The Many Worlds of Quantum Mechanics: A Pedagogical Conundrum

Vijay Shankar1, Narayanankutty Karuppath2
1 Center for Computational Engineering and Networking (CEN), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore, Tamilnadu, India
2 Department of Physics, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
E-mail: narayanankuttyk@am.amrita.edu

Abstract. The measurement problem in quantum mechanics has been a cause of much puzzlement over the years. The very idea of having two different versions of reality for the same system has been a cause for much debate. Often quantum mechanics textbooks follow the ‘shut up and calculate’ paradigm. This denies the opportunity for the common student to understand the consequence of one of the most elegant and beautiful aspects of science. The state of the art textbooks give a purely algebraic, perfunctory and monotonous approach where the real consequence of the system is not fully appreciated. A good reason for this is the considerable deviation of the quantum mechanical process from the commonsensical idea of truth, reality and reason. We tend to look at the world in a materialistic, deterministic, causal and objectivistic way. We tend not to accept a world of contradictions. A quantum measurement is essentially an amalgamation of contradictions, mystery and duality. It encompasses an implicit dependence on subjectivity and contradicts with causality as we know it. We look at the world as in the present. But a quantum mechanical measurement is a prediction of the future influenced by the observer or the measurer. This offers a philosophical and pedagogical conundrum. It poses a challenge on not just how our perception of the world might change in addition to providing a big challenge on how to take this to the student. The most common textbook interpretation of quantum mechanics has been the Copenhagen Interpretation suggests the ‘collapse of the wave function’ as a mechanism of transition between duality. But a more bizarre yet elegant theory, extending quantum formalism to the classical domain, called the Many Worlds Interpretation has been catching up very quickly; it stands for the split of the universe when we make a quantum mechanical measurement. Consequently, reality as we is redefined as a superposition of several outcomes. This adds up to the problem in taking up a mysterious and paradoxical subject like quantum mechanics, as it is, to the student.

1. Introduction
The very basic idea of education is to imbibe into the student, the idea of a imaginative outlook on life (or nature) to be imparted into the mind of the students, rather than the mere perfunctory transmission of a set of instructions to the students [1]. This perception of education is more relevant to a subject like quantum mechanics, where students have often struggled because of their difficulty to relate the physical reality with the concepts defining quantum mechanics, thereby following a ‘shut up and calculate’ paradigm [2]. A direct offshoot of this mindset is the popularity of the Copenhagen Interpretation of quantum mechanics [3]. The concept of the Copenhagen Interpretation seems quite out of the ordinary to the average student. When you make the measurement of an atomic constituent, you measure an attribute of that electron, say
position \(x \), you get a probability to find that electron at that given position. Now the electron will evolve in time in that position, in a deterministic way. But once again, if you measure the electron in a different position, say \(y \), you will get a probability for the electron to be in that position. This is a result of a barrier imposed by the uncertainty principle [4], you can not measure the position and momentum of a subatomic particle simultaneously. There is a duality between a deterministic measurement (wave) and a probabilistic measurement (particle), also known as the wave-particle duality. In this way we fail to understand the nature of the electron prior to the measurement, in addition to the fact that the system evolves according to our measurement. If you take away the role of the measurer, you know nothing about the state of the electron prior to the measurement. Propounding practicality to the system, it has been suggested that the incertitude is due to the limitations of the measuring apparatus but quantum mechanical wave function is still complete [5]. This is nothing like what a student would encounter in his deterministic world of classical physics. The fact that the observer creates reality and that is what we know about it is hard to reconcile with the practical world around him. The student will find it extremely difficult to understand the fact that one might not be ever able to find out the current state of the atom without the measurement itself influencing it. Upon measurement the same entity can be seen as either a particle or a wave and in order to 'completely' understand the microphysics of the system under consideration, we must take into consideration, both the wave and the particle nature of it, known as the complementarity principle [6]. Reality to the average student is singular and is not self-contradicting in any manner. But Quantum mechanics violates it, making it a very difficult concept to imbibe.

