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Abstract 
 

Object of this work is, to determine, if objects observed more distant are moving away faster 
than less distant ones. The escape velocity Hr is defined by the HUBBLE-Parameter H, locally 
H0, which is proportional to the reciprocal of the age T. The calculations are based on the 
model published in viXra:1310.0189. The idea stems from Cornelius LANCZOS, outlined at a 
lecture on the occasion of the Einstein-Symposium 1965 in Berlin. The model defines the 
expansion of the universe as a consequence of the existence of a metric wave field. That field 
also should be the reason for all relativistic effects, both SR and GR. In the context of this 
work the propagation function of that wave field is determined. Its phase rate is equal to the 
reciprocal of PLANCK's smallest increment r0. Even the other PLANCK-units set up the basis of 
the model being functions of space and time.With it, the model leads to a quantization of the 
universe into single line-elements with the size of r0. Thus, a kind of finite-element-method 
becomes possible, at which point the single elements are explicitly defined by the wave 
function. As per definition, objects in the free fall, aren't moving either with respect to the 
metrics and are carried-with during expansion. With the help of the propagation function it's 
possible to calculate the HUBBLE-Parameter H even for greater distances. Furthermore the 
entropy of the universe as a whole is determined considering the special topology of the 
universe. German version available in viXra. „Expansion, Topologie und Entropie‖ 
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1. Preamble 
 

 
Object of this work is, to determine, if objects observed more distant than 0.01R (world 

radius) are moving away faster than less distant ones. Mostly astronomers and cosmologists 
are interested in that question. The escape velocity Hr is just defined by the HUBBLE-
Parameter H, locally H0, which is proportional to the reciprocal of the age T. Hence it‘s not 
about a constant either. Therefore I‘m intentionally using the word parameter. Furthermore 
should be examined, if it‘s possible, to calculate the entropy of the universe as a whole, and in 
which regard we have to consider its special topology (4D). 

 
The calculations are based on the model published in [1] and [10]. The idea stems from 

Cornelius LANCZOS [2], outlined at a lecture on the occasion of the Einstein-Symposium 1965 
in Berlin. This lecture is also prefixed to [1]. The model defines the expansion of the universe 
as a consequence of the existence of a four-legged wave field. That field also should be the 
reason for all relativistic effects, both SR and GR. The temporal function of that field is based 
on the Hankel function, consisting of the sum of two Bessel functions (J0 and Y0). The special 
properties of the Bessel functions lead to an increase of wave length, defined by the distance 
between two zero-crossings. The propagation velocity cM of the field depends on space and 
time being in the range between 1.09∙10−22ms−1 (nowadays) at the local observer up to 
0.851661c at the particle horizon.  

 
That involves, that the wave length λ0 and the phase rate β0 of the propagation function are 
having different values. Its phase rate is equal to the reciprocal of PLANCK's smallest 
increment r0. Even the other PLANCK-units set up the basis of the model being functions of 
space and time. In the distance r0 in the form of a cubic face-centered space-lattice (fc) 
particular vortices are collocated. LANCZOS called them „MINKOWSKIan line elements, which 
are only approximately MINKOWSKIan―, here abbreviated as MLE. Thus it‘s rather about a 
physical object and not about that, the MINKOWSKIan line element is actually defined. I 
nominated the whole wave field as metric wave field (metrics). 

 
With it, the model leads to a quantization of the universe into single line-elements with the 

size of r0. Thus, a kind of finite-element-method becomes possible, at which point the single 
elements are explicitly defined by the wave function. The wave length λ0 and r0 are increasing 
over time. As per definition, objects in the free fall, aren't moving either with respect to the 
metrics and are carried-with during expansion. With the help of the propagation function it's 
possible to calculate the HUBBLE-Parameter H even for greater distances. Farther away we 
just observe a greater local H0, because H was greater in the old days. Summarized, with 
greater distance even a greater H should turn out, which the calculation confirms. 
 

Because the entropy of wave fields can be calculated, it will be determined too. But we 
have to consider special circumstances at this point. It allows a foresight into the far future of 
our universe. Finally, the work deals with the different kinds of distance vectors and the 
question is answered, why vectors greater than cT are possible.  

 
A special feature of the model is, that the so called subspace, that‘s the space, the metric 

wave field propagates in, disposes of a third property among µ0 and ε0. That‘s the specific 
conductivity κ0 in the size of 1.23879∙1093

 Sm–1, the cause of expansion. Whether and how it 
doesn‘t lead to contradictions with the propagation of „normal― EM-waves, is not subject of 
the work on hand. According to the model they propagate as overlaid interferences of the 
metric wave field. See [1] for more detailed information. There you will find even a special 
section dedicated to the unexpected results of the SN-1a-Cosmology-Experiment. 



4 
 

 

2. Fundamentals and hypotheses 
 
Before we get to the actual calculation, it‘s necessary, to define certain base items of the 

model, mostly without derivation. You read about this in [10]. The PLANCK-units, 
furthermore the base items of the theoretical electro-technics play a very special role in this 
connection. For this reason, as usual there, I‘m using the letter j instead of i or  as usual in 
mathematics. 

 
 

2.1. Definition of base items 
 

At first the base items of the theoretical electro-technics. They apply independently from 
the model (1). Beneath (2) the most important PLANCK-units are shown. The introduction of 
the specific conductivity of the vacuum turns out to be the missing link among each other and 
even to other values. 
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One single line-element can be specified by the model of a lossy Schwingkreises mit 

oscillating circuit. One special property of that model only is, that the Q-factor of the circuit 
equals the phase angle 20t of the Bessel function. It applies Q0 = 20t. The value 0 
corresponds to the PLANCK-frequency in this connection. 
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
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The numeric value of Q0 according to table 1 is about 7.5419∙1060 and depends on the real 
value of H0. Except for the quantities of subspace μ0, ε0, κ0 and c all other ones are functions 
of space, time and even of the velocity v with respect to the metric wave field. The reason is, 
that the spatiotemporal function of the metric wave field should emulate the relativistic 
effects. The GR-dependencies aren‘t furthermore considered here.  
 
That makes the PLANCK units depend on the frame of reference, which is even defined by 
them. And all of them are bound by the phase angle Q0. But the variations mostly cancel each 
other creating the impression, that the values are constant. Reference-frame-dependent values 
are marked with a swung dash e.g. Q~0 being constants by character.  
 
Still important are the values with a phase angle Q1 = 1. They describe the conditions directly 
at the particle horizon. They are constants too, because they are defined only by quantities of 
subspace. Thus, they are mostly qualified for reference-frame-independent conversions of 
certain values, so-called couplings. An example is the conversion of the magnetic flux φ1 to 
the magnetic field strength H1 = φ1/(μ0r1

2) as basis of a temporal function containing 
reference-frame-dependent elements (r0). r1 would be the so-called coupling-length then. 

L0 = µ0 r0 C0 = ε0 r0 
R0 = 1/(κ0 r0) 
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Expression (8) shows the relations to the PLANCK-units and to the values of the universe as a 
whole. 

 

1
0 0

1r
Z 1 0 0M  0 0

1 1
0 0 1

1 1t
2 2t

     (6) 
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1 1 0 1 1 0 1 0Z q Z Q                  (8) 
 

The action quantum ħ1 and ħ̂ 1 is not a quantity of subspace, but the initial action, our universe 
„got― in the early beginning. That value is the only one „set-screw―, with which „one― could 
exert influence on the future appearance of the universe. All other values are „hard-wired― 
with Q0 depending on space and time. There is no „fine-tuning― either. With expression (2) 
right-hand and (8) it‘s about an effective value, i.e. ħ, φ0 and q0 are temporal functions too. 
For section 3.2.1. still the definition of NEWTON‗s gravitational constant: 

 
3 3

2 2 0

0 0 0 0 1 0

rc 2c t RG c c
H M m 

 (868 [10]) 

2.2. Temporal function 
 
We get the exact temporal function for the magnetic flux φ0 by solving the differential 

equation (9). It is based on a lossy oscillating circuit with expansion, i.e. the single 
components R0, L0 and C0 are changing with increasing r0. Expression (9) mainly differs from 
a normal oscillating circuit without expansion, with harmonic solution by the factor before φ̇0, 
1 with expansion, ½ without.  

0
0 0 0

0

1t 0
2

           (9) 

 
In contrast to the expression without expansion there is no drop-down in the resonance 
frequency ω0 with (9), normally caused by the influence of the loss-resistance R0. But we 
obtain another as solution: 

0 0 1y a F (;1; Bx)    with   0
0 i

0

1ˆa 2 B x t
2

/   (10) 

According to [4] applies 
 

1
2b 1

0 1 b 1F (;b;x) (b)( jx) J ( j2x )           Hypergeometric function 0F1     (11) 
 

Jn is the Bessel function of nth order, thus 
 

0
0 1 0F ( ;1; Bx) (1)( jBx) J ( 4Bx )              (12) 

 
0 0y a J ( 4Bx)                     (13) 

 

0
0 0 0

0

2 ta J    =   a0 J0 (Q0 )            (14) 

 
Since it‘s about a differential equation of 2nd order and the grade of the Bessel function is 
integer, the general solution is:  

 
0 i 1 0 0 2 0 0ˆ (c J (2 t) c Y (2 t))        (15) 

 

3

0
0 0

c
G H
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The factors c1 and c2 may be imaginary or complex even here. According to [5] it‘s more 
favourable, if we consider both Hankel functions: 
 

(1)
0 0 0H (x) J (x) Y (x)     and        (16) 

 
(2)
0 0 0H (x) J (x) Y (x)            (17) 

 
as linearly independent solutions composing the general solution 

 
(1) (2)

1 0 2 0y(x) c H (x) c H (x)         (18) 
 

with it. Then, the general solution (15) reads then: 
 

(1) (2 )
0 i 0 0 0 0ˆ (H (2 t) H (2 t))          (19) 

 
For our further examinations, we set c1 and c2 in (19) equal to 1 for the moment. Then we get 
as specific solution (20) and for approximation, envelope curve and effective value: 
 

(1)
0 i 0 0 i 0 0ˆ ˆJ (2 t) Re(H (2 t))        0

0 i 0
0

2 tˆ J        (20) 

0 0
0

2 1 cos 2 t
42 t

    Approximation   (21) 

 
i

0
0
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2 t

         Envelope curve  (22) 

 
1
2 11

0 0 0 0 0
0

0 0  q qQ Q
2 t

    Effective value   (23) 

 
The exact course of 0 (20), as well as of the approximate function of the envelope curve (21) 
and of the effective value (22) is shown in figure 1. Also depicted are the original Bessel 
functions, which you can't see however, because they are completely covered by the 
approximation. 
 

 
Figure 1  
Course of magnetic flux as well as of approximation- 
and envelope-functions across a greater time period 
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Thus, with greater arguments, no differences are statable, neither in the amplitude, nor in the 
phase. Most important for the quality of the approximation is the course in the striking 
distance of t = 0. It is shown in figure 2 and it turns out to be very good until the particle 
horizon at Q0 = 1. All data so far are summarized. See [1] for details and the exact derivation. 
 

 
 

Figure 2  
Course of flux as well as of the approximate- 
and envelope-functions nearby the singularity 
 

 
 
 
2.3. Propagation function 
 
2.3.1. Exact solution 
 
2.3.1.1. Temporal function 

 
In contrast to MAXWELL, which used the first term of the harmonic solution (108 [1]) ejt 

as ansatz, we now choose the first term of expression (19), obtained as an independent 
solution of the differential equation (9). It‘s about the temporal function of the magnetic flux 
φ0 there, relating to one single MLE, from which the charge q0 can be derived. For the 
propagation function however we need the magnetic and electric field strength H and E. The 
relation: 

 

A

dAB    with  B = µ0 H            leads to   0
2

0 0

ˆ
r

H    (24) 

 
Because of r0 indeed the right-hand expression depends on the frame of reference. Moreover 
we are rather looking for the starting value at T = 0. The temporal function is just known. 
Hence, we must carry out a reference-frame-independent coupling only. The coupling-length 
rk is not arbitrary in this case. Because the imaginary part of the Hankel function is coming 
from infinity, the starting value 0 is defined at the point 20t = Q0 =1. The coupling-length at 
this point is r1 as already predicted more above. This value is denominated as H1 resp. E1. 
With respect to the fact, that (23) is an effective value, we obtain the following relations: 
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2 2
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2
r1H       (25) 

 
 E  =  E1 (20t)   

 H  =  H1 (20t)    (26) 
 

Here again, the real part of the vector corresponds to an orientation in y-, the imaginary one 
in z-direction, x is the poropagation direction. As already stated, there is an analogy between 
the exponential function ej2t and the Hankel function. Both are transcendent complex 
functions and periodic resp. almost periodic. Of course, there is also a solution of the 
MAXWELL equations for (26). The detailed derivation can be read in [1] once again. Important 
is the complex wave propagation velocity c and the field wave impedance ZF: 

 

 

2(1)0
2 0
(1)
0 0

c 1c  
j t H (2 t)1

H (2 t)

 with      

(1)
2 0
(1)
0 0

H (2 t)Θ
H (2 t)
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0
F 2

0

Z 1Z
j t 1 Θ

   (28) 

 
One can see, the propagation velocity tends to zero for greater t. The same applies even to 

the field wave impedance. We have to do with a quasi-stationary wave field (standing wave), 
which fulfils the requirements, made on a metrics, very well. The propagation velocity is 
complex again. A split into real- and imaginary part proves to be quite difficult, but it‘s 
mathematically possible. The solution for c reads:  
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 RhoQ = 2/#/Abs[Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]] & 

            (30) 

0 2

1 1arctanθ arg
2 21 Θ  

PhiQ = Arg[1/Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]] –π/2 & 

 
An altogether quite complex expression turns out, that can still be simplified someway 
however (31). A starts at +∞ converging to –1. The course resembles the function 1/A2–1 
approximately, which cannot be used well as approximation however. B has a course like 
1/B2 and is converging to zero. The same is applied even to then. The bracketed expression 
converges to 1 with it. 1/ is the value-function converging to ½√ . 
 

1
2j (arctanθ π)

0 0 0 0

2 c 1 1 2 cc sin arctanθ jsin arctanθ e
ρ 2 t 2 2 ρ 2 t

    (31) 

 
Unfortunately (31) cannot be transformed into an expression similar to (179 [1]) with area-
functions, so that the ambiguity of the arctan-function leads to a partially wrong result. We 
should better calculate with the following substitution therefore: 

                                                 
1 For programming reasons, expression (29) with AB turns out a slightly different result than (27). In order to maximize 

accuracy, only function (27) is used to the calculation of values and graphics. 

H 0
(1) H 0

(1)

(29) 
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2 2arctanθ arg 1 A B j2AB                  1 πarg c arccot θ

2 4
  (32) 

 
While the real part of c is defined as the velocity in propagation direction, the imaginary 

part can be interpreted as a velocity rectangular thereto. The appearance of an imaginary part 
in c means also that there is an attenuation anywhere (refer to figure 4). A numerical handling 
of (27) even can be processed with »Mathematica« resulting in the course figured in figure 3. 
Since the Hankel functions, with larger arguments, can be expressed well by other analytic 
functions, we will declare approximate solutions later on. 

 

 
Figure 3 
Propagation-velocity 
in dependence on time (logarithmic time-scale) 
 

 
With it, the world-radius (wave-front) of this model doesn‘t expand with c but with 

0.851661c only. That figures no violation of the SRT anyway. This means that wave sections 
that are emitted later virtually overtake the wave front. Since the ratio of  real and imaginary 
part is different, it does not happen on the same path – rather, the wave fronts cross each 
other. However, a contradiction arises to the usual definition R/2=cT (Radiation Universe), 
which will be solved later on. 
 
 
 
2.3.1.2. Propagation rate 
 

To specify the propagation-function we need both, the temporal function and the 
propagation rate γ = α+jβ. The normal form of the propagation function is given by: 

 

E  =  E e
j t x

c









                 =      E            =      E 



ej t  jx      (33) 
 
In contrast to (33) the argument in the expansion case is real. Strictly speaking, it's not the 
Hankel function but the modified Hankel function M0

(2)= I0(z) –j K0(z) what's the equivalent to 
the exponential function. It applies I0(z) = J0(jz) but only for purely imaginary arguments. 
With complex arguments, the real part cannot be placed as a factor in front of the Hankel 
function in the form of ea×ejb, as usual with exponential functions, since the power laws don't 
apply to Hankel functions. This is only possible for larger arguments z. However, the 
modified Hankel function is generally not used. Therefore, we use for the base the ―ordinary‖ 
Hankel function adapting the propagation-function accordingly. To avoid contra-dictions with 

e jtx
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the classic definition of propagation rate – real-part equals the attenuation rate, imaginary-
part equals the phase-rate – the propagation-function should read as follows then 
(analogously for  H— 

):  

E  =  E 
(1)
0 0

xH 2 t
c

   =     E 
(1)
0 0H (2 t j x)      (34) 

 
This is not quite the classic expression for a propagation-function. Attention should be paid to 
the factor 2 which can be assigned both to the frequency, as well as the time-constant. With 
the definition of propagation rate = +j it obviously belongs to the frequency since  
depends on phase velocity dx/dt, but not on the half of dx/(2dt). By equating both arguments 
of (34) one gets then: 
 



    
20

c
     =        



j0Z0  12         (35) 

 
From (31) the reciprocal of c can be determined very easily. Then we get for : 

 







 


 θarctan

2
1sin jθarctan

2
1 cos

c
t

c
1

 
00

        (36) 

 

  =   + j   =     – 20 /c    =   





 

 θarctan
2
1sin jθarctan

2
1 cos

c
t2

 
0

2
0   (37) 

 

  =  





  θarctan

2
1sin jθarctan

2
1 cosZ  000       (38) 

 

 
Figure 4 

Phase-rate and attenuation rate 
in dependence on time (linear scale) 

 
 
With accurate contemplation one recognizes that and , evaluated by its action, are 

exchanged in fact (= phase-rate, = attenuation rate). This is caused thereby that a rotation 
of about 90° (j) occurs during propagation (figure 7). x turns into y and y into –x. The atten-
uation , starting at the point of time t=0, starting off infinity, is decreasing exponentially. To 
the present point of time, one can say that there is basically no attenuation anyway. This 
doesn't apply however considering cosmologic time periods. 
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At the point of time 0.897 t1 (Q = 0.947), the function  has a zero-passage. This supplies 
the somewhat particular course in logarithmic presentation (figure 5). It's about a phase-jump 
of 180° in this case. From the point of time 100 t1 on we are able to declare, referring to 
figure 4, the following approximation: 
 

 
Figure 5 
Phase rate and attenuation rate 
in dependence on time (logarithmic) 
 

040 0
0

(1 j) Z
2 t

   0 0

0

Z(1 j)
2 t

   (39) 

 
These relationships can be derived as well graphically from figure 4, as explicitly using (35) 
by application of (40). However, it's necessary to multiply (35) with j, in order to take 
account of the 90° turning (Figure 7). Then, to the approximation  = 20/c is applied. Phase 
rate and attenuation rate are the same from 100 t1 on approximately. This is the behaviour of 
an ideal conductor.  
 
For we have already found an approximation, still remain c and ZF. In Figure 3 we have 
already figured the course of c. To the graphic determination of an approximation, we require 
the logarithmic representation however (Figure 6). To be considered is the fact, that the 
imaginary part is actually negative. 
 

 
Figure 6 
Propagation-velocity in dependence  
on time (double logarithmic) 
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2 t 2 t

         (1.03807·10–22 ms–1) (41) 
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2.3.2. Expansion curve 

 
At the world-radius, the universe expands with the maximum velocity of  0.851661c, in the 

inside with a velocity decreasing more and more. Since the wave count in the interior of a 
sphere with defined radius r (c,t) is decreasing, the deficit is balanced by an increase of 
wavelength. Outside the wave count ascends continuously due to propagation. 

 

 
Figure 7       
Track-curve near the singularity 
in dependence on time 

 
For greater t the expansion of the wavefront proceeds nearly rectilinear with an angle of 

−45° proportionally t3/4. But the behaviour looks somewhat different near the singularity. In 
The track-course of a single sector of wave front near the singularity is shown in figure 7. We 
see a kind of parabola, with greater t a hyperbola. And there is a rotation in propagation 
direction about an angle of 90°.  

 
 
 

2.3.3. Approximative solution 
 
Now we want to set-up an approximation for the propagation function. The normal form is 

E=Ê ejωt−γx with γ = α+jβ. But with the exact solution (39) there is a case on hand, with which 
 and  contain both damping- and phase-information and the wave function isn‘t harmonic 
either. That way we aren‘t able to form a reasonable propagation function at all.  
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In the case t » t1 phase- and attenuation rate are of the same size. Thus, the model behaves 
similar to a metal.There α does not stand for a damping, but for a rotation, namely as long as, 
with vertical incidence, a value of π is reached so that the wave exits the metal in the opposite 
direction after a minimal intrusion. The depth of penetration depends on the material proper-
ties, the wave length and the angle of incidence. In case of this model the material properties 
aren‗t constant either, γ decreases with t and x. Hence it suffices to a rotation of  90° only and 
the wave remains in the medium (vacuum). In any case, there is a rotation too.  

 
To cope with it, we do a rotation of the coordinate system about π/4. That corresponds to a 
Multiplikation with √  and we get a purely imaginary solution. So becomes α=0 and γ=jβ and 
the exponentially related attenuation vanishes. Indeed, we still have to multiply the result 
with √  and to replace x by r. Despite α=0 the amplitudes of E and H are decreasing 
continuously. That‘s caused by the Hankel function alone, resp. by the radical expression in 
(43).  
 
With it amplitude and phase are firmly interlinked (minimum phase system). Now the 
rotation angle in space is equal to θ+π/4. But a separation of phase- and damping-information 
isn‗t possible yet. But we can work with very high precision using the approximation 
equations in this case. To the general Hankel function H 0

(1)(ωt−βx) the following 
approximation applies (analogously for H): 

 
(1) j ( t x)

4
0

2ˆ ˆH ( t x) e
( t x)

E E E      (43) 

 
Instead of γx only the product βx with the phase rate appears in the exponent, since the 
amplitude rate is already emulated by the radical expression. With t»0 the angle π/4 can be 
omitted. After rotation and transition xr and ωω0 turns out: 

 
0 0(1) j (2 t 2 r )1 4

0 0 0
0 0

2ˆ H (2 t 2 r) e
2 t 2 r

EE E     (44)
 

 
E1 is the peak value of E with Q0=1. Indeed are both ω = 2ω0 and β = 2 β0 (with double 
frequency even the phase rate must be doubled) no constants at all. That means, they depend 
on t and r at the same time, limiting the manageability of the approximation very much. You 
can see that also with the phase velocity vph. It is defined in the following manner: 

 

     

 

   c2
tω2

c2
β
ω2v

0

0
ph         for t»0   (45) 

 
Thus, the phase velocity is equal to the double absolute value of propagation velocity. That‘s 
caused by the factor 2, since phasing with double frequency propagates with double velocity 
too. For interest, also the group velocity should be stated here: 

 

      c2
ωdβd

1v
0

gr              for t»0   (46) 

 
Except for the algebraic sign both results are equal. That means, the propagation takes place 
free from any bias. Further to the approximation. With (22) in section 2.2. we had already 
found a very good approximation, almost exact, for the same temporal function.s 

 
0 0 0 0j (2 t 2 x) j2( t r )

0 0 0 0

2 e eˆ 2
2 t 2 x 2 t 2 r1E E E    with     0 0

0
0

Z
2 t

   (47) 

 
Now, expression (47) enables to define an equivalent- α = α0 and, with it, even an equivalent-
 γ0 = α0 + j2β0, in order to get it up to the normal form for propagation functions.  

1
1 2

0 1

H
r
1 1

1 2 2
0 1 0 0 1

q 1E
r Z r
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0 0j2 t r2 e1E E          with    0 0 0 0
0 0

0 0

2 Z 2 Z1 ln 2 t r j
2r 2 t 2 t

      (48)
 

 
That‘s already a big step forward. Unfortunately, both 0 and  depend on time. It‘s not 

critical for 20t, because it‘s multiplied by t anyway. Else with , it should depend on r only. 
To the substitution of t in (49ff) we firstly put (41) left-hand into t = r/|c|. The real propagation 
velocity becomes effective here and not vph or vgr. Then we rearrange after t. Putting into 
(47) right-hand we get: 

 

04

0

2 trt
c

           
4

43 4 20
0 0 04

0

2 trt 2r
c        

   (49) 

 

12 12
0 0

1
8

8 12
0Z

3
08
3
0

4 2
0

1
2r 0 0

8 8
0 0
4 4

Z
2 r

        30 2
1

1
2r r

   
 (50) 

 
With it,we obtain for  and the product r the following expressions: 

 
2 1
3 3

0 0 2
1 1

1 2r 2ln 2 t j
2r r r r

  for t»0    (51) 

 
2 2
3 3

0 0
1 1

1 2r 2rr ln 2 t j
2 r r

   for t»0    (52) 

 
Last but not least the time t can be completely eleminated. The value γ is proportional to  

r –1/3 and, even more important, the product γr is proportional to r2/3. Unfortunately, as 
already said, we can explicitely state γ(r) by approximation only. With the exact function 
(38) a separation, especially from t is impossible. But generally speaking, an exact solution is 
not required at all, since the approximation yields very good results until a striking distance  
to the particle horizon at Q0=1, see figure 2. Therefore, we will not follow up that matter at 
this point. 

 
All hitherto stated approximations are based on the 4D-expansion-centre {r1,r1,r1,t1}. But it‗s 
more practicable to find a function, related to another centre. Most suitable seems to be the  
point, where we are, the „point being―. At first we substitute the time according to tT~+t. 
The swung dash stands for the initial value at the point t=0 (nowadays) describing an inertial 
system. Hence it‘s about a constant. Because of T~ = t1Q~0

2 we are able to factor out Q~0. The 
direction of time doesn‘t change. To the temporal part applies: 

 
1
2

0 0
t2 t Q 1
T


        

      (53) 

 
For the spatial part β0 we build up the inertial system once again using the substitution 

r1R~ . Because of R~= r1Q~0
2, as well as r̃  Q~0 = −r, now we are measuring from the other end, we 

can write for 2β0:  
           Exactly → 

1 1
3 3

0 0 0 22 2
0 1 0

2 22 Q Q
rRrQ r Q

 
           

2 2
0 3 3

0 0 0
0

2r r 2r 12 r Q Q
R R Q
 
    (54) 

 
Actually I should have to write r̃  instead of r. But because it‘s the argument of the function the 
tilde has been omitted. The right-hand expression considers the fact, that r0 as smallest 
increment never can be underrun. The value α0 is definitely determined by the envelope curve 
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tilde has been omitted. The right-hand expression considers the fact, that r0 as smallest 
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of the Hankel function, else it would be equal to zero. With it, we obtain for  and the 
product r:  

2 11
3 32

0 0 0 2

1 t 2r 2ln Q 1 jQ
2r T R rR

 
            (55) 

2 21
3 32

0 0 0
1 t 2r 2rr ln Q 1 jQ
2 T R R

 
        (56) 

 
With r0 we have already found one elementary length. But LANCZOS speaks about another 

one [1]. That‘s the wave length of the metric wave field λ0=2/. The approximation of λ0 
must be divided by 2 once again, due to the double phase velocity. Hence λ0=2/ applies. 
To the comparison the expression for r0 once again:  

0 0
0 0 0 0

2 1cosec arctanθ(2 t)
ρ (2 t) Z 2

      (57) 

 
040 0

0 0 0 0 0

2 t 2 t
Z Z

   for ω0t»0   (58) 

 
0 0

0
0 0 0 0 0 0 0

2 t 2 t1 2tr
Z Z      

      (59) 

 
Though λ0 is smaller than r0 and not identical to HEISENBERG‗s elementary length with it. 

λ0 now is in the range of 10–68m. Thus, LANCZOS was wrong in that point. But it only has been 
a guess on his part. In fact, it‘s about the wave length of the wave function forming the metric 
lattice itself. Expression (57) until (59) only represent the temporal functions. Then, the  
functions of time and space read as follows.  

0 0 0
0 0 0 0 0

2 1cosec arctanθ(2 t r)
ρ (2 t r) Z 2

       (60) 

 
1
2

21 1
32 2

0 0 0 0 0
0 0

t 2rr Q 1 2 t 2 r
T R Z


      (61) 

 
21

0 032
0 0

0 0

2 t 2 rt 2rr dr r 1
T R Z

          (62) 

 
The wave length λ0 of the metrics is irrelevant for the further contemplations of this work, 
only β0 matters. The double-bracketed expression in (62) is called Navigational Gradient in 
future. It is the essential expression I was looking for. 
 
We only know the local age T, which results from the local HUBBLE-parameter (249). It quasi 
represents the temporal distance to the expansion centre. But we are able to determine the 
spatial distance to the world radius R. This forms a spatial singularity (event horizon) with it. 
The value arises from the ansatz (250): 
 

0
0 0

(H) 12 t r with r 0 T
H 2H

     (63) 
 

0 0 0

0

(H) rR 2ct
H H

   with  2ω0t = 0           (64) 
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H c 1Z
G r

         (65) 
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Hence, the value of β0=1/r0 even can be obtained from (39), in that we replace time with the 
HUBBLE-parameter H0. To R applies:   

0

26 101.22471·10 m 1.2946·10cR Ly 3.96896 Gpc
H

  (66) 

0

26 101.34803·10 m 1.4249·10cR Ly 4.36862 Gpc
H

  (67) 

 
That‘s about 13 billion light years for H0 = 71.9963 kms–1Mpc–1. The result (67) for the 
alternative value of H0 = 68.6241 kms–1Mpc–1 has been calculated with the help of ([9] 1049) 
and the CODATA2018-values. The local age has the character of a time-constant and amounts 
only to the half, namely 6.6/7.1 billion years. The world radius (great circle) is equal to cT. 
More extended time-like vectors up to 2cT are possible due to expansion and propagation of 
the metric wave field. Full particulars in the next sections. 

 
The wave field examined here, forms the metrics of the universe (empty space), the real 

(nearly) MINKOVSKIan line element. We can already declare it here. Further contemplations 
are done in section 7.2.1. of [10]. We act on ([10] 0.23) in it‘s differential form in that we 
replace the otherwise usual light speed c with the propagation velocity c of the metric wave 
field:  

ds2 = dx2+ dy2+ dz2 – c2dt2    or    (68)  
ds2 = dr2+ r2(d2+ sin2  d2) – c2dt2       (69) 

 
Here immediately becomes clear, which physical meaning is assigned to the MLE. For the 
exact formula, we usefully apply polar-coordinates.. We now substitute the exact expression 
for c (r=0) obtaining:  

2 2
2 2 2 2 2 2 2
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c dt 1ds dr r (d sin d ) (sin arctanθ(2 t
4 t (
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r)2 t 2

 (70) 
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2 2 2 2 2 2
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4 t (2
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(71) 
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1 jθ(2 tc dtds dr r (d sin d )
4 t (2 t 1 jθ (2 t
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r) r)

           (72) 

 
2 2

2 2 2 2 2 2
22 2

0
2

c dtds dr r (d sin d )
(4 ) Bt 1 A ))(1 j )( ( θ( )

      (73) 

 
2 2 2 2 2 2 0

2

2drds dr r (d sin d )
1 ) jB( ( ))(A

  because of      ṙ0dt = dr0    (74) 

 
with  = 20t – r. Interesting is the algebraic sign-reversal. The cone turns into a ball. The 
previous light cone however continues to be applied to overlaid signals always propagating 
with c. It adds up the local propagation-velocity (not expansion-velocity!). A() and B() 
determine the rotation near the singularity. The reciprocal of the expression in the 
denominator shows a behaviour like t1/2. Now still the approximation: 
 

2 2 2 2 2 2 21
02dr r (dθ sinds θd ) ( )dr       (75) 

 
2 2 2 2 2 2 2

0 0dr r (dθ sin θd ) dds Q r        (76) 
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Hence, the value of β0=1/r0 even can be obtained from (39), in that we replace time with the 
HUBBLE-parameter H0. To R applies:   

0

26 101.22471·10 m 1.2946·10cR Ly 3.96896 Gpc
H

  (66) 

0

26 101.34803·10 m 1.4249·10cR Ly 4.36862 Gpc
H

  (67) 

 
That‘s about 13 billion light years for H0 = 71.9963 kms–1Mpc–1. The result (67) for the 
alternative value of H0 = 68.6241 kms–1Mpc–1 has been calculated with the help of ([9] 1049) 
and the CODATA2018-values. The local age has the character of a time-constant and amounts 
only to the half, namely 6.6/7.1 billion years. The world radius (great circle) is equal to cT. 
More extended time-like vectors up to 2cT are possible due to expansion and propagation of 
the metric wave field. Full particulars in the next sections. 

 
The wave field examined here, forms the metrics of the universe (empty space), the real 

(nearly) MINKOVSKIan line element. We can already declare it here. Further contemplations 
are done in section 7.2.1. of [10]. We act on ([10] 0.23) in it‘s differential form in that we 
replace the otherwise usual light speed c with the propagation velocity c of the metric wave 
field:  

ds2 = dx2+ dy2+ dz2 – c2dt2    or    (68)  
ds2 = dr2+ r2(d2+ sin2  d2) – c2dt2       (69) 

 
Here immediately becomes clear, which physical meaning is assigned to the MLE. For the 
exact formula, we usefully apply polar-coordinates.. We now substitute the exact expression 
for c (r=0) obtaining:  

2 2
2 2 2 2 2 2 2

02
0

2 2
0 0

c dt 1ds dr r (d sin d ) (sin arctanθ(2 t
4 t (

r) jcos )
r)2 t 2

 (70) 
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0
2

c dtds dr r (d sin d ) (cosarctanθ(2 t
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2 2

2 2 2 2 2 2
22 2

0
2

c dtds dr r (d sin d )
(4 ) Bt 1 A ))(1 j )( ( θ( )

      (73) 

 
2 2 2 2 2 2 0

2

2drds dr r (d sin d )
1 ) jB( ( ))(A

  because of      ṙ0dt = dr0    (74) 

 
with  = 20t – r. Interesting is the algebraic sign-reversal. The cone turns into a ball. The 
previous light cone however continues to be applied to overlaid signals always propagating 
with c. It adds up the local propagation-velocity (not expansion-velocity!). A() and B() 
determine the rotation near the singularity. The reciprocal of the expression in the 
denominator shows a behaviour like t1/2. Now still the approximation: 
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3. Expansion, topology and entropy 
 
 
In section 2.3.3. we found with (62) an expression for the temporal and spatial dependence 

of PLANCK's elementary-length r0, figuring at least locally a scale for the proportions 
(distance). On this occasion I refer once again to the fact that this is also applied to the size of 
material bodies, which is changing in the same measure as r0. Otherwise we could not 
observe any expansion either. 
 

Just particularly is this a matter of the mutual distances of material bodies. These follow a 
function, which differ with the considered distance, since quantity and expansion-velocity of 
the PLANCK elementary-length is changing with ascending distance to the coordinate-origin. 
But only distances with their starting-point in the origin should will be considered here. Of 
considerable importance for deeper contemplations is even the number of line elements 
(MLEs) along an imagined line with the length r (wave count vector Λ).  

 
We distinguish two cases in this connection: Wave count vector with constant r and r with 
constant wave count vector. More final case to the best fits the existing circumstances, since 
we can assume that no point is distinguished to other points in the cosmos. The average 
relative velocity against the metrics at the coordinate-origin is equal to zero at free fall. This 
should be so everywhere then. With it, the expansion of the universe can be traced back to the 
expansion of the metrics alone. This corresponds to the case of a constant wave count vector. 
 

3.1. Expansion 
 
3.1.1. Constant distance 

 
Because of the real lattice constant r0 the wave count vector Λ for smaller distances r is 

defined in the following manner: 
 

0

r
r rΛ e              (78) 

 
er is the unit-vector. In the following, we consider only the figure  however. For larger 
distances, we have to replace  by d and r by dr using the corresponding expression (62) for 
r0: 
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320
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 with         (79) 

To the solution we replace as follows (it applies ̃ ̃⁄ ̃ ): 
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t 
t
˜ T 

 *) arcoth for | r′ | >  a 
    (behind the particle horizon) 
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Figure 8      
Wave count vector as function 
of distance r and t 

 
The wave count Λ follows the blue function depicted in figure 8. Approaching to half the 

world radius (R/2), it seems to be, that Λ strives towards infinity. If we want to define a finite 
wave count 0, we take only a certain part of the world radius to calculate the wave count for 
it. Because of R/(2r0) = Q0/2 we opt for that value. The value amounts to 0.273965 R, that is 
54.79% of the distance to the particle horizon (cT). In total however an infinite value will not 
be reached, since r0 becomes smaller and smaller going to r1. Out there, at Q=1 is the back of 
beyond, we reached the particle horizon.  

 
At first I guessed the value to be Λ1=Q0

2, since even R=r1Q0
2 applies. But that‘s not the 

case. The little more ambitious calculation for r =  R/2−r1  1−10−120 under application of 
the power series for (1−x)⅓, multiple substitutions up to the transformation of the function 
artanh  arsinh  ln, turns out Λ1 = ³∕₂   = 1.75495∙1063 using the values from 
table 1. For Λ1 applies t' ≡ t ≡ 0 i.e. a constant wave count vector. But by expansion and wave 
propagation »outwards« the phase angle 2ω0T = Q0  t½ increases continuously. And because 
of (4) Λ1(T) = ³∕₂ √   √  applies with b = 2κ0/ε0. 

 

 
Figure 9     
Temporal dependence of the wave count vector 
for several distances r 
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The temporal dependence for several initial distances r is shown in figure 9. The larger the 
considered length, the later on the point of time, the wave count vector is defined from. 
That‘s easy to understand, we can regard a length as existent only then, when the world-
radius is larger or equal to. If the world-radius is smaller, so such a length doesn't exist. 
Therefore, lengths larger than 0.5R aren't defined at present and function (82) does not have a 
real solution before a value of e.g. t = 0.75T is reached (t = 0 is the present point of time). 
Altogether, the wave count decreases. That results from the fact that we are considering a 
constant length with expanding r0. So it happens, that MLEs are permanently „scrolled out― at 
the „tail― leading to a degradation of the wave count vector at the same time. 

 
 
 

3.1.2. Constant wave count vector 
 
3.1.2.1.  Solution 

 
At first we start with the left expression of (82) for t = 0 (a = 1). It specifies the quantity of 

the wave count vector at the present point and at each point of time, if we want to assume it 
as constant. We just look for the function F(a, ) being nothing other as the temporal 
dependence on a given length . See (80) for a(t). 

 

   0 0
3 3 r F  Q artanh r r    Q a artanh r F     const
2 2 a

        (83) 

 
An explicit reduction by differentiating and zero-setting (the left expression turns to zero 

on this occasion) leads to the trivial solution F = 0. Otherwise, only an implicit solution can be 
found as solution of the equation: 

 
a  artanh  

˜ r F
a

 artanh  ˜ r  ˜ r (F 1)    0     r(t)   ˜ r F3 (t)   (84) 
 

or in »Mathematica«-notation F1[t,r]: 
 

Fa1=Function[a=FindRoot[#1*ArcTanh[#2/#1*x]-ArcTanh[#2]- 
#2*(x-1)==0,{x,1}, MaxIterations->30]; (Round[(x/.a)*10^7]/10^7)^3];      (85) 
F1=Function[Fa1[(1+#1)^.25,(2*#2)^(1/3)]]; 

 
In this connection we have to be particular about the method (tangent-method) and the initial 
value. There was a problem using secant method. The temporal course is shown in figure 10. 
 

Figure 10         
Temporal dependence  
of a given distance r 

˜ r 
˜ r 
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There is only a limited definition-range for the solution. It is temporally bounded below by 
the spatial singularity, the considered length is greater than the world-radius and doesn‘t exist 
yet. The greater the considered length, the smaller the definition range. With world-radius the 
space-like vector R/2 = cT is meant. 
 
 
3.1.2.2.  Approximative solutions 

 
A simple solution for small r explicitly arises from (84) under application of the two first 

terms of the TAYLOR series for the function artanh: 
 

1
2t 1 tr r 1 r 1

T 2 T
       fo  ≤ 0.       (86) 

 
This exactly corresponds to the behaviour of PLANCK's elementary-length (MLE) and is valid 
until 0.01R approximately. For larger distances, the ascend is larger. First we examine the 
course in the proximity of t = 0 (figure 11) as well as the ascend r/t with t = 2·10–3. With 
root-functions the ascend (dr/dt) is equal to the exponent m in this point: 

 
t tr r 1 r 1
T T

m
m             (87) 

  
This is shown in figure 11. It is in the range of 1/2…3/4. Using the function Fit[] with the help 
of (88) approximations of different precision for the exponent m can be found: 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 
Ascend of several 
given distances in 
the proximity of t=0 

 
 

mmm = {{0, .5}};  
For[x = 0; i = 0, x < .499, (++i), x += 0.01;  
AppendTo[mmm, {x, N[F1[0.0001, x] - F1[0, x]]/0.0001}]]     (88) 
Fit[mmm, {1, m, m^2, m^3, …}, m]   
m ≈ 0.513536 + 0.17937r + 0.490927r2        with  r = r/ R∼  
m ≈ 0.500(980) + 0.50052r  − 1.13082r2 + 2.16233r3         (89)  
m ≈ 0.500(1002) + 0.598206r − 3.45991r2 + 18.3227r3 − 42.6995r4 + 38.0733r5 

 
The third equation of (89) is very exact and suitable even for calculations with more extreme 
demands. Indeed, there is a need to consider the restricted definition-range, which is not 
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being co emulated automatically by the approximative solution. It is pointed out here once 
again that the distances and velocities, regarded in this section, are a matter of space-like 
vectors having nothing to do with the time-like vectors considered in section 4.3.4.4.6. of [1]  
Cosmologic red-shift.  
 
 
 
 
 
 
3.1.2.3. The HUBBLE-parameter 

 
Having defined the HUBBLE-parameter only for small lengths and PLANCK's elementary-

length (r0) until now, which are following the relationships for a radiation-cosmos (m = 1/2), 
we have to correct our statements for larger distances. With m = m (r) the HUBBLE-parameter 
H = /r becomes also a function of distance:  

0H H
T t T

m m
      (90) 

 
The course is shown in figure 12. The metrics examined by this model is a non-linear 

metrics. With it, the question has become unnecessary, whether our universe is a radiation- or 
dust-cosmos. The answer is – as well, as. It's a question of the dimensions of the considered 
area. For small lengths, the distance behaves like a radiation-cosmos, in the range between 
zero and 0.5R like a dust-cosmos, with 0.5R like photons overlaid the metrics. 
 
 

 
 
Figure 12 
HUBBLE-parameter as a function of the 
distance for t=0, the values r>0.5R are extrapolated. 

 
However, more latter distance is not an area of infinite red-shift as in other models. It 

shows with the dilatory-factor q very well  The course is depicted in figure 13. 
 

2

rr 1 1
r m

q



         (91) 
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Figure 13 
Dilatory-factor as a function of the 
distance for t=0, the values r>0.5R are extrapolated 

 
 
The expansion-velocity H0r as a function of the distance is shown in figure 14. The speed 

of light is reached in an essentially minor distance as with the standard-models, but only on 
paper. While the size of r0 at 0.5 R = cT tends to r1, the expansion speed along the time-like 
world line at this point is not infinite, rather it‘s smaller than c (0.75c).  

 
 

 
Figure 14 
Expansion-velocity as a function of the 
distance for t=0, the values r>0.5R are extrapolated 
 
Otherwise we found out, that the maximum propagation speed | cmax | of the metric wave field 
amounts to 0.851661c only. But furthermore the world-radius should be cT, whereas time-
like vectors with up to 2cT should be possible.  
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So we have to do with four different 
distances resp. velocities, which all 
does not seem to fit together 
anyhow. But using this model it‘s 
possible to solve this conflict. Let‘s 
have a look on Figure 15, which 
except for rK, is a true-to-scale 
representation. 
 
We assume, that the wave front of 
the metric wave field propagates 
straight-forward with 0.851661c. It 
corresponds to the vector  in 
Figure 15 thus to the propagation 
share. 
 
 
 
Figure 15    
Expansion-velocity and world-radius in the 
model 

 
Then, the share rM of the world-radius caused by it would amount to 0.851661cT. However, 
other values are given in the figure, why, we will see later. As noticed furthermore, the 
constant wave count vector rK up to the vicinity of R/2 is running on the same track as the 
incoming time-like vector rT with 0.75 c (arc length 0.75 cT). But it‘s tilted about the angle α1, 
so that we have to sum geometrically. In addition the partial vector  is curved. But the 
object we are looking for is the space-like vector rR (expansion share ). Next we flatten the 
partial vector  bending it up to . Then we project it onto rR, it applies rR = −rK cosφ with 
the angle φ = arg c = α − π/2 = 48.6231° of the metric wave function. With a phase angle of 
Q = 0.8652911138 we obtain with the angle α = 2.419430697 ≙ 138.6231678° the following 
solution:  

2 2 2 2 2 2 2 2
M R M Kc c c c c cos c 0.85166 0.75 cos 2.41943   (92) 

 
2 2 2c c 0.85166 0.562784 1.02081c = 2.08 10   (93) 

 
This result isn‘t notably exact since values for β, φ and cM have been used, misfitting Q = 1. 
We will see, if we are able to get a more exact result. If we get granular on Figure 15, we see, 
that rK is curved and, even in this state, protrudes significantly beyond rR. As the case may be, 
we have to impose it with a correction factor, if we want to get a correct relation. On the one 
hand there is the ratio RS = rK ⁄ rN, which we can calculate. On the other hand there will be a 
similar case with the classic electron radius in section 3.3.2.3. of [10], where we defined a 
correction factor δ = 1.01619033. Since I wonder about it exactly, I calculated a great many of 
alternatives, but neither the correction factor δ nor RS = rK ⁄ rN proved to be particularly 
helpful. 
 
But there is a version, which delivers an acceptable result even without a correction factor. 
That‘s the case, with which the real part of the wave function cM (27) has a zero-crossing 
(phase-jump). Since it‘s the simplest variant, it‘s probably the right one and I will prioritize it. 
See [10] for details. Here the exact parameters for this variant: 
 

Q = 0.95013820167858442645 cM = 0.8485439825230016 c cR = 0.529124852680352 c cK  = 0.75 c 
α  = 134.86993657768931460° β   = 31.94634370109298° φ  = 44.8699365776893146° RS = 1.02469672804290424 

 
2 2 2 2 2
M Kc c c cos c 0.848544 0.529125 1.0000000c 0.000000  (94) 

 
The conclusion is, the universe expands behind the particle horizon at Q = 0.9501382. That‘s 
between the point with the maximum expansion velocity and Q = 1. It is reminiscent of a 
surfer, who does not run on the crest of waves, but always a little off. With it, we have 
clarified the contradictions between the various world radii and expansion velocities. According 
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to the name, it's a kind of LEHU 
(Light speed Expanding Hypersphe-
rical Universe) similar to [11] but 
without Standard Model and with 
totally different basics.  
 
Please find more information about 
the time-like vector rT in section 5. 
The knowledge gained here has a 
significant influence on the calcu-
lation of the entropy of the metric 
wave field. 
 
 
 
 
 
 
Figure 16        
Expansion-velocity and world-radius  
without correction factor 

 
 
 
3.2. Energy and Entropy 
 
3.2.1. Entropy 

 
Now we will consider the discrete MLE and our model from the energetic point of view. 

Since entropy is much more important than energy for the thermodynamician, we will take it 
into account by examining entropy first. We want to mark entropy with S henceforth. In order 
to avoid confusions with the POYNTING-vector, we will always figure it bold as vector (S). If 
we write S, we always mean entropy and with S always the POYNTING-vector. 

 
From the statistic point of view, the entropy of a system is defined by (95) where k is the 

BOLTZMANN-constant and N the number of all possible inner configurations. 
 

S = k ln N          (95) 
 
With a single MLE (N = 1) entropy would be equal to zero theoretically. That‘s wrong of 

course, since statistics necessitates a minimum number of N to be applied at all. With N = 1 
the result, mathematically can take on a whatever value without offending the »statistics«. 
Therefore we want to try to find out, if there is another possibility to determine the entropy of 
this single MLE. 

 
Strictly speaking the MLE is a matter of a ball-capacitor with the mass m0 moving in its 

inherent magnetic field. We don't know what happens inside the capacitor. Basically it 
behaves like a (primordial) black hole. According to [7] the SCHWARZSCHILD-radius of such a 
BH is defined as: 

 
          (96) 

 
Now let's substitute m with m0 here (2). We get rs = 2r0, substantiating our foregoing 
assumption. The surface of this black hole yields with it to A = 4π r0

2. It‘s interesting that the 
expression for the SCHWARZSCHILD-radius can be derived even without aid of the SRT or 
URT. Because both, SRT and URT according to this model are only emulated by the metric 
fundamental lattice. Such relationships must be basic qualities of the lattice itself. They apply 
as well microscopically as macroscopically then. 

rs    
2mG

c2
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behaves like a (primordial) black hole. According to [7] the SCHWARZSCHILD-radius of such a 
BH is defined as: 

 
          (96) 

 
Now let's substitute m with m0 here (2). We get rs = 2r0, substantiating our foregoing 
assumption. The surface of this black hole yields with it to A = 4π r0

2. It‘s interesting that the 
expression for the SCHWARZSCHILD-radius can be derived even without aid of the SRT or 
URT. Because both, SRT and URT according to this model are only emulated by the metric 
fundamental lattice. Such relationships must be basic qualities of the lattice itself. They apply 
as well microscopically as macroscopically then. 

rs    
2mG

c2
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In [8] pp. 211 a method is figured to determine the entropy of a black hole. It is based on 
quantum physical considerations fitting our MLE very well. The author assumes the KERR-
NEWMAN-solution of the EINSTEIN-vacuum-equations Rik =0 with stationary rotating, 
electrically loaded source and external electromagnetic field (97) with R r2

 – 2mr + a2 and 
2  r2

 + a2cos2, M =  mGc–2 und a = Lm–1c–1; m is the mass and L the moment of momentum. 
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     (97) 

 
We don't want to engross it here. The author finally comes to the following statements for the 
radius r± of the black hole and its surface A: 
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The result depends thereon, if the MLE disposes of a moment of momentum or not. With 
m =  m0 under application of (2), (4) and (868 [10]) we obtain the following values for the 
SCHWARZSCHILD-radius: Without moment of momentum (L =  0) for r−= 0, r+= rs= 2r0 as well 
as A = 4π r0

2. With moment of momentum L =  ħ, here the brackets apply, we get two identical 
solutions r± = r0. The surface yields A = π r0

2.  
 
Furthermore, the author refers to a work of BEKENSTEIN (1973), according to which the 

entropy of a black hole should be proportionally to its surface. The exact proportionality-
factor has been determined by HAWKING (1974) in a quantum physical manner to: 
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k is the BOLTZMANN-constant, the bracketed number applies to L =  ħ. Interestingly enough, 
the expression contains PLANCK's elementary-length and even with ħ according to our 
definition instead of h. If we now re-insert the values, we get: 

 
Sb = 4 k  for L =  0     as well as        Sb = k     for L = ħ  (101) 

 
Now we want to examine, whether the MLE actually owns a moment of momentum. We are 
based on our model (effective-value) developed in section 3.2. of [10]. For the moment of 
momentum L applies generally: 
 

L   r  p   m  (r  v)        (102) 
 
With m  =  m0, r  =  r0, v = c, c  r we get after application of (2) for the amount L: 
 

  L   m0cr0        and because of    c = 0r0           (103) 
 

2
0 0 0W m c           (104) 

 
Expression (104) is apparently right. With it, we have explicitly proven, that the MLE owns a 
moment of momentum. It‘s equal to PLANCK's quantity of action i.e. as with a spin–2–particle 
or vice-versa: 

 
The PLANCK's quantity of action is defined by the effective-value of the moment  
of momentum of the MLE. The inherent moment of momentum (spin) is identical  
to the track moment of momentum. 
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The last statement is justified by the fact that it's a matter of effective-value here. In reality, r0, 
m0 and the track- and inherent moment of momentum are temporally variable, nearly periodic 
functions. PLANCK's quantity of action is the sum of track- and inherent moment of 
momentum then. It‘s equal to , at which point one time the track-, the other time the inherent 
moment of momentum becomes zero. Such an interdependence even is called dualism. 
Naturally, PLANCK's quantity of action can be defined not only as moment of momentum. 
Another possibility is e.g. q00. Because of GIBBS‗ fundamental equation the temperature of 
the MLE and with it of the whole metric wave field is equal to zero [8]. 

 
Going back to entropy. We see that the BOLTZMANN-constant figures an elementary quality 

of our metric fundamental lattice, as elementary as 0, 0 and 0. Here, someone may say, this 
cannot be correct, since k is a purely statistical constant. Just we can answer this interjection: 
―The BOLTZMANN-constant is so elementary because it‘s statistical‖. Even π allows to be 
defined statistically. 
 
 
 
3.2.2. Topology 

 
We have determined the entropy of one discrete MLE. How does it look with a larger length 
then again? Since the single-entropy is a multiple of the BOLTZMANN-constant, we can 
calculate-on with the already known statistical relationships (95). In this connection the 
(absolute) maximum number of possible inner configurations within a volume with the radius 
r is given by the number of MLE's contained in this volume. With a cubic-face-centred 
crystal-lattice, the number within a cube with the edge length d is defined as: 
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 is the lattice constant in this case. The fc-cube just contains 4 elements in total. Then, 
within a ball with the diameter d = Λr0 and the volume /6 d3 there are 
 

33
30

0

Λr2 d 2 2N π π πΛ
3 3 r 3

      (106) 

 
individual MLE's. As long as ρ is not too large, we can insert (78) for Λ, otherwise (82): 
 

31 11 1
3 3 34 4
0

t t 2r 2rN πQ 1 artanh 1
T T R R


           or  (107) 

 
3
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1 1 1 1
4 4 3 3t t r r        with  r = r/ R~ 

 and  K1 = 1  (108) 

 
That‗s the number of elements within a sphere with the radius r. The course is shown in 

Figure 17 curve . If we insert the expression Λ1 = ³∕₂ into (106), we obtain even a 
result for N1. Here t ≡ 0 reapplies. Then, the whole universe would contain altogether 
N1 = ⁹∕₄    = 1.13203∙10190 elements. Because of the propagation of the metric wave 
field this value is increasing continuously too (see Figure 19), and that according to  
N1(T)  = ⁹∕₄ √   √  with b = 2 κ0/ε0.  
 
 
But for the calculation of the entropy S these values are sparsely helpful. As is known S is 
about a statistical value and (108) violates a basic rule of the statistics: A value must not be 
counted repeatedly. The relations (96ff) namely apply for a »normal« 3D-sphere only.  
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Figure 17 
Number of MLE´s in dependence on the radius linear and logarithmic 
 

But at the universe we have to take into account the particular 4D-topology. An observer in 
the free fall only imagines to be located in the spatial centre of the universe. In reality he is 
situated at a temporally singularity, the event horizon {0,0,0,T}. He is unable to overcome it, 
because beyond there is the future. Indeed, it‘s not about a point, but about a hyper-surface. 
All other observers at their own 3D-locations reside widespread at the same surface. Since T 
proceeds steadily, the temporal radius increases too and the observers are quasi »surfing« on 
the »time wave«. If one observer wants to visit another, he must accelerate. Thus, his 
temporally course is slowing down. Indeed, he does not travel to the past, but he is only 
»broken away« from the unbraked time lapse. He suddenly finds himself inside the sphere. 
With v = c the time stands still for him. Now he is situated at the real spatial centre, but only, 
because it came up to him. 

 
That means, the spatial 4D-centre is not with the observer, but in the distance cT at the 

coordinates {cT,cT,cT,0}. More correct would be t1 instead of zero here. With the spatial 
centre it‘s also about a hyper-surface, a spatial singularity, the particle horizon. We cannot 
overcome even that. Like the temporal radius it‗s expanding steadily. Altogether it‘s about a 
closed system. 

 

  
Figure 18  
Factor K in dependence on the radius for 
the 3 solutions (schematic presentation) 

 
If two observers could swap their 
positions, they would find the same 
conditions on both locations. Since 
overall in the universe the same 
physical laws apply. Interesting 
thereat is, that we observe different 
conditions in a definite distance r.  
 
The reason is the finite speed of 
light. The universe is not hot-wired, 
there is no instantaneous intercon-
nection between whatever points 
(except for quantum entanglement).  
 
For all observers the universe 
consists of the local conditions plus 
all forces and signals resulting from 
prior states, delayed by t ≥ r/c. The 
farther, the elder the condition, that 
caused the impact. 

 

 
And exactly that is the reason, why we cannot use expression (108). Approaching the distance 
cT, the MLE-density within Λ is in-creasing enormously indeed. But similarly, the universe 
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in that distance, at that time has had an essentially smaller world radius, a smaller surface. 
That means, the cross section must be smaller than at solution . The larger the distance r, 
the smaller the surface A, the opposite way around, as with a »normal« sphere. 

 
Even e.g. the spherical shell in the distance R/2−r1 namely consists of only one single 
element. If its condition changes, it has a simultaneous effect on all vectors coming from all 
directions. But we are allowed to count only one element. 

 
In fact that‗s good for MACH‘s principle, spatial damping cancels out, the strongest force is 

coming from the »edge«, but not for the statistics. That‘s why we are forced to find a 
function, which considers these special conditions. In doing so the reference to the time t 
should not get lost. Because I‘m not a topology-expert, I tried to find such a function, at least 
roughly by introduction of a correction factor K; the whole by trial and error. So it‘s not about 
a correct derivation here. With small r a possible solution should run similarly as with a 3D-
sphere, likewise as solution . In the vicinity of R/2 it should flatten out however. Either the 
border R/2 should not be passed. 

 
In addition to  two more possible solutions are depicted in Figure 18 to the correction of 

one single coordinate. With solution  (109) I assumed the volume of the inverse sphere to 
decrease with r. Solution  (110) additionally considers the curvature in the vicinity of R/2 
under consideration of the angle α. 
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0 2 2N πQ artanh 2K 2K( ) ( )
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4 4 3 3t t r r  with 2K 1 2r             (109) 
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3K cos 1 sin2r r  (110) 

 
The angle α(r) calculates as follows (applies only in connection with (110)!!!) 

 
2 1(1)

2 2
(1)
0

H ( /2)πα  arg j4 1
4 H ( /2)

1

1

rr
r

 (111) 

 
It‘s even only a rule of thumb. The course of both functions is depicted in Figure 18. As we 

can see, function (109) is less suitable, because it exceeds the R/2-border at 
N = 2/3π (1.1955∙Q0)3

 = 2/3π (2.3909∙Λ0)3 – a crooked value. There isn‘t a flattening either, but 
a pole outside R/2.  

 
Function (110) on the contrary fulfils all demands. It proceeds as with a 3D-sphere, like 

solution  at small r and there is a flattening in the direct vicinity of R/2. Indeed, the function 
is defined beyond R/2, but without pole, and the value re-drops to zero at 2cT. That means, 
it‘s about a time-like vector remaining inside the world radius. That‘s easy to understand. 
When rushing through the 4D-centre {cT,cT,cT,0} or passing it within spitting distance, the 
vector re-approaches the observer and N has to decline again. The maximum is at the „magic― 
value N0 = 2/3π (Q0/2)3

 = 2/3π Λ0
3

 = 1.51894∙10182. The reason, why the func-tion hits its 
maximum already on the verge of R/2, is its curvature. The arc-length becomes effective 
here.  

 
By the way, all time-like vectors with the length 2cT, regardless of continuous or discon-

tinuous (virtual), are coming from a point with the coordinates {r1/2, r1/2, r1/2, t1/4}. That‘s 
behind the particle horizon, previous to the phase jump at Q = 1, from a time, at which event- 
and particle-horizon still overlapped each other (Q = 1/2). The real world age is T, the length 
2cT is the result of curvature, propagation and expansion (see Figure 24). 

 
Thus I‘m sure, that (110) fits the actual conditions to the best. Then, N0 would be identical 

to the total number of possible micro-states of the universe and candidate for the calculation 
of the entropy S0. The temporal dependence of N according to (110) for several constant 
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distances is depicted in Figure 19. The course of N0(T) and N1(T) in the comparison is shown 
top right. The rule of N1 has been scaled down about 108, because both values gape apart too 
much.  

 
Needless to say, the temporal functions are defined from N0 on only, above they are cropped. 
Solution  proceeds similarly, but N1 is orders of magnitude greater, so that the crop takes 
place much higher in a range running nearly vertical up, which can no longer be processed by 
the plot program. And there is another difference. Distances >R/2 aren‘t postponed into future 
with solution  and  similar to the dashed blue line (not to scale). That‘s correct. In 
contrast, solution  shows them, as if it‘s about a distance <R/2, which is also correct. Of 
course, there is even such a line with solution  (example 0.8Rʹ), but it‘s not being emulated 
by expression (110). That‘s correct too, since there is a nearly infinite number of solutions 
already in the example range 0.5…0.8R and beyond, depending on Rʹ. 
 

 
Figure 19 
Number of MLEs in dependence on time 
according to solution  
 
3.2.3. Entropy 

 
Now let‘s get down to the entropy. Generally (95) applies here. As determined more above, 

the entropy of the MLE calculates similar to that of a black hole according to (101) right (Sb). 
Thus, we have to multiply (95) with π. However, that applies to the metric wave field only 
and not to the CMBR. All other problems may be calculated with the conventional ansatz and 
(95). In doubt just divide the results by π. 

 
The course of the entropy S in dependence on the radius is shown in figure 48. Starting 

with a value of πk = 4.337465∙10−23J K−1 with r = r0 the entropy  rises continuously with 
increasing r, runs through a phase of minor ascend and skyrockets towards infinite with 
r  cT. But an infinite value will not be achieved, since the number of line elements until the 
edge is limited to S1(Λ1). 

 
Because of the pole solution  is less suitable. For solution  we obtain the huge value of 
S1 = 3π k (⅔ + ln Q0 + ln ln Q0)  ≈ 1312 k = 1.89832∙10−20 J K−1. For solution  the entropy S0 
applies. It‘s defined as follows:  

 
3 3 20 1

0 0 0
2 1S k ln k ln Q 1.81950 10 JK
3 12

      (112) 
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Figure 20 
Entropy in dependence on the radius 
 
The temporal dependence of S0 for the case r = const is depicted in Figure 21. Interestingly 
enough the values of regions with fixed size decrease steadily. Maybe that‘s the »motor« of 
the evolution from the lower to the higher. In the case constant wave count vector the entropy 
S(r ≠ R/2) remains constant across the whole definition range. It calculates according to (113) 
on the left. For S0 the right expression applies: 

 

0 0 0
tS S 6π k lnS   π S 3π k ln 1k n 
T

 l N t 
     (113) 

 
To calculate S1 we advantageously substitute Q0 with Q̃0 t2 in the expression in the paragraph 
below figure 48. The entropy with constant wave count vector isn‘t defined across all times 
for all radii either. Certain distances don‘t exist, until the radius of the expanding universe has 
reached that length. Then S gets the value S0 resp. S1 exactly on entry. It applies: The later the 
entry, the higher starting entropy. Curves are being cropped even here in turn. Solution  
looks similar like Figure 21. The curve S1 proceeds far beyond the plot however. Initial 
distances > R/2 are moved into future too, with solution  into the range < R/2, just like with 
N1 and N0. 

Figure 21           
Temporal dependence of the entropy 
for r=const (linear scale) 
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The temporal functions S0 and S1 are tending to ∞, as we can easily see by application of the 
limit theorems. Concerning the future of the universe we can say, that we don‘t have to fear a 
heat death. A thermodynamic equilibrium will never occur. The reason is the propagation of 
the metric wave field, as well as the expansion of the universe. That was a close shave! 
 
 

4. Horizons of the universe 
 
4.1. Particle horizon 

 
As shown in section 3.2.1. the MLE disposes of an inner SCHWARZSCHILD-radius with the 

value r± = r0. It has the property of a particle horizon. Because of the relations R = r0Q0 and 
r1 = r0/Q0 it may be possible, that such a particle horizon also exists on a macroscopic scale, 
for the cosmos as a whole. The HUBBLE-parameter H0 = ω0 Q0

−1 has the character of an angular 
frequency, just as ω0 = ω1 Q0

−1. Thus, it may be possible, that even the whole universe owns an 
angular momentum in the amount of ħ1 = ħ Q0. The MLE with its spin 2 lets suppose, that the 
universe also owns a spin of the size 2. That would explain a lot of phenomena. Therefore, 
with this information, we want to try, to calculate such a hypothetic SCHWARZSCHILD-radius 
R± with (L = ħ1 = ħQ0). 

 
We start, in that we multiply (99) with Q0 resetting the bracketed expression to the definition 
a = ħ m–1c–1. The value M1 is determined using the right-hand ansatz and (868 [10]): 
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As result a double solution with R± = R turns out, exactly as with the MLE but on a larger 
scale. The universe inside is larger then outside apparently, maybe due to the curvature of the 
time-like vectors. Interesting is the value M1=1.81525∙1053

 kg with H0 = 68.6241 kms–1Mpc–1. 
That‘s the total mass of the metric wave field and identical to MACH‘s counter mass. Dividing 
it by the volume V1 = ⁴∕₃ π R3 we obtain a value of 1.76907∙10−29 kg dm−3 for the density. This 
one is exactly 3/2 times greater than the value G11(R/2) calculated in section 7.2.7.2. of [10]. 
Well, we are living in a black hole actually and we can use nearly 100% thereof. Or is there 
yet an »outside« and the universe is nothing other than a huge line element?  
 
 
 
4.2. Event horizon 
 

That's the point or better the hyper-surface the observer (we) are living at. In reality it's not 
a point in space but a point in time: The Present. That means, it cannot be overcome because 
behind there is: The Future. Furthermore we must remark that we always assumed the 
expansion-centre as basis of the coordinate-system for the previous contemplations, where 
actually no length is defined. More essential qualities result from it for the two singular 
points. 
 

 
For the spatial singularity (expansion-centre) applies: Each length, measured 
from this point, always has the quantity R/2. Each period, measured at this point, 
always has the amount T, each frequency 2H. It’s about an event-horizon. It’s a drain 
of the electromagnetic field. To the approximation applies r=∞, t=∞. 
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For the temporal singularity (wave-front) applies: Each length, measured 
from this point, always has the quantity r1/2. Each period, measured at this point, 
always has the amount t1, each frequency 21. It’s about a particle-horizon. 
It’s a source of the electromagnetic field. To the approximation applies r=0, t=0. 
 

 
A particle horizon on the inside is an event horizon on the outside and vice versa. It looks 
similar to the magnetic and electric fields. No matter at which pole you are located, you 
always believe that you are at the centre, since all field lines always converge rectangularly to 
 

  
 
Figure 22 Figure 23 
Poles and field lines in the electrical field [12] Horizons and field lines in the gravity field 
 
the observer from all directions (Figure 23). Except that he is unable to really reach the 
particle horizon. I can't say whether the two poles are connected in the background like with 
the horseshoe magnet. In any case, there is more than only one event horizon, once for the 
universe as a whole, as well as a huge number what with black holes. 
 
 

5. Distance-vectors 
 
Due to the progress in the technical domain taken place in the most recent time, the 

astronomers are able to look into the universe deeper and deeper and with it even farther back 
in time. The farther one looks however, all the more the structure of the universe becomes 
notably and must be taken into consideration on the interpretation of the measuring results. 
Otherwise the much money would have been poured down the drain. 

 
But before expanding further, just let's have a look at a so simple quantity, like the distance 

respectively the spacing to a stellar object. The astronomer just sits in front of his telescope, 
observing an object and he tries to determine with different methods, how far away it is. And 
before he can determine the HUBBLE-parameter, he must determine the distance respectively 
the spacing to the object of course. And the first problem already appears here: What do we 
actually mean by distance as well as spacing? And what do we really want to determine? 

 
In the close-up range this question can be answered relatively simply: The spacing is equal 

to the distance and the light from the object has covered this, when it has arrived at the obser-
ver. But if we leave the close-up range, looking at objects farther away, it's no longer like 
this. At first, we look at the object by means of photons, which have moved from the object 
into our direction. Thus, in reference to the metrics, it's about an (incoming) time-like vector 
(Figure 24 and 22 rT red pictured), a negative distance. We call it time-like distance. It 
corresponds to the constant wave count vector of the metrics. On this occasion, we how-ever 
actually observe the zero vector and not the time-like vector. With vanishing curvature both 
coincides indeed. As it looks like, when there is a curvature, will be presented later. 

 
But the object, we observe nowadays, is already located at a completely different position, 

as our observation-data want to make believe, since these are already totally »outdated«, 
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when they reach us. One feature of this model is now, that this is not the case. Even when the 
signals are already very old, the object really resides in reference to the observer's R4-
coordinate-system at that very position, where he observes it. The length of the vector from 
the object to the observer however cannot be influenced by him, because he is just only 
observer. 

 

 

 
 

 
 
Figure 24 Figure 25 
Distance-vectors with an object Distance-vectors with an object 
at the edge of the universe (schematized) in the close-up range of the observer (schematized) 
 

But if the observer has the intent, to visit the object, that would be an (outgoing) space-like 
vector then, a positive distance/spacing, this cannot take place on the same way, which the 
ray of light has covered, because the observer would have to move with c thereto and each 
zero vector is unique. Now, another distance/spacing is applied to him. 
 
To the difference between distance and spacing: These are (approximately) equal in the 
close-up range only. With larger distances, objects in the free fall move away from each other 
according to the distance-function with constant wave count vector. That would be the real 
spacing (rK blue pictured). With it, also the definition of the space-like distance turns out (rR 
green pictured). This is the shortest way between the observer or better the traveller and the 
object. It is an imagined line and coincides with the coordinate r of the coordinate-system. 
Locally, it is equal to the space-like vector of the metrics. 

 
 
1. The zero vector rN is the way a ray of light covers, at which point the velocity in reference  
 to the subspace is c constantly. In the local range it is equal to the geometrical sum of  
 space- and time-like vector. 
 
2. The time-like distance rT is the way a ray of light, starting from the source, has covered,  
 when it has been arrived at the observer. In the local range, it corresponds to the time- 
 like vector of the metrics. But actually the zero vector rN is observed. 
 
3. The spacing rK is the distance between two objects in the free fall. The vector proceeds  
 along the field-lines of the gravitational-field and varies according to the spacing-function  
 with constant wave count vector. It corresponds to the zero vector rN of the metrics. 
 

 4. The space-like distance rR is the shortest vector between a traveller and his destination.  
  It’s about an imagined line. It is identical to the coordinate r of the coordinate-system. In the  
  local range, it corresponds to the space-like vector of the metrics. If one wants to travel  
  along this line, permanent navigation (acceleration) is needed. 

 
 
But this way, the destination cannot be reached in the free fall, as an analogy from the 

navigation suggests – the difference between latitudinal and great-circle-distance. When start 
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and destination are on the same latitude and if it‘s not exactly about the equator, the great-
circle-distance is always smaller than the latitudinal-circle-distance. During great-circle-
navigation however, the captain must change the course continually, just accelerate, whereas 
he could theoretically continue his journey without acceleration on the latitudinal circle, just 
in the free fall, when the water resistance would be zero. Thus, the voyager has the chance, to 
influence the distance, namely by means of navigation. To the better overview the definitions 
once again: 

 
But let‘s descend to the time-like distance once again. This is the distance, the astronomer 

determines, when he analyzes incoming light- or radio-signals (zero vectors). They are 
subject to a red-shift according to the propagation-function in section 4.3.4.4.3. resp. 5.3.2. of 
[10]. The time-like distance is limited to the maximum time-like distance, which results from 
the Total-Age 2T. It applies rTmax = R = 2cT.  

 
All these vectors are coming from the same point {r1, r1, r1, 2t1} and are ending at all points of 
the hyper-surface {R, R, R, 2T} at the same time. Both are superimposed for any observer. 
The point {r1, r1, r1, 2t1} is quasi „smeared― across the whole universe, i.e. all points on the 
hyper-surface are interconnected via {r1, r1, r1, 2t1} and, since photons are timeless, even 
instantaneously. That may be the cause for such effects like quantum entanglement etc. 

 
In the course of this work, we had learned that the maximum space-like distance amounts 

to only the half of it: rRmax = R/2 = cT. It would be interesting if we were able to convert the 
above values into one another. First of all, expression (116) would be suitable for this: 
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             (116) 

 
Considering the two expressions now, one recognizes that these fail at the »edge« of the 
universe. The left-hand expression submits a negative infinite time-like distance for R/2, the 
right-hand expression a space-like distance of  0.447214 R = 0.894427 cT for –R/2. Actually, a 
value of 0.5 R = cT should arise however. In addition, since rT returns to its starting point over 
time, there should be a second solution for the left expression.  

 
With the time-like vector we must pay attention to the following: This can be both, an 

incoming (negative distance), as well as an outgoing vector (positive distance). An observer 
always is concerned with an incoming vector, whose length is limited to –2cT. The light has 
traversed the entire universe then and has been rearrived at it‘s starting point, a space-like 
singularity (event horizon). The farthest (rR) starting point of an incoming time-like vector is 
in the distance –cT. The maximum length of an outgoing time-like vector on the other hand is 
unlimited because it directs to future. Of course, it is even subject to the parametric 
attenuation. It‘s impossible to send signals back in time. 

 
Of particular interest are the signals directly from the Big Bang –2T. These have reached 

their starting point again and are to be observed as cosmologic background-radiation, 
although with extreme red-shift. The picture, which it generates, is really the view of the 
point of observer to the point of time –2T, however mirror-inverted in all four dimensions (an 
outgoing time-like vector becomes an incoming one). The range between –2T and –T is also 
accessible indeed, but these signals come from areas at the opposite end, with a lower 
distance than –R/2, at which point the signal is coming „from behind― on a detour. In this 
case applies, the older the signal, the nearer the source (neater). 

 
With it, both expressions are been suitable only conditionally for the calculation of problems 
involving the universe as a whole. For further considerations we need the correct expression 
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Figure 26 Figure 27 
Angle  as a function of Q0 Functions sin and cos as a function of Q0  

 
considering the angle . It can be determined with the help of (30) as a function of Q. Since 
Q in turn depends on the distance r, it has the value Q0 at the observer, at the distance R/2 it is 
equal to one, we need a function Qr = Q(r). We get it by rearranging (895 [10]) to (117), since 
r is oriented in the opposite direction in this case.  
 
The expression       is only effective at a microscopic distance from R/2, so it can be neg-
lected. We apply Q0 for Qmax, which we assume to be pretty much the maximum value 
(844 [10]). I chose this form in order to be able to calculate the course even for other 
reference frames and to create equality with the RhoQ function. The course of  as a function 
of Q0 is depicted in  Figure 153 and 146.  
 
Now we come to the actual calculation. However, only the function rR(rT) can be presented 
explicitly. 
 

max

0Q RQ(r)
Q 2r

 
                (117) 

 
Qr = Function[#1/Q0/2/#2]; 
PhiQ = Function[If[# >10^4, -Pi/4-3/4/#, Arg[1/Sqrt[1-(HankelH1[2, #]/HankelH1[0, #])^2]]- Pi/2]]; 
PhiR = Function[PhiQ[Qr[#1, #2]]]; 
AlphaR = Function[N[Pi/4 - PhiR[#1, #2]]]; 
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rtrr = Function[# (# Cos[AlphaR[Q0, #]] + Sqrt[1 - #^2 Sin[AlphaR[Q0, #]]^2])^(1/3)]; 

 
I determined expression (118) based on (110) in combination with (698 [10]). There was 
already a similar problem with the calculation of entropy. The inverse functions rT1 (RTR1) 
and rT2 (RTR2) we obtain with the help of Interpolation[list] by calculating rR(rT) and 
swapping the x and y values in the list of support points: 
 

inrt1={}; 
For[d=0.001; i=0,d<.739,(++i),d+=.001; AppendTo[inrt1,{rtrr[d],d}]] 
inrt2={}; 
For[d=0.739; i=0,d<.999,(++i),d+=.001; AppendTo[inrt2,{rtrr[d],d}]] 
RTRR1=Interpolation[inrt1]; 
RTRR2=Interpolation[inrt2]; 
RTR1=Function[If[#<=0.49034 ,RTRR1[#],Null]];  
RTR2=Function[If[#<=0.49034 ,RTRR2[#],Null]];             

 
For the constant wave count vector rK we obtain: 
 

00g

(119) 
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rkrr = Function[# (1 - (3/4 #)^2)^(2/3)]; 

 
The factor ¾ results from our finding that the HUBBLE-parameter H1 has the value ¾T–1 at the 
edge of the universe in contrast to the local value H0 = ½T–1. Or rather, the entire distance 
between the observer and R/2 expands with the exponent ¾ with respect to T. With H0 = ½T–1, 
rK would not reach the edge at R/2 at all and would take an earlier »turn«. Even with rK the 
inverse function can be defined using the function Interpolation[list] only. Since rK points 
away from the observer, we don‘t need it either. The course of the above mentioned functions 
is shown in Figure 28. 
 

It can be seen that all three vectors coincide at close range and far beyond. At a distance of 
e.g. 400 Mpc, the deviation between rR and rT is only 2% and thus far below the observation 
error. The function rT does not leave the universe, which is correct, but it does not reach R/2 
either, but is redirected back to the starting point shortly before. With it, we are able to 
observe 94.31% of the universe.  

 
The faster expansion just after the BB is also taken into account. The turning point, i.e. the 
greatest distance, is already reached in the first third. Thus, expression (118) fulfils the 
requirements placed on it. But what‘s about rK? Because of H1 = ¾T–1 the edge at R/2 is 
reached and passed with the angle φ, see Figure 16 and Figure 29. The space beyond is in the 
future of the observer. 
 

 
Figure 28 
Distance-vectors in the universe (1D) 

 
Figure 28 was created using the following program: 

 
GH=Function[Graphics[Line[{{#2,#1},{#3,#1}}]]];  
GV=Function[Graphics[Line[{{#1,#2},{#1,#3}}]]]; 
x01=.35 (* The example distance *); 
y02=FindMaximum[rtrr[r], {r,.5,.8}] 
y2=First[y02]; 
x2=r/.First[Rest[y02]]; 
y03=FindMaximum[rkrr[r], {r,.5,.8}] 
y3=First[y03]; 
x3=r/.First[Rest[y03]]; 
z3=xx/.FindRoot[R3[2Pi xx]-.5==0, {xx,0.5,.7}] 
 

(121) 
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Plot[{RTR2[r]}, {r,0,1}, PlotRange->{0,1.03}, ImageSize->Large]; 
Plot[{RTR1[r], r, rtrr[r], rkrr[r]}, {r,0,1}, 
PlotRange->{0,1.03}, ImageSize->Large, PlotStyle->{Thickness[0.0038]}]; 
Show[%, %%, GH[y2,0,2], GH[1/2,0,2], GH[1,0,2], GH[x2,0,2], 
GV[.5,-1,2], GV[x2,-1,2], GV[1,-1,2], GV[y2,-1,2], GV[x01,-1,2], GV[z3,-1,2], 
Graphics[{PointSize[0.01], Blue, Point[{{x01,RTR1[x01]}, {x01,RTR2[x01]}}]}], 
Graphics[{PointSize[0.01], ColorData[1,12], Point[{x2,y2}]}], 
Graphics[{PointSize[0.01], ColorData[2,2], Point[{z3,0.5}]}], 
PlotLabel->„Blau Rt(Rr), Orange Rr(Rr), Grün Rr(Rt), Rot Rr(Rk)“, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}, ImageSize->Large] 

 
Figure 29 shows the 2D-presentation r(T) in polar coordinates, whereat the time T is 
represented by the angle ϑ. The observer is located a the point {0,0}. The Age 2T equals to 
one complete revolution. Every observer always has the impression to be at the point 2T 
(event horizon). That‘s correct. Therefore there is no continuation of rK along the dashed 
black line. The vector rR mutates to the generic logarithmic spiral.  
 

 
Figure 29 

2D-course of the distance-vectors  
rR, rK and rT as a function of time 

 
 

Figure 29 has been created using the following program: 
 

z31=r/.FindRoot[R3[r]-.5==0, {r,.1,.5}] 
z32=r/.Chop[FindRoot[R3[r]-.5==0, {r,5,6}]] 
z33=r/.First[Rest[FindMaximum[R3[r], {r,5,6}]]] 
R2=Function[rtrr[#/2/Pi]]; 
R3=Function[rkrr[#/2/Pi]]; 
 
Plot[{Pi*r+Pi/2}, {r,-.6,-.45}, ImageSize->Large, 
PlotRange->{-0.52,0.52}, PlotStyle->{Thickness[0.001],Black}, AspectRatio->1]; 
PolarPlot[{Null,r/2/Pi,R2[r],R3[r]}, {r,0,8/3 Pi}, PlotRange->0.59,  
ImageSize->Large,AspectRatio->1]; 

(122) 
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Show[%, %%, GV[-0.5,-0.6,0.6], 
Graphics[{Circle[{0,0},1], Circle[{0,0},0.5], Circle[{0,0},x01]}], 
Graphics[{PointSize[0.01], Orange, Point[{{-.5,0}}]}], 
Graphics[{PointSize[0.01], Red,Point[{ 
{R3[z31]Cos[z31], R3[z31]Sin[z31]}, 
{R3[z32]Cos[z32], R3[z32]Sin[z32]}, 
{R3[z33]Cos[z33], R3[z33]Sin[z33]}}]}], 
Graphics[{PointSize[0.01], ColorData[1,12], Point[{{0,0}, 
{y2 Cos[2 Pi RTR1[y2]],  y2 Sin[2 Pi RTR1[y2]]},  
{x01 Cos[2 Pi RTR1[x01]], x01 Sin[2 Pi RTR1[x01]]}, 
{x01 Cos[2 Pi RTR2[x01]], x01 Sin[2 Pi RTR2[x01]]}}]}], 
LabelStyle->{FontFamily->"Chicago", 10, GrayLevel[0]}, ImageSize->Large] 

 
The 2D-representation gives the impression that the incoming vector rT is coming from the 
direction in which it was originally emitted. But that‘s not the case. In fact, he‘s coming from 
the opposite direction. This can be seen very well in the 3D-representation in Figure 30. 
 
At this point we make use of the fact that H0 is an angular frequency. And for every observer, 
no matter in which reference system or where he is, the universe has always completed 
exactly one revolution around all three spatial axes. However, only two of them are shown in 
Figure 158, giving the impression that the maximum observable radius rR is at the point C. 
However, the images arriving from one direction are actually from a circle of diameter 
0.490339 R passing through point C. Therefore, an exact localization of the sources actual 
position is impossible. 
 
 

 
 

Figure 30 
3D-course of the distance-vectors  

rR, rK and rT as a function of time 
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Show[%, %%, GV[-0.5,-0.6,0.6], 
Graphics[{Circle[{0,0},1], Circle[{0,0},0.5], Circle[{0,0},x01]}], 
Graphics[{PointSize[0.01], Orange, Point[{{-.5,0}}]}], 
Graphics[{PointSize[0.01], Red,Point[{ 
{R3[z31]Cos[z31], R3[z31]Sin[z31]}, 
{R3[z32]Cos[z32], R3[z32]Sin[z32]}, 
{R3[z33]Cos[z33], R3[z33]Sin[z33]}}]}], 
Graphics[{PointSize[0.01], ColorData[1,12], Point[{{0,0}, 
{y2 Cos[2 Pi RTR1[y2]],  y2 Sin[2 Pi RTR1[y2]]},  
{x01 Cos[2 Pi RTR1[x01]], x01 Sin[2 Pi RTR1[x01]]}, 
{x01 Cos[2 Pi RTR2[x01]], x01 Sin[2 Pi RTR2[x01]]}}]}], 
LabelStyle->{FontFamily->"Chicago", 10, GrayLevel[0]}, ImageSize->Large] 
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But we can not only observe objects on this circle. Since it‘s about an R4-universe, we have 
one additional degree of freedom left, which means, the circle also rotates about its diameter. 
With it, we are able to observe all objects within a sphere with the radius 0.490339 R, 
whereby the signals then arrive from the entire solid angle 4π. 
 

Figure 30 shows the example sphere and the R/2 sphere. As in Figure 29, the extrema and 
the intersections are marked with coloured dots and letters. Unfortunately it was not possible 
to show the section D-F-z as a dashed line. One can also see that the vector rR deviates 
extremely from rK very early on, a challenge for navigation. Figure 30 has been created with 
the following program: 

 
z1=Line[{{{0,0,-.7},{0,0,.7}},{{0,-.7,0},{0,.7,0}},{{-.7,0,0},{.7,0,0}}}]      (*Axes cross*); 
ParametricPlot3D[{{1,1,1}, {r Cos[r]Sin[r/2], r Sin[r]Sin[r/2], r Cos[r/2]}, 
{R2[r]Cos[r]Sin[r/2],R2[r]Sin[r]Sin[r/2],R2[r]Cos[r/2]}, 
{R3[r]Cos[r]Sin[r/2],R3[r]Sin[r]Sin[r/2],R3[r]Cos[r/2]}}, 
{r,0,8/3 Pi}, PlotRange->0.6, ImageSize->Large, AspectRatio->1, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}, ImageSize->Large]; 
 
Show[%, 
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, 0.5]}], 
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, x01]}], 
Graphics3D[{Thickness[0.0025], Blue,z1}],  
Graphics3D[{PointSize[0.0125], Orange, Point[{ 
{.5 Cos[.5]Sin[.25],.5 Sin[.5]Sin[.25],.5 Cos[.25]}}]}], 
Graphics3D[{PointSize[0.0125], Red, Point[{ 
{R3[z31]Cos[z31]Sin[z31/2],R3[z31]Sin[z31]Sin[z31/2],R3[z31]Cos[z31/2]}, 
{R3[z32]Cos[z32]Sin[z32/2],R3[z32]Sin[z32]Sin[z32/2],R3[z32]Cos[z32/2]}, 
{R3[z33]Cos[z33]Sin[z33/2],R3[z33]Sin[z33]Sin[z33/2],R3[z33]Cos[z33/2]}}]}], 
Graphics3D[{{PointSize[0.0125],ColorData[1,12],Point[{{0,0,0}, 
{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], y2 Cos[Pi RTR1[y2]]}, 
{x01 Cos[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],  
x01 Sin[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],  
x01 Cos[Pi RTR1[x01]]}, 
{x01 Cos[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]],  
x01 Sin[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]], 
x01 Cos[Pi RTR2[x01]]} }]}}]] 

 
But there is an additional way of presentation. If we replace the temporal dimension by the 
third spatial one, we can let rotate the rT-curve obtaining a body of revolution with inter-
esting properties: 
 
 

  
 
 
Figure 31 
Possible shape of the electron  
and/or of the PLANCK charge 
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The representation is similar to Figure 8 in [10], which would close the circle. The model 
has the property of logarithmic periodicity, i.e. there are similarities between the microcosm 
and the macrocosm. 

 
My assumption is therefore that the object in Figure 31 could be identical to the PLANCK‘s 
charge and/or the electron, as its freely occurring form, just on a different scale. Instead of 
rotating with H0 it would rotate with ω0 then and a part of the charge would reside in the 
interior, so that the observable part would depend on the viewing angle. This would also 
explain the need to correct re. Then, the electron would be the 3D-manifestation of a 4D-
object. But as I said, this is just a guess on my part. The object can be displayed with the 
following program: 
 

Pl1=ParametricPlot3D[{{R2[r]Cos[s]Sin[r/2],R2[r]Sin[s]Sin[r/2],R2[r]Cos[r/2]}}, 
{r,0,2 Pi}, {s,0,2 Pi}, PlotRange->0.5, ImageSize->Large,  
PlotStyle->{Opacity[1],FillingStyle->Opacity[0.1]}, AspectRatio->1,  
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]; 
 
Pl2=ParametricPlot3D[{{R2[r]Cos[r]Sin[r/2],R2[r]Sin[r]Sin[r/2],R2[r]Cos[r/2]}}, 
{r,0,2 Pi}, PlotRange->0.5, ImageSize->Large, AspectRatio->1,  
PlotStyle->{ColorData[1,8],Thickness[0.005]}, 
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]; 
 
Show[Pl2, Pl1, Graphics3D[{Opacity[0.075], Sphere[{0,0,0},0.5]}], 
Graphics3D[{Thickness[0.0025],Blue,z1}], 
Graphics3D[{{PointSize[0.013],ColorData[1,8], Point[{{0,0,0}, 
{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], 
y2 Cos[Pi RTR1[y2]]} }]}}]] 

 

6. Summary 
 
In the course of this work, with the help of the model from [10], we succeeded in the 

definition of the propagation function of the metric wave field, postulated by LANCZOS. That, 
on the other hand, was the base for the determination of the HUBBLE-parameter for greater 
distances. It was shown, that this depends on the initial distance. The exact function could be 
determined. Furthermore the entropy of the metric wave field was determined — under 
consideration of the special 4D-topology of the universe. Its value will increase steadily even 
in future and there is no fear of a heath death anyway. The reason is the expansion of the 
universe, the propagation of the metric wave field and the curvature of the constant wave 
count vector in turn. 

 

7. The Concerted International System of Units 
 

A variety of formulas for the calculation of various variables and graphics are specified in 
the course of this work. These in turn access certain values and natural constants whose mea-
ning or values are not shown in the text, but which are required to carry out the calculations 
correctly.  

 
Using the MLE model of [10] it has been possible to calculate a series of natural constants 
associated with the electron, the proton and the 1H atom via their relation to the reference 
frame Q0 and that exactly. The model is based on the basic variables of the subspace, which 
are fixed values, independent of the reference system. It is sufficient to define only five 
genuine constants (μ0, c, κ0, ħ1 and k) as base variables plus a so-called Magic value, in this 
case me to specify the reference system Q0. All values are related via Q0; if one value 
changes, they all change. If an influence is added, it is yet another reference system. With it, 
all values except for the fixed ones form a so called canonical ensemble, the Concerted 
System of Units. 

 
The program that makes these basic constants and functions available can be found in the 
appendix. It can also be used in other of my publications. The numerical values calculated 
with it, in comparison with the corresponding CODATA2018-values are shown in Table 1. 
When preparing the table, I added further values to the system that are simply dependent on 
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The representation is similar to Figure 8 in [10], which would close the circle. The model 
has the property of logarithmic periodicity, i.e. there are similarities between the microcosm 
and the macrocosm. 

 
My assumption is therefore that the object in Figure 31 could be identical to the PLANCK‘s 
charge and/or the electron, as its freely occurring form, just on a different scale. Instead of 
rotating with H0 it would rotate with ω0 then and a part of the charge would reside in the 
interior, so that the observable part would depend on the viewing angle. This would also 
explain the need to correct re. Then, the electron would be the 3D-manifestation of a 4D-
object. But as I said, this is just a guess on my part. The object can be displayed with the 
following program: 
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Show[Pl2, Pl1, Graphics3D[{Opacity[0.075], Sphere[{0,0,0},0.5]}], 
Graphics3D[{Thickness[0.0025],Blue,z1}], 
Graphics3D[{{PointSize[0.013],ColorData[1,8], Point[{{0,0,0}, 
{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], 
y2 Cos[Pi RTR1[y2]]} }]}}]] 

 

6. Summary 
 
In the course of this work, with the help of the model from [10], we succeeded in the 

definition of the propagation function of the metric wave field, postulated by LANCZOS. That, 
on the other hand, was the base for the determination of the HUBBLE-parameter for greater 
distances. It was shown, that this depends on the initial distance. The exact function could be 
determined. Furthermore the entropy of the metric wave field was determined — under 
consideration of the special 4D-topology of the universe. Its value will increase steadily even 
in future and there is no fear of a heath death anyway. The reason is the expansion of the 
universe, the propagation of the metric wave field and the curvature of the constant wave 
count vector in turn. 

 

7. The Concerted International System of Units 
 

A variety of formulas for the calculation of various variables and graphics are specified in 
the course of this work. These in turn access certain values and natural constants whose mea-
ning or values are not shown in the text, but which are required to carry out the calculations 
correctly.  

 
Using the MLE model of [10] it has been possible to calculate a series of natural constants 
associated with the electron, the proton and the 1H atom via their relation to the reference 
frame Q0 and that exactly. The model is based on the basic variables of the subspace, which 
are fixed values, independent of the reference system. It is sufficient to define only five 
genuine constants (μ0, c, κ0, ħ1 and k) as base variables plus a so-called Magic value, in this 
case me to specify the reference system Q0. All values are related via Q0; if one value 
changes, they all change. If an influence is added, it is yet another reference system. With it, 
all values except for the fixed ones form a so called canonical ensemble, the Concerted 
System of Units. 

 
The program that makes these basic constants and functions available can be found in the 
appendix. It can also be used in other of my publications. The numerical values calculated 
with it, in comparison with the corresponding CODATA2018-values are shown in Table 1. 
When preparing the table, I added further values to the system that are simply dependent on 
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those already defined, including σe, ae, ge, γe, µe, µN, Φ0, G0, KJ and RK. Except for re, whose 
definition is misstated in all editions, I used the expressions and symbols from the 
CODATA2018-document [13] for the other values. Please find the definition of the formula 
symbols from there. 
 

8. Notes to the appendix 
 

The basic formulas and definitions used in this work, are shown in the appendix. It‘s about 
the source code for Mathematica. The data from the .pdf may be converted into a text file 
(UTF8), which can be opened directly. Data is presented as a single cell then. However, it is 
not advantageous to evaluate the entire source code in one single cell. To split, use the 
Cell/Divide Cell function (Ctrl/Shift/d). However, with this procedure there may be problems 
with special characters, not correctly transferred (e.g. ε, ϵ) or even lead to the conversion 
being aborted. It is more advantageous to copy and paste data page by page into the text file 
via clipboard. However, then each line is present as a separate cell. With the command 
Cell/Merge (Ctrl/Shift/m) the cells belonging together can be merged, ideally in blocks 
between the headings. Then, the values shown in the »Variable« column are available for 
own calculations.  

  

Symbol Variable Calculated (CA) 

So
ur

ce
  

CODATA2018 (CD) 
© COBE Data       ± Accuracy Δy (CA/CD–1) Unit 

c c 2.99792458              ·108 S 2.99792458              ·108 defined defined m s–1 
ε0 ep0 8.854187817620390·10–12 S 8.854187817620390·10–12 defined defined As V–1m–1 
κ0 ka0 1.369777663190222·1093 S n.a. n.a. defined A V–1m–1 
μ0 my0 1.256637061435917·10–6 S 1.256637061435917·10–6 exactly exactly Vs A–1m–1 
k k 1.3806485279          ·10–23 S 1.380649                  ·10–23 statistic +3.41941·10–7   J K–1 

ħ1 hb1 8.795625796565460·1026 S n.a. n.a. defined J s 
ħ hb0 1.054571817000010·10–34 C 1.054571817·10–34 defined +8.88178·10–15 J s 
Q0 Q0 8.340471132242850·1060 C 8.3415·1060                    © 3.3742·10–2 –1.23343·10–4   1 
Z0 Z0  376.7303134617700 F 376.73031366857 1.5·10–10 –5.48932·10–10 Ω 
G G0  6.674301499999827·10–11 C 6.674301499999999·10–11 2.2·10–5   –5.48932·10–10 m3kg–1s–2 
G1 G1  9.594550966819210·10–133 C n.a. n.a. unusual m3kg–1s–2 
G2 G2  1.150360790738584·10–193 F n.a. n.a. unusual m3kg–1s–2 
me/mp mep 5.446170214846793·10–4 F 5.4461702148733     ·10–4 6.0·10–11 –4.867·10–12 1 
M2 M2 1.514002834704114·10114 F n.a. n.a. unusual kg 
M1 M1 1.815248576128075·1053 C n.a. n.a. unusual kg 
mp mp 1.6726219236951    ·10–27 C 1.6726219236951    ·10–27 1.1·10–5   –2.22045·10–16 kg 
me me 9.109383701528      ·10–31 M 9.109383701528      ·10–31 3.0·10–10 magic ±0 kg 
m0 m0 2.176434097482374·10–8 C 2.176434097482336·10–8 calculated +1.70974·10–14 kg 
MH MH 2.609485798792167·10–69 C n.a. n.a. unusual kg 
Tp2 Tp2 9.855642915740690·10153 C n.a. n.a. unusual K 
Tp1 Tp1 1.181665011421291·1093 C n.a. n.a. unusual K 
Tp0 Tp0 1.416784486973613·1032 C 1.416784486973588 ·1032 1.1·10–5   +1.75415·10–14 K 
Tk1 Tk1 5.475357175411492·10152 C n.a. n.a. unusual K 
Tk0 Tk0 2.725436049425770 C 2.72548                          © 4.3951∙10−5   –1.61258·10–5   K 
r1 r1 1.937846411698606·10–96 F n.a. n.a. unusual m 
r0 r0 1.616255205549261·10–35 C 1.616255205549274·10–35 calculated –8.21565·10–15 m 
re re 2.817940324662071·10–15 C 2.817940326213      ·10–15 4.5·10–10 –5.50377·10–10 m 
C ΛbarC 3.861592677230890·10–13 C 3.861592679612      ·10–13 3.0·10–10 –6.16614·10–10 m 
C ΛC 2.426310237188940·10–12 C 2.4263102386773    ·10–12 3.0·10–10 –6.13425·10–10 m 
a0 a0 5.291772105440689·10–11 C 5.291772109038      ·10–11 1.5·10–10 –6.79793·10–10 m 
R R 1.348032988422084·1026 C n.a. at issue at issue m 
R RR 4.368617335409830 C n.a. at issue at issue Gpc 
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Symbol Variable Calculated (CA) 

So
ur

ce
  

CODATA2018 (CD) 
© COBE Data       ± Accuracy Δy (CA/CD–1) Unit 

t1 2 t1 6.463959849512312·10–105 F n.a. n.a. unusual s 
t0 2 t0 5.391247052483426·10–44 C 5.391247052483470·10–44 calculated –8.43769·10–15 s 
T 2 T 4.496554040802734·1017 C 4.497663485280829·1017 1.1385·10–3   –2.46671·10–4   s 
T 2 T 1.424902426903056·1010 C 1.425253996152531·1010 1.1385·10–3   –2.46671·10–4   a 
R∞ R∞  1.097373157632934·107 C 1.097373156816021·107 1.9·10–12 +7.44426·10–10 m–1 

ω1 Om1 1.547039312249824·10104 F n.a. n.a. unusual s–1 

ω0 Om0 1.854858421929227·1043 C 1.854858421929212·1043 calculated +8.65974·10–15 s–1 
ωR∞ OmR∞  2.067068668297942·1016 C 2.067068666759112·1016 1.9·10–12 +7.44451·10–10 s–1 
cR∞ cR∞  3.289841962699988·1015 C 3.289841960250864·1015 1.9·10–12 +7.44450·10–10 Hz 
H0 H0 2.223925234581364·10–18 C 2.223376656062923·10–18 1.1385·10–3   +2.46732·10–4   s–1 
H0 HPC[Q0] 68.62410574852400 C 68.60717815146482←↑© 1.1385·10–3   +2.46732·10–4   km s–1Mpc–1 

q1 q1 1.527981474087040·1012 F n.a. n.a. unusual As 
q0 q0 5.290817689717126·10–19 C 5.2908176897171    ·10–19 calculated +4.44089·10–15 As 
e qe 1.602176634000007·10–19 C 1.602176634            ·10–19 exactly +4.44089·10–15 As 
U1 U1 8.698608435529670·1087 F n.a. n.a. unusual V 
U0 U0 1.042939697003725·1027 C 1.042939697286845·1027 calculated –2.71463·10–10 V 
W1 W1 1.360717888312544·10131 F n.a. n.a. unusual W 
W0 W0 1.956081416291675·109 C 1.956081416291641·109 calculated +1.73195·10–14 W 
S1 S1 5.605711433987692·10426 F n.a. n.a. unusual W m–2 

S0 S0 1.388921881877266·10122 C n.a. n.a. unusual W m–2 
ζe ζe 6.652458724888907·10–29 C 6.6524587321600    ·10–29 9.1·10–10 –1.09299·10–9   m2 

ae ae 1.159652181281556·10–3 C 1.1596521812818    ·10–3 1.5·10–10 –2.10054·10–13 1 
ge ge –2.00231930436256 C –2.00231930436256 1.7·10–13 –2.22045·10–16 1 
γe γe 1.760859630228709·1011 C 1.7608596302353    ·1011 3.0·10–10 –3.74278·10–12 s–1T–1 

µe µe –9.28476469866128·10–24 C –9.284764704328    ·10–24 3.0·10–10 –6.10325·10–10 J T–1 

µB µB –9.27401007265130·10–24 C –9.274010078328    ·10–24 3.0·10–10 –6.12109·10–10 J T–1 
µN µN 5.050783742986264·10–27 C 5.0507837461150    ·10–27 3.1·10–10 –6.19456·10–10 J T–1 
Φ0 Φ0 2.067833847194937·10–15 C 2.067833848 ……..  ·10–15 exactly –3.89327·10–10 Wb 
G0 GQ0 7.748091734611053·10–5 C 7.748091729000002·10–5 exactly +7.24185·10–10 S 
KJ KJ 4.835978487132911·1014 C 4.835978484 ……..   ·1014 exactly +6.47834·10–10 Hz V–1 

RK RK 2.581280744348851·104 C 2.581280745 ……..   ·104 exactly –2.52258·10–10 Ω  
α  alpha 7.297352569776440·10–3 F 7.297352569311       ·10–3 1.5·10–10 +6.37821·10–11 1 
δ  delta 9.378551014802563·10–1 F 9.378551009654370·10–1 1.5·10–10 +5.48932·10–10 1 
x~ xtilde 2.821439372122070` F 2.821439372 ……..  exactly exactly 1 
ζ  ζ  5.670366673885495·10–8 C 5.670366673885496·10–8 exactly exactly W m–2

 K –4 

 
S   Subspace value (const)     M   Magic value                      MachinePrecision  →  ±2.22045·10–16 
F   Fixed value (invariable)     C   Calculated (calculated)                
 
Table 1: 
Concerted International  
System of Units 
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Symbol Variable Calculated (CA) 

So
ur

ce
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© COBE Data       ± Accuracy Δy (CA/CD–1) Unit 
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R∞ R∞  1.097373157632934·107 C 1.097373156816021·107 1.9·10–12 +7.44426·10–10 m–1 

ω1 Om1 1.547039312249824·10104 F n.a. n.a. unusual s–1 

ω0 Om0 1.854858421929227·1043 C 1.854858421929212·1043 calculated +8.65974·10–15 s–1 
ωR∞ OmR∞  2.067068668297942·1016 C 2.067068666759112·1016 1.9·10–12 +7.44451·10–10 s–1 
cR∞ cR∞  3.289841962699988·1015 C 3.289841960250864·1015 1.9·10–12 +7.44450·10–10 Hz 
H0 H0 2.223925234581364·10–18 C 2.223376656062923·10–18 1.1385·10–3   +2.46732·10–4   s–1 
H0 HPC[Q0] 68.62410574852400 C 68.60717815146482←↑© 1.1385·10–3   +2.46732·10–4   km s–1Mpc–1 

q1 q1 1.527981474087040·1012 F n.a. n.a. unusual As 
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ζe ζe 6.652458724888907·10–29 C 6.6524587321600    ·10–29 9.1·10–10 –1.09299·10–9   m2 

ae ae 1.159652181281556·10–3 C 1.1596521812818    ·10–3 1.5·10–10 –2.10054·10–13 1 
ge ge –2.00231930436256 C –2.00231930436256 1.7·10–13 –2.22045·10–16 1 
γe γe 1.760859630228709·1011 C 1.7608596302353    ·1011 3.0·10–10 –3.74278·10–12 s–1T–1 

µe µe –9.28476469866128·10–24 C –9.284764704328    ·10–24 3.0·10–10 –6.10325·10–10 J T–1 

µB µB –9.27401007265130·10–24 C –9.274010078328    ·10–24 3.0·10–10 –6.12109·10–10 J T–1 
µN µN 5.050783742986264·10–27 C 5.0507837461150    ·10–27 3.1·10–10 –6.19456·10–10 J T–1 
Φ0 Φ0 2.067833847194937·10–15 C 2.067833848 ……..  ·10–15 exactly –3.89327·10–10 Wb 
G0 GQ0 7.748091734611053·10–5 C 7.748091729000002·10–5 exactly +7.24185·10–10 S 
KJ KJ 4.835978487132911·1014 C 4.835978484 ……..   ·1014 exactly +6.47834·10–10 Hz V–1 

RK RK 2.581280744348851·104 C 2.581280745 ……..   ·104 exactly –2.52258·10–10 Ω  
α  alpha 7.297352569776440·10–3 F 7.297352569311       ·10–3 1.5·10–10 +6.37821·10–11 1 
δ  delta 9.378551014802563·10–1 F 9.378551009654370·10–1 1.5·10–10 +5.48932·10–10 1 
x~ xtilde 2.821439372122070` F 2.821439372 ……..  exactly exactly 1 
ζ  ζ  5.670366673885495·10–8 C 5.670366673885496·10–8 exactly exactly W m–2

 K –4 

 
S   Subspace value (const)     M   Magic value                      MachinePrecision  →  ±2.22045·10–16 
F   Fixed value (invariable)     C   Calculated (calculated)                
 
Table 1: 
Concerted International  
System of Units 
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„ The Concerted International System of Units " 
" 

< Declarations" 
 
Off[General::spell] 
Off[General::spell1] 
Off[InterpolatingFunction::dmval] 
Off[FindMaximum::lstol] 
Off[FindRoot::nlnum] 
 

" Units " 
 
km = 1000; 
pc = