = p(λ|a′)p(λ|b)

p(λ|a′, b′) = p(λ|a′)p(λ|b′)

Based on these joint probabilities, we can calculate E(a,b), E(a,b’), E(a’,b)
and E(a’,b’) and, following the same procedure as in deriving eq.9, we can derive
Bell inequality eq.4

As we see, eq.10 is crucial for deriving the Bell inequality from a statistical
point of view. However, the expression of joint probability as a product of the
probability of outcome of two experiments is not without a condition. The well-
known but often neglected condition is that the two experiments involved in the
joint probability calculation in eq.10 must be totally unrelated, i.e. independent
random experiments. Applying this condition to the Bell tests, the requirement
is that the probabilities of outcomes at different locations/settings are indepen-
dent of each other, so ‘local’ means ‘uncorrelated’. This interpretation gives the
alternative condition for the Bell inequality. That is, if the outcomes are not
deterministic, the outcomes at two different settings should not be correlated.

The common wisdom is that, during a Bell test, the experiments at different
locations A and B are apparently independent because the orientations of the
polarizers at A and B are changed independently and randomly. However, the

5



independence of settings are not the full condition for independent experiments
because local settings are only one element of the polarization experiments. The
other element is the light source. In fact, correlated source particles are used
all Bell tests conducted so far, the experiments conducted at different locations
are not independent. Since the experiments based on different settings are
correlated by source particles, the joint probability in a Bell test should be
calculated based on conditional probability:

pa,b = pa ∗ pb|a
or

pa,b = pb ∗ pa|b
Similar mistakes are also commonly made in treating the expected value of

joint events as being the multiplication of the expected values of separate events.
Due to the statistical nature of the polarization experiments, one needs to allow
one setting to generate different results, e.g. experiments based on setting a can
have results A1(a), A2(a), . . . An(a), so the expected value for results of setting
a can be expressed as:

E(a) =
1

n

∑
i

Ai(a) (11)

We can also write the expected value for results of setting b as:

E(b) =
1

n

∑
i

Bi(b) (12)

Indeed, Bell ([2], p178) realized the importance of introducing eqs.11 and 12
for E(a) and E(b). However, with no precondition being specified, he assumed
the following equality as the base for deriving the Bell inequality:

E(a, b) = E(a) ∗ E(b) (13)

The above equation is used by numerous researchers on Bell tests, but the
equation is not unconditional. Statistically, we can expand the expected values
as:

E(a, b) =
1

n

∑
i

Ai(a)Bi(b) (14)

and

E(a) ∗ E(b) =
1

n2

∑
i

Ai(a)
∑
i

Bi(b) (15)

Apparently, E(a, b) 6= E(a) ∗E(b) in general cases. A special statistical case
where E(a, b) = E(a)∗E(b) holds is when the outcomes of Ai(a) are independent
of (or not correlated to) the outcomes of Bi(b). In this special case, the Bell
inequality will hold. If E(a) and E(b) are correlated, we must use the conditional
expected values that reflect the correlations between two experiments.
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From the above discussion, we can conclude that the Bell inequality does
not allow for a probabilistic nature (or correlation, to be exact) because it is
based on determinism or realism. To allow for the Bell inequality in a statistical
experiment, one must satisfy the condition that E(a, b) = E(a) ∗ E(b), which
in turn requires that there is no correlation between Ai(a) and Bi(b). In terms
of quantum mechanics terminology, if a and b are in separable (uncorrelated)
states, the Bell inequality is valid, otherwise (if a and b are in entangled states),
the Bell inequality will be violated.

3 A statistical interpretation of spin/polarization
correlation

A statistical presentation of Bell tests seems to be complicated because it
involves many random settings, such as random directions of polarizers and
random polarization of light or spins of particles. Moreover, spins and polariza-
tions have different features. After trying a number of methods, the author has
arrived at a remarkably simple and elegant approach for deriving the statistical
prediction.

The difference between polarization and spin is that spins in opposite di-
rections have different values while polarizations in the opposite directions are
viewed as being the same. In other words, the spin direction in a plane can have
a 360◦ variation while the polarization direction varies only within 180◦, so the
case of polarization is a reduced case of spin. For generality, this section focuses
on deriving the results for the case of spin, and then shows how the results can
be applied to the case of polarization.

There are various types of spin analyzer/detector [31, 27, 7, 16], but all spin
detectors rely on a differing scattering cross section for spin polarized particles.
During spin detection, the direction of travel of the particle and the detector
orientation form a plane, in which the particles are reflected and detected [27].
The spin polarized particles will cause asymmetric reflection, and the asymmet-
ric results indicate the detected spin direction. Essentially, a spin analyser works
similarly to a polarizer for light, but the analyser can identify the spin direction
along the given detection orientation. Consequently, we use a polarizer with an
arrow to represent a spin analyzer.

Fig. 1 shows a general case where the particles of the different spin directions
are measured by the two spin analyzers in a Bell test experiment. Two spins, s1
and s2, and two spin analyzers, A and B, are positioned in different directions.
The spin directions of particles 1 and 2 form an angle of θ1 and θ2, respectively,
with the x-axis. For simplicity, we assume that s1 and s2 are unit vectors, and
that spin analyzer A is placed in the direction of the x-axis while spin analyzer
B forms an angle of β with the x-axis. Given this setting, the component
of s1 detected by A is E′A = E′Ax = cosθ1. Similarly, the angle between s2
and the spin analyzer B is θ2 − β, so the component of s2 detected by B is
E′B = cos(θ2 − β).
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Figure 1: Measuring spin direction

There are two types of correlation measurement in the Bell tests. One is
the joint detection counts normalized on the separate detection counts at each
settings. The other is the joint detection rate normalized on the emission rate
at the particle source. We address them in turn.

3.1 Correlation normalized on outcomes at each setting

This measurement fits with the standard definition of correlation, so we can
calculate the expected value, variance and covariance and then obtain correla-
tion. Since the source emits particles of random spin directions, the expected
values and variances can be obtained by integrating E’(A) and E’(B) over the
spin angles θ1 and θ2 in the range of 0 - 2π for particles 1 and 2.

E(A) =

∫ 2π

0
E′(A)dθ1∫ 2π

0
dθ1

=

∫ 2π

0
cosθ1dθ1∫ 2π

0
dθ1

=
sinθ1
θ1

∣∣∣∣2π
0

= 0

E(B) =

∫ 2π

0
E′(B)dθ2∫ 2π

0
dθ2

=

∫ 2π

0
cos(θ2 − β)dθ2∫ 2π

0
dθ2

=
sin(θ2 − β)

θ2

∣∣∣∣2π
0

= 0
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var(A) =

∫ 2π

0
[cosθ1 − E(A)]2dθ1∫ 2π

0
dθ1

=
1

2π

∫ 2π

0

cos2θ1dθ1

=
1

2π

∫ 2π

0

0.5(cos2θ1 + 1)dθ1 = 0.5

var(B) =

∫ 2π

0
[cos(θ2 − β)− E(B)]2dθ2∫ 2π

0
dθ2

=
1

2π

∫ 2π

0

cos2(θ2 − β)dθ2

=
1

2π

∫ 2π

0

[0.5cos2(θ2 − β) + 1]dθ2 = 0.5

If the two particles are uncorrelated, θ1 and θ2 can vary independently, so
the covariance can be calculated through a double integral:

cov(A,B) =

∫∫ 2π

0
[cosθ1 − E(A)][cos(θ2 − β)− E(B)]dθ1dθ2∫∫ 2π

0
dθ1dθ2

=
1

(2π)2

∫ 2π

0

cosθ1dθ1

∫ 2π

0

cos(θ2 − β)dθ2 = 0

The zero covariance is expected because of the uncorrelated nature of s1 and
s2 - the positive and negative joint detection counts will be largely cancelled out.
If the two spins are correlated, θ1 and θ2 can still change randomly, but the two
angles must keep the same difference, i.e. θ2 = θ1 + θ0, where θ0 is the fixed
relative angle between two spin directions. In this case, the covariance can be
calculated by an integration over θ1 (or θ2):

cov(A,B) =

∫ 2π

0
[cosθ1 − E(A)][cos(θ1 + θ0 − β)− E(B)]dθ1∫ 2π

0
dθ1

=
1

2π

∫ 2π

0

0.5[cos(2θ1 + θ0 − β) + cos(β − θ0)]dθ1 = 0.5cos(β − θ0)

As such, we have the following spin correlation:

E(A,B) =
cov(A,B)

[var(A)]1/2[var(B)]1/2
=

0.5cos(β − θ0)

0.50.5 ∗ 0.50.5
= cos(β − θ0) (16)

Eq.16 is a general result for joint detection for any given orientations of spin
detectors. The application of this equation for special occasions can produce
quantum predictions. For example, if two particles have the same spin, i.e.
entangled particles of the same phase, we have θ0 = 0, EAB = cosβ. If two
particles have the opposite spin, i.e., negatively correlated particles, we have
θ0 = π, EAB = −cosβ. If the two spin vectors are perpendicular, θ0 = π/2,
EAB = cos(π/2− β) = sinβ.
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It is worth mentioning that some researchers used light intensity correlation
instead of the expected-value correlation for polarization Bell test. For example,
Ou and Mandel [18] and Rarity and Tapster [30] regarded the joint detection
probability of photons as being proportional to the intensity correlation of light.
This approach is misplaced. For polarization experiments, one or more photons
(assuming perfect detection for the simplicity of an argument) pass through
the polarizer, a positive detection will be recorded, so the intensity is not an
appropriate measurement. One may argue that intensity is the square of am-
plitude so intensity can be used as the proxy of probability of photons passing
through the polarizer, based on which the joint probability can be calculated.
However, as explained in Section 2, the joint probability cannot be calculated
through the multiplication of probabilities of separate detections because of the
correlated particles in a Bell test. Since probability measures the average of the
squared detection values, the intensity (or probability) correlation approach will
produce totally different result from that in this paper. This can be shown in
the following expression:

pAB = pApB = <E2
A><E

2
B> 6= <EAEB>

2 = E2
AB

3.2 Correlation normalized on emissions at the source

For a Bell test, one need to measure many pairs of particles of different spin
directions with varied detector orientations. In this case, the joint detection rate
is generally normalized on the emission rate at the source and the correlation is
calculated based on fixed axes.

Referring to Fig.1, if the correlation is calculated based on x and y axes,
the component detected by analyzer B needs to be further decomposed on the
x-axis and y-axis:

E′Bx = E′Bcosβ = cos(θ2 − β)cosβ

E′By = E′Bsinβ = cos(θ2 − β)sinβ

Since no component on the y-axis is detected by analyzer A, the correlation
(joint detection) on the y-axis is zero. On the other hand, both analyzers detect
values on the x-axis, so the joint detection value is:

E′AB = E′AxE
′
Bx = cosθ1cos(θ2 − β)cosβ

Since the correlation is based on the emissions at source, which are 100%
detected (assuming all particles come to and are detected by either detector A
or B), the variances are one and thus the correlation is equivalent to co-variance.
If particles 1 and 2 are uncorrelated, the joint detection rate will be the value
of E′AB integrated over both θ1 and θ2:

pAB =

∫∫ 2π

0
E′ABdθ1dθ2∫∫ 2π

0
dθ1dθ2

=

∫∫ 2π

0
cosθ1cos(θ2 − β)cosβdθ1dθ2∫∫ 2π

0
dθ1dθ2

=
cosβ

(2π)2

∫ 2π

0

cosθ1dθ1

∫ 2π

0

cos(θ2 − β)dθ2 = 0
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The above result indicates that for uncorrelated particles, the joint detec-
tion rate is zero. This makes sense. Due to the uncorrelated random nature,
the different detection counts will be washed out by the independent random
changes in θ1 and θ2.

If two particles are correlated, i.e. θ2 = θ1 + θ0, we can obtain correlation
by integrating E′AB over θ1 (or θ2) in range 0 to 2π:

pAB =

∫ 2π

0
E′ABdθ1∫ 2π

0
dθ1

=

∫ 2π

0
cosθ1cos(θ1 + θ0 − β)cosβdθ1∫ 2π

0
dθ1

=
cosβ

2π

∫ 2π

0

0.5[cos(2θ1 + θ0 − β) + cos(β − θ0)]dθ1

= 0.5cos(β − θ0)cosβ (17)

The above result shows that when the two spin vectors are correlated, i.e.,
the value of θ0 is fixed, the joint detection rate is determined only by correlation
phase θ0 and the angle β between the orientations of two spin detectors.

Eqs.16 and 17 can also be applied to light polarization experiments. In the
case of polarized light, it is tricky to derive the joint detection because the
detected values have to be non-negative and thus are not consistent with the
cosine functions for E′A and E′B . The common approach (e.g. Aspect et al
[14, 23]) is to define the no-detection result as -1, instead of 0. In other words,
when the light polarization is perpendicular to the orientation of detector, no
photon will be detected and thus a result of -1 with a 90◦ will be recorded.
With this definition, all angles in eqs.16 and 17 should be halved, and then the
equation is equally applicable to the Bell tests with polarized light.

Where the two spin vectors are in the same directions (i.e. θ0 = 0 ), eq.17
becomes:

pAB = 0.5cos2β = 0.25(cos2β + 1) (18)

In this special case, the joint detection rate can also be derived without
integration, as shown in Fig. 2.

To present three random directions (i.e. the same direction of spin of the two
particles, and the directions of the two spin analyzers A and B), we can fix one
of them because only the relative angles between them matter. For convenience

of presentation, we assume the spin vector
−−→
OV to be a unit vector pointing

to V(ax/
√

2, ay/
√

2), where ax and ay are unit vectors at x and y directions,
respectively.

The projection of the spin vector
−−→
OV onto the B axis in Fig.2is:

−−→
OB2 =

−−−→
B1B2 +

−−→
OB1 = [−→axcos(θ − θb) +−→aysin(θ − θb)]/

√
2

.
This projection can be further projected onto the x-axis and y-axis and thus

decomposed to two components
−−→
OBx and

−−→
OBy, respectively (

−−→
OBy is not shown

in Fig.2 so as not to complicate the graph):
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Figure 2: Measuring the correlation of particle pair of the same spin

−−→
OBx = cos(θ − θb)[−→axcos(θ − θb) +−→aysin(θ − θb)]/

√
2 (19)

−−→
OBy = sin(θ − θb)[−→axcos(θ − θb) +−→aysin(θ − θb)]/

√
2 (20)

Similarly, the projection of
−−→
OV onto the A-axis can be decomposed into the

x and y components of
−−→
OAx and

−−→
OAy respectively(not shown in Fig. 2):

−−→
OAx = cos(θ − θa)[−→axcos(θ − θa) +−→aysin(θ − θa)]/

√
2

−−→
OAy = sin(θ − θa)[−→axcos(θ − θa) +−→aysin(θ − θa)]/

√
2
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As such, the joint detection rate can be calculated as:

pAB =
−−→
OAx

−−→
OBx +

−−→
OAy

−−→
OBy

= cos(θ − θb)[−→axcos(θ − θb) +−→aysin(θ − θb)]/
√

2

× cos(θ − θa)[−→axcos(θ − θa) +−→aysin(θ − θa)]/
√

2

+ sin(θ − θb)[−→axcos(θ − θb) +−→aysin(θ − θb)]/
√

2

× sin(θ − θa)[−→axcos(θ − θa) +−→aysin(θ − θa)]/
√

2

= 0.5[−→axcos(θ − θb) +−→aysin(θ − θb)]
× [−→axcos(θ − θa) +−→aysin(θ − θa)]cos(θa − θb)
= 0.5cos2(θa − θb)

Or
pAB = 0.25[cos2(θa − θb) + 1] (21)

Noting that (θa − θb)is the angle between the orientations of two detectors A
and B, we find that the above result is the same as eq.18. This joint probability
of detection is exactly the same as the coincidence rate derived from quantum
mechanics. The experiment by Aspect [23] confirmed this result.

The correlation function (eq.16) and the joint detection rate (eq. 17) derived
in this section are general results that are applicable to both uncorrelated or
correlated polarization/spin of any phase differences. The results can be tested
experimentally using the current Bell test techniques. The only change needed
is to add a randomly controlled source polarizer for each of the two beams after
the collimation lenses but before the traditional Bell test polarizers. If the pair
of source polarizers are randomly and separately controlled, i.e. their relative
angle of polarizarion θ0 varies randomly, the source particles are uncorrelated, so
the joint detection rate will be zero for a large sample size. If the pair of source
polarizers are controlled randomly but jointly, i.e. the relative polarization
angle of the pair is fixed at any given value, the joint detection rate should be
determined by the relative angle (θ0) of the first pair of (source) polarizers and
that (β) of the second pair, with the quantitative relations determined by eqs.16
amd 17.

4 Linkage between the statistical approach and
quantum mechanics

From the previous section, we see that the simple statistical approach gives
equivalent but more general results when compared with the predictions from
quantum mechanics (QM). This is not a coincidence. This section shows that
the statistical approach is at the heart of quantum mechanical prediction on
Bell tests.

QM uses wavefunctions to present the different states. For example, a wave-
function of a spin-up (or +1) state can be written in Dirac notation as |0>,
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while spin-down (or -1) can be written as |1>. The spin states can be projected
to (or measured on) different axes and may result in different results. If Alice
measures a spin state of |0> on the A-axis while Bob measures |1> on the B-
axis, we can express this spin state as |0>⊗|1>, or simply |01>. A wavefunction
|01> + |10> indicates that the measurement on the A-axis is always opposite
to the measured results on the B-axis, i.e. the measured results are negatively
correlated. Similarly, the stats in wavefunction |00>+ |11> are positively cor-
related. The states in this type of wavefunctions are called entangled states.
On the other hand, a wavefunction of |01> + |00> shows that while Alice’s
measurement is always |0>, Bob’s measurement can be either |0> or |1>, so
there is no correlation between the two measurement results. The states in this
wavefunction are called separable states. In short, the entangled states are the
QM expression for correlation.

Now we consider a normalized entangled state: ψ = (|00> + |11>)/
√

2. If
this state is measured by Alice on the A or x axis (both axes coincide, shown
in Fig.3), the possible outcome will be <0|σA|0> = +1 or <1|σA|1> = −1.
Similarly, if the state is measured by Bob on the B-axis, the possible outcome
will be <0|σB |0> = +1 or < 1|σB |1> = −1. Since this is a wavefunction of
positively entangled states, Alice and Bob will always obtain the same (positive
or negative) measurement outcome. Bob’s measurement can be decomposed to
two components on the x-axis and y-axis: σB = σBx cosβ + σBy sinβ . Alter-

natively, we can write: < 0|σBx |0> = cosβ,<1|σBx |1> = −cosβ,<0|σBy |0> =

sinβ,<1|σBy |1> = −sinβ. Since Alice’s measurement is on the x-axis, we have

σA = σAx .
The correlation between the measurements of Alice and Bob can be calcu-

lated by the expected value of joint measurements: <ab> = <σAσB>. The
QM calculation result is as follows:

<ab> = <ψ|σA ⊗ σB |ψ>
= 0.5(<00|+<11|)σA ⊗ σB(|00>+ |11>)

= 0.5(<00|σA ⊗ σB |00>+<11|σA ⊗ σB |00>)

+<00|σA ⊗ σB |11>+<11|σA ⊗ σB |11>)

= 0.5(<0|σA|0><0|σB |0>+<1|σA|0><1|σB |0>) +<0|σA|1><0|σB |1>
+<1|σA|1><1|σB |1>) = 0.5(<0|σA|0><0|σB |0>+<1|σA|1><1|σB |1>)

= 0.5(<0|σAx |0><0|σBx |0>+<1|σAx |1><1|σBx |1>) = cosβ

The above result is exactly the same as eq.16 (with θ0 = 0) that was
obtained from the much simpler statistical approach. A number of statisti-
cal features in the QM approach contribute to this same result. First, the
calculation of the expected value in QM (i.e. <ab> = <ψ|σA ⊗ σB |ψ>) is
based on a probability-weighted average. Second, the rule of tensor product
(<11|σA ⊗ σB |00> = <1|σA|0><1|σB |0>) makes an operator (e.g. σA or σB)
work on the wavefunction on its space only. This is exactly the case of mea-
surement (or vector component decomposition) on different axes. Third, the
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Figure 3: Spin measurement for positively entangled particles

orthogonal condition of basis wavefunctions mimics the measurement of the
projection onto the orthogonal axes, e.g. <0|σA|0> = +1, <1|σB |1> = −1,
and <1|σA|0> = 0. Fourth, the space (or axis) separation is consistent with
the concept of correlation. For example, since Alice measures on the x-axis,
only the x-component of the measurement by Bob is relevant to the correlation
calculations. This is manifested by <0|σA|0><0|σB |0> =< 0|σAx |0><0|σBx |0>.
Finally, the normalized wavefunction automatically normalizes the calculated
expected value so that it fits the requirement of correlation.

If we use other entangled wavefunctions to perform similar calculations, we
would arrive at essentially the same results but with a negative sign for some
wavefunctions. For example, with φ = (|01> + |10>)/

√
2, we find <ab> =<

φ|σA ⊗ σB |φ> = −cosβ, which is equivalent to eq.16 with θ0 = π. This is
not surprising as this wavefunction indicates a negative correlation. If we use a
wavefunction of separable states to calculate the expected joint measurement,
we would find that a value of zero. This is the expected because there is no
correlation between separable states.

If the measurement axes change randomly, we cannot put a vector on either
A or B axis. In this case, the QM derivation of the joint detection rate involves
a projection process similar to that used in Fig. 2. Using a matrix presentation,
we can express the projection of a vector pointing to (x1, y1) onto a specified
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axis of angle θ as follows:(
cosθ
sinθ

)(
cosθ sinθ

)(x1
y1

)
=

(
cos2θ cosθsinθ

cosθsinθ sin2θ

)(
x1
y1

)
(22)

In the above equation, if we let θ be the angle of B axis with respect with
the x-axis, i.e. θ − θb in Fig. 2, and let x1 = −→ax/

√
2 and y1 = −→ay/

√
2, we can

obtain the same result as in eqs.19 and 20.
The matrix in eq.22 is called a projection matrix [28], as it projects a vector

onto the axis of angle θ and gives the components of the projection:

Q(θ) =

(
cos2θ cosθsinθ

cosθsinθ sin2θ

)
Using the above projection matrix and an entangled wavefunction (e.g. φ =

(|01 > +|10 >)/
√

2), we can calculate the probability of joint measurement as:

pAB = <ψ|QA⊗QB |ψ> = 0.5cos2(θA − θB) = 0.25[cos2(θA − θB) + 1]

Since θA − θB is the angle of the orientations of detectors, the above result
is exactly the same as eq.18 or eq.21 that we derived in the statistical approach.
The identical result is apparently because the same projection process works in
both approaches.

5 Statistical explanation of two-particle Bell tests

Many Bell test experiments are based on the coincidence rate of particle
pairs, but a handful of researchers (e.g. [35, 21, 12, 33, 25, 39] have conducted
experiments on correlations of 3 or more particles. Multi-particle correlation
is generally achieved by special designs of experimental setup to achieve spe-
cific quantum states (e.g.[35, 33]) or by exploiting the coherent states of Bose-
Einstein condensate (e.g.[21, 12]). The statistical foundation of multi-particle
correlation is the same as that for particle pairs, so this paper focus on two-
particle correlation. Even though we confine our scope to two-particle Bell tests,
there still are copious experiments. This section selects only some representa-
tive experiments and puts them into two groups: the polarization experiments of
entangled photon pairs and non-polarization experiments based on light phase
correlation.

5.1 Polarization experiments

Among numerous Bell test using polarization of photon pairs, we consider
only two influential papers by Aspect et al [23, 24]. Like most experiments on
the Bell tests, Aspect et al [23, 24] utilized the derivation of Clauser et al [14] for
an experimentally applicable quantum mechanical prediction for the counting

16



rates of coincidence. The starting point of their derivation is a probability
formula:

P (a, b) = w[A(a)+, B(b)+]− w[A(a)+, B(b)−]

− w[A(a)−, B(b)+] + w[A(a)−, B(b)−]

where w means the probability weighting of each outcome in total emission
countsR0, withR0=[A(a)+, B(b)+]+[A(a)+, B(b)−]+[A(a)−, B(b)+]+[A(a)−, B(b)−],
so we have w[A(a)+, B(b)+] = [A(a)+, B(b)+]/R0, etc.

The above equation is a manifest that the net correlation (positive correla-
tion [A(a)+, B(b)+]+[A(a)−, B(b)−] minus negative correlation [A(a)+, B(b)−]+
[A(a)−, B(b)+] ) in terms of total counts R0. This equation is consistent with
our derivation of joint detection rate presented in Section 2: the net correlation
in eq.17 is calculated by integrating E′AB over the angle of 0−2π while the total
counts is obtained by integrating the unit spin vector over the same range. Due
to the same foundation for derivation, the resulting eq.18 is unsurprisingly the
same as what obtained by Clauser et al [14] and used by Aspect et al [23, 24].
Since the joint detection rate derived from both statistical and quantum ap-
proaches is identical, the explanation on the results of Aspect et al [23, 24] will
be very similar, so we omit this explanation but examine the maximum violation
angle derived from quantum mechanics and confirmed by experiments.

Using the coplanar vectors (shown in Fig.4) introduced by Clauser and Shi-
mony [28] and Aspect et al [23] to present the settings of the Bell test exper-
iments, we can derive the same results as the quantum prediction of the Bell
test, but without invoking any wavefunctions.

a

b

a'

b'

  1

  3

  2

Figure 4: Coplanar vectors presentation of Bell test settings

In Fig.4, vectors a, a’, b, and b’ represent the direction of the spin detectors,
and the angles between them are displayed on the graph. For simplicity of
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presentation, we assume all vectors are of unit modulus and angles γ1 , γ2, and
γ3 are positive and less than π (for any angle θ greater than π, we can rewrite
it as 2π − θ). Applying the spin correlation results in eq.16 derived in Section
3 to a case of positively entangled particles (i.e. θ0 = 0), we can obtain the
experimental results as follows:

E(a, b) = cosγ1

E(a, b′) = cos(γ1 + γ2 + γ3)

E(a′, b) = cosγ2

E(a′, b′) = cosγ3

The theoretical results for the Bell tests should be:

EBT = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)

= cosγ1 − cos(γ1 + γ2 + γ3) + cosγ2 + cosγ3

Applying the first and second order conditions of maximization (minimiza-
tion) for the above equation, we know that EBT reaches the maximum or min-
imum when sinγ1= sin γ2= sinγ3=sin(γ1+γ2+γ3).

If γ1, γ2 and γ3 are less than π/2, the condition of maximum/minimum value
necessitates that γ1 = γ2 = γ3 = γ and sinγ=sin3γ. With some trigonometric
manipulations, from sinγ=sin3γ we can have sinγ(4cos2γ-1)=sinγ, or γ=π/4.

Similarly, if γ1, γ2 and γ3 are greater than π/2 (they are less than π as we
assumed before for simplicity), so we can obtain γ=3π/4.

If some angles are less than π/2 but some are greater than π/2, we obtain
no satisfying solution. For example, if γ1 and γ2 are less than π/2, but γ3 is
greater than π/2, from sinγ1= sinγ2= sinγ3, we can infer that γ1 = γ2 and
γ3=π − γ2, so sinγ1=sin(γ1+γ2+γ3)=sin(γ1 + π)=-sinγ1, or γ1 = γ2 = γ3 = 0.
This contradicts our assumption and presents a trivial case where all 4 settings
coincide.

To sum up, from the first and second order condition we reveal that the max-
imum and minimum value of EBT occurs at γ=π/4 and γ=3π/4, respectively.
If γ=π/4, we have:

Emax = cosπ/4− cos3π/4 + cosπ/4 + cosπ/4 = 2
√

2

If γ = 3π/4, we have:

Emin = cos3π/4− cos9π/4 + cos3π/4 + cos3π/4 = −2
√

2

As a result, we obtain the same results as the quantum prediction:

|E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)| ≤ 2
√

2

It is worth mentioning that the above derivation shows that the maximum
violation of the Bell inequality occurs when γ=π/4 or γ=3π/4, E=±2

√
2. This
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seems in conflict with the results of Aspect et al [23, 24], where the maximum
violation of the Bell inequality occurred at θ=π/8, or θ =3π/8.

In fact, this difference highlights the difference of the cases of spin and polar-
ization. Our derivation is based on spin detection. As we discussed in Section 3,
the angle must be adjusted when applying eqs.16 and 17 to polarization experi-
ments. In most Bell test experiments using light, including Aspect et al [23, 24],
a count of photon detection is recorded as +1 and a no detection is recorded
as -1. As such, if the angle between the polarizer and the polarization of light
is θ = π/2, the most likely outcome is no detection or -1. We can express the
result as cos2θ = cosπ = −1. It is apparent that one needs to double the angle
to obtain a result that is consistent with experimental record. On the other
hand, our derivation based on spin assumes that a count of photon detection is
recorded as +1 and a no detection is recorded as 0. If the angle between the
polarizer and the polarization of light is γ = π/2, the most likely outcome is no
detection or 0. We can express the result as cosγ = cosπ/2 = 0. This recorded
value is equivalent to the case of θ = π/4 in Aspect et al [23, 24]. From this
we can infer that the angle γ used for spin examples in the present paper is
equivalent to twice the angle θ used in Aspect et al [23, 24], i.e. γ = 2θ. As a
result, the angles for maximum violation of the Bell inequality in Aspect et al
[23, 24] will be half the value as in our derivation.

5.2 Interferometry Bell tests

There are Bell tests that examine the correlations between variables other
than polarization. One type of research focus on the phase correlation(e.g.
[13, 19, 30, 11]). This type of experiments create a pair of photons of the
same phase and let them pass through phase shifters and a distance of different
length, then detect the phase difference at a Michelson interferometer. The
experiments are based on the theoretical prediction of Franson [9] which, based
on the phase difference of wavefunctions caused by time difference, developed a
similar prediction as eq. 18 in the present paper. Using a classical wave theory
of light and intensity correlation, one can also obtain an equivalent result.

For simplicity, we combine the electrical and magnetic components of a light
field, so the normalized light field of a photon pair of the same phase at position
x and time t can be expressed as:

E = cos(θ + kx− ωt)

where θ is the initial phase of the photon pair at the source, k is wave vector,
ω is angular frequency.

Assume that photon A will be added a phase θa by a phase shifter and,
meanwhile, photon B will be added a phase θb = ω∆t due to the different time
or distance travelled (we use only one phase shifter for simplicity). The light
fields of the pair become:

EA = cos(θ + kx− ωt+ θa)
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EB = cos(θ + kx− ωt+ θb)

Although this type of experiments use the joint intensity as measurement, as
we discussed in Section 3, we cannot calculate the correlation of light intensity
by directly multiplying the intensities of light field because the changes in in-
tensity are not independent. Since the light phases and thus the light fields are
correlated, the joint intensity needs to be calculated from light field correlation:

EAB = EAEB = cos(θ + kx− ωt+ θa)cos(θ + kx− ωt+ θb)

= 0.5[cos(2θ + 2kx− 2ωt+ θa + θb) + cos(θa − θb)]

The initial phase of photon pair θ can change randomly, so the item related
to θ in above equation will net out to zero (by integrating EAB over θ in the
range of 0− 2π). As a result, the above equation becomes:

EAB = 0.5cos(θa − θb)

As such, the joint intensity can be calculated as:

IAB = E2
AB = 0.25cos2(θa − θb) = 0.125[cos2(θa − θb) + 1]

This result is equivalent to the quantum prediction of eq. 16 in Franson [9] or
the eq. 4 used by Brendel et al [19]. From the above derivation we can conclude
that the light intensity difference stems from the phase difference caused by
phase shifter and by different travel time. Probability law also works in this
case because it ensures that the initial random phase of photon pairs have no
impact on the interferometry results.

By examining representative experiments, we can conclude that the viola-
tion of Bell inequality is caused by the correlation in source particles as well
as the physical relationship between the spin/polarization angle and its compo-
nent on detection axes, or between the phase of electromagnetic wave and the
interference outcome. With varying detection conditions (i.e. random changes
in detection angles or adding arbitrary phases), probability law can still main-
tain the correlation of source particles. This leads to the violation of the Bell
inequality and the correct statistical predictions, which are consistent with ex-
perimental outcomes.

6 Conclusions

The paper presents statistical predictions of two-particle Bell tests, which
are equivalent to, but more general than, the QM predictions. By comparing
the statistical and QM approaches, the paper shows that probability law is at
the heart of both approaches. The statistical presentation of two-particle Bell
tests in this paper has far-reaching implications.

First, it can improve our understanding of quantum mechanics and help
to demystify it. Although the concepts of superposition and entanglement are
widely accepted among physicists, the explanation of these concepts is difficult
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and thus causes significant misunderstanding. The statistical interpretation of
the Bell tests shows that the superposition of entangled states in the two-particle
Bell test is nothing more than statistical correlation between states. For the cor-
related particles at the polarizer or spin detector, probability law maintains the
correlation through the expected value, so there is no need for communication
(let alone instantaneous or faster-than-light communication) between different
locations in the Bell experiments. As quantum entanglement is fully explained
by probability law, the Bell test results and quantum mechanics are no longer
mysterious.

Second, it has significant implications for quantum computing, which relies
on quantum entanglement. Since the quantum entanglement phenomenon re-
sults from probability law, statistical noise is a natural and unavoidable part
of quantum computing. Understanding the nature of this noise may shed light
on how to improve the signal-noise ratio and thus is crucial to the success of
quantum computing.

Third, the paper pinpoints the cause for the violation of the Bell inequality
and thus explains why the local hidden variable theory is wrong. Although
numerous Bell tests reject the local hidden variable theory and support quantum
mechanics, they have not shed any light on why the former is wrong and the
latter is right. This paper shows that the key lies in probability law, which
underpins the Bell test results. Because probability law is universal, if we regard
statistical mechanism (which cause statistical variation around the mean) as a
‘hidden variable’, it is not a local one but a global one. The local hidden variable
theory misrepresents this nature and thus fails. It is also this global law that
leads to the correct prediction from quantum mechanics.

Last but not the least, the paper may stimulate a reassessment of the role
of determinism and realism. Generally speaking, the experimental results on
the Bell inequality are interpreted as being a rejection of determinism or lo-
cal realism, and an embracing of random-ism. While this paper highlights the
importance of randomness and probability law, it does not totally reject de-
terminism and realism. In the Bell tests, probability law works only when the
particles arrive at and interact with the detector (polarizer or spin analyzer)
- it plays no role before and after. When probability law is not in action, it
is determinism, realism and logic that describe the behaviour of the particles.
In other words, both random-ism and realism play an important role in our
understanding of physics.

Acknowledgement: The author thanks Sean Hodgman and David Shin for
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