The Copenhagen Interpretation suggests the wave as a superposition of several other waves or particles and the probabilities a measure of the proportion of the amount of each observable (say corresponding to position) in the 'complete' wave. When you measure a particular attribute, the entire wave function collapses to what you have just measured (it gives a probabilistic result of course). But the collapse of the wave function seems to be an ad-hoc narrative. Another interpretation of the multiple realities is the Many Worlds Interpretation which argues that upon every quantum mechanical measurement a new world is created, every outcome, along with the measurer has a separate world for itself [7]. The Many worlds interpretation is a paradigm shift in taking quantum superpositions to the classical realm. The idea is this, reality or the present is the world in which we exist, but the future is full of options(superpositions) and every step we take takes us to a distinct world [8]. Although the Many Worlds Interpretation has not reached the level of text book acceptance, the theory is quickly catching up. Quantum mechanics is a theory replete with several paradoxes and interpretations [9], we will not attempt to go into the details of such an elaborate subject. But there are considerable proponents of the Many Worlds Interpretation who argue that such paradoxes are dealt with in a better way in the Many Worlds Interpretation, which include quantum entanglement, quantum computing and interaction free measurement etc [10, 11, 12, 13]. We dedicate this paper to the task of identifying the difficulty in teaching the Many Worlds Interpretation in contrast with the state of the art Copenhagen Interpretation and the importance of considering metaphysical, philosophical and neuroscientific aspects needed to understand the micro physics of the quantum world better, concepts which may not have received enough of a consideration in existing literature like [2, 14].

2. Classical And Quantum probabilities

The idea of probabilities in quantum mechanics is very strange to the student. Quantum mechanical probabilities can not be seen without juxtaposition with wave particle duality. In a typical probability exercise as the average student would see it, would be a typical question: Consider a bag with 10 blue balls and 10 red balls, 'what is the probability of getting a blue ball ?' would be the typical question, as is the usual norm of probability in academia. But a quantum mechanical analog of this would be that the bag is a wave function in which there is a definite
proportion of blue and red balls, initially. If you measure a red ball you will get a probability of getting a red ball. Now if you let the system as it is, without disturbing it, it would give a bag (wave function) which entirely contains red balls. Instead if you had measured blue balls, you would have received a probability for the bag having a probability of being in a ‘blue ball’ state. And do not disturb, it will evolve in such a way that all its balls are blue. If you, once again ‘disturb’ this(completely red or blue) wave function and measure the state red or blue, you will get a probability(or proportionality) for the completely red or blue wave function to be in either red or blue. This is a direct result of the superposition principle of the Copenhagen Interpretation. This student is not ready for any such thing as the Copenhagen Interpretation, not according to his usual training. Up until high school there is no training attributed to handling this kind of a methodology. The ‘shut up and calculate’ norm in quantum mechanics, which may have resulted in our lack of full fledged understanding of the ‘quantum world’ may very well be a direct result of the difference in the very idea of probability in quantum mechanics and classical physics or the mathematics associated with it.

In the Many Worlds Interpretation, the right version of probability is under much discussion, but the most intuitive and precise probability of the outcome is the number of worlds with that particular outcome or state \[^{15}\[^{16}\]. Let us retake the previous example, if a bag contains 10 red balls and 10 blue balls, the probability of getting a red ball will be 0.5. That is the proportion of worlds which contain red balls. Instead of the collapsing wave function we have a branching of the worlds. The Copenhagen interpretation doesn’t allow applying probability to objects above the atomic scale, unlike the Many Worlds Interpretation. Thus the probability in the Copenhagen Interpretation is epistemological(knowledge), the probability in the Many Worlds Interpretation is an attempt to make it ontological(existence). In either case, Merely saying that quantum mechanics is probabilistic may not show the full complexity of the science, the probabilities are in fact fundamentally different from what the student will usually encounter. It may require a completely different educational mindset.

3. The Multiplicity Of The Universe
The universe is ontologically a singular ubiquitous entity that comprises all of the known existence. The idea of the Universe, its unitary existence and expansion has been a very fundamental aspect of physics and education. The idea of either the universe splitting or all of us living in a superposition of several universes is not a concept which may be easily assimilated by the student. The human mind often tends to accept and assimilate the the world around them and try to connect whatever they learn academically with the world or life they are a part of [1]. In that case the acceptability or understanding of multiple universes is going to be difficult. The idea of multiple universes in Everett’s thesis is different from that of the parallel worlds, here the idea of a single universe is a superposition of multiple worlds. This is a paradigm shift in the idea of space and time, multiple worlds are a manifestation of multiple versions of space and time.

The big problem with the Many Worlds Interpretation is the very empirical emptiness of the theory. It does violate the very idea of scientific empiricism, of experimentally proven facts. Modern science does emphasize a very big importance on experimentally accepted facts. The proponents of the Many Worlds Interpretation have never come forward with a practical solution to experimentally prove the existence of many worlds. If there are indeed multiple or parallel worlds is quantum mechanical measurement a portal to open into a new world? If it is a portal, can we go into that world ?. These are natural questions which will arise, when we live in a world of experimentally accepted facts. But this issue is not limited to the Many Worlds Interpretation alone. Even in the collapsible wave function model of the Copenhagen Interpretation there is no experimental proof or a noteworthy nature or mechanism of a collapse happening. If some curious student may ask, why should it be a collapse, why not something else ?; the answer is
still an open to debate. Open questions in physics are usually at a higher level, it is unusual
that a foundational or fundamental subject like quantum mechanics, has open or unanswered
questions in its first principles itself.

4. Basic Philosophical Contradictions
The modern norm of education, which has its sound foundations on scientific empiricism, a
subject like quantum mechanics, whichever interpretation which one may choose, leads to
a challenge of making it acceptable to highly materialistically trained students. In a poll
conducted among students of quantum mechanics, it has been shown that the ‘realist’ and
‘agnostic’ interpretations were quite popular among the students [2]. The realist interpretation
is the argument in favor of incompleteness of quantum mechanics [17]. But the Copenhagen
Interpretation regards the quantum mechanical wave function to be complete which is the
state of the art interpretation. The agnostic interpretation is also popular which suggests that
understanding these open questions are beyond our ability. This can be justified in a scientific
way when we go with the fact that measurement or state of the art experimental set up prevents
us from understanding the exact mechanism of quantum mechanics [5]. But if one suggests that
they will forever remain beyond human ability and quantum mechanics only does not serves the
purpose for the need of experimental validity [14], that would be an opportunity missed to learn
more about the atomic world. After all, isn’t science a quest for the truth?. The current mindset
among many students verging on the ‘shut up and calculate’ paradigm might not lead to scientific
progress when they do not have a desire to pursue the truth or the unknown. One good reason
why students may have a proclivity towards the realist interpretation of quantum mechanics,
even going against the typical classical physics dogma, could be the principle of reductionism
which has deep roots in classical physics or our everyday lives. Reductionism is an idea that
every phenomenon in the universe can be deduced to a set of fundamental laws of physics [18].
But quantum mechanics can not be treated explicitly as a set of laws, but rather a statistical
and observational result which has resulted in a great but still, limited understanding of the
atomic world. This is primarily a contradiction with the usual world of physics and common
sense, on which the entire pedagogic curriculum may be based on.

The basis for accepting a theory or idea as scientifically correct is experimental proof and
falsifiability [19]. The collapsibility of the wave function, the exact process and mechanism is not
dealt with in the Copenhagen Interpretation. The uncertainty principle provides a barrier which
may hinder us in the falsifiability of such a proposition. The same non-falsifiability exists about
the Many Worlds Interpretation as well. If there are multiple worlds, ‘can we access them ?’ or
‘will there be any tangible proof for the existence of such multiple worlds?’ There must also be an
option of falsifiability. The absence of falsifiability raises an important question on the ontological
acceptability of such arguments, both in the case of Copenhagen Interpretation and the Many
Worlds Interpretation. Pedagogically, most of the things which we call as science are the ones we
accept on the basis of experiments and falsifiability. Quantum mechanics thus becomes a ‘weird’
science for the students. While quantum mechanics strongly bases it on the basis of experimental
results, the interpretations of the results may not be necessarily complete . Quantum mechanics
is a purely statistical result or a consequence of the inability of experiments or perhaps human
perception to understand what goes behind the scenes. In Spite of this, the subject forms one of
the main pillars of physics, and may have resulted in considerable productivity in recent times.
It is strange to note that it has so many philosophical or conceptual contradictions, which make
the subject at loggerheads with the largely classical physics based curriculum across the world.

5. Consciousness In Quantum Mechanics
What the Copenhagen and Many Worlds Interpretation fail to do is keep the ‘consciousness’
of the observer away from the result of the measurement. Consciousness has been in general
unacceptable in physics yet has found its way into quantum mechanics [20] [21]. In both the interpretations that we have considered, there is an implicit element of subjectivity. Science is an objective paradigm as the usual classical physics narrative goes. Measurement by the observer influencing the result of the observation is counter intuitive and brings subjectivity into physics. For the Copenhagen Interpretation the change in the quantum state is marked by the change registered in the consciousness of the observer [22]. While in the Many Worlds Interpretation the consciousness has an equally big role to play, because the consciousness of the observer along with his observation of a quantum mechanical system results in the branching of the universe. That is, every decision we make takes us into one version of reality, if we had taken a different decision, that would have embodied a completely different reality. In any case metaphysics or consciousness is not a subject which is a part of a typical physics student’s curriculum. The idea of consciousness can have two major consequences, it may either prompt the learner to seek refuge in realism or materialism or one may develop an impression that, since consciousness plays a role, it may be that there may be limitations in understanding what one can understand fully about the quantum or atomic world. Such a dogmatic approach could be counterproductive to science in general and quantum mechanics in specific. As a spin-off, consider the study of the intricacies of the nervous system which may provide clues to our capabilities or perhaps even limitations towards better understanding of quantum mechanics [23]. In order to critically analyze the role of consciousness in quantum mechanics it is important that an interdisciplinary approach inclusive of metaphysics or even neuroscience be made a part of the physics curriculum.

6. Special Relativity and the Many Worlds Interpretation
One of the biggest paradoxes in quantum mechanics is entanglement. A pair of photons or electrons can become entangled under certain conditions and their anti-correlation continues even if there is a large distance between them (see for example [24]). For simplicity let us take a pair of entangled electrons and measure them at two different ends, at one end if one measures the spin as ‘up’, the measurement at the other the result must be ‘down’ and vice versa. The phenomenon is a paradigm shift, which many believe violates the very idea of locality. Quantum entanglement has always had a tough coexistence with special relativity, where the possibility of superluminal signalling between entangled states as a medium for the anticorrelation has made special relativity at logger heads with quantum entanglement [25]. This incompatibility between special relativity and quantum mechanics with respect to entanglement, in addition to its non-local nature, has been a nagging worry for academia.

A narrative for quantum entanglement using the Many Worlds Interpretation, where the measurement of each entangled state constitutes a separate world [12]. It is further claimed that there is subluminal signalling between the entangled States which are local in their respective worlds [12]. But the idea of slower than light travel between the entangled states seems to be an ad-hoc inclusion in his argument. The Many Worlds Interpretation and special relativity have a considerable number of compatibility issues [8]. If there is signalling between entangled states in different worlds, this concept does not reconcile with special relativity as we know it. There will be separate space and times in each of those worlds and there is nothing in special relativity to suggest such an inter-world travel of light. Then there is a serious doubtfulness in the argument that the communication between the entangled states is subluminal. So even the Many Worlds Interpretation does not offer a respite from the tension between special relativity and entanglement, although it proposes a local model for entanglement.

7. Discussion and Conclusion
There is an essential need to take into consideration contradictions in the picture of studying quantum mechanics. The education system does not focus on studying other interpretations of quantum mechanics other than the Copenhagen Interpretation. From the study in [2], it is clear
that the primary focus of academia is on the Copenhagen Interpretation in spite of all its issues. The alternate Many Worlds Interpretation or other interpretations of quantum mechanics are not taught to the students. While there is active research in considering alternative interpretations of quantum mechanics, one must acknowledge the need for including other interpretations in the understanding of quantum mechanics. There is no importance given to understanding how our minds or the brain has an effect in understanding the limitations or capabilities of quantum mechanics. We believe the student must be exposed to all possible considerations in the study of quantum mechanics rather than the ‘shut up and calculate’ methodology, where the Copenhagen Interpretation is considered sacrosanct. Alternate philosophical viewpoints are also not provided to the students. This evinces a bottle neck in the systemic methodology of education in nurturing potential researchers towards a better understanding the microphysics of the atomic world. Historically quantum mechanics is replete with criticism, arguments and controversies, and hence an argumentative discussion of quantum mechanics in the classroom has been suggested [26].

The training of students in thought experiments may play a significant role in understanding and developing the subject much better. Both the Copenhagen Interpretation and the Many Worlds interpretations among a plethora of other ground breaking concepts in physics are a result of such thought experiments. The natural tendency of the student or any learner per say will be the natural commonsensical intuitive attempt at connection with the real world. Why should reality be different at the atomic level contradicting the world we live in ?. This tendency can lead to a lack of connection on part of the student with the subject. To understand this better let us consider a simple thought experiment. Imagine you are a quantum particle, under the Copenhagen Interpretation, you will live in a superposition of several states and depending upon the observer’s measurement, one of your states will be noted and associated with a probability (after the collapse of ‘your’ complete wave function). On the other hand in the Many Worlds Interpretation, you will have multiple versions of yourself living in multiple universes, and the measurer will measure you in any one of those possible worlds. The probability here will be a measure of the number of worlds in which you have carried out one particular action (that can be seen as a ‘state’ in quantum mechanical terms). In a very naive view this can seem very intuitive to the student, much more than the Copenhagen Interpretation. The Many Worlds Interpretation has not yet made its way into textbooks, but it is quickly catching up. It may redefine a lot of things in physics, if it is successful. We do not intend to make an attempt to compare the Copenhagen Interpretation or the Many Worlds Interpretation, in terms of success in veridacity or acceptability, instead suggest that the student must be exposed to both the interpretations. We would further suggest that quantum mechanics textbooks contain a chapter dedicated to the ‘Interpretations of Quantum Mechanics’, with considerable emphasis on other interpretations, philosophy, metaphysics and neuro-scientific aspects. Interdisciplinary learning, imaginative learning are the stepping stones in building a bridge in solving the problems at the microphysical scale.

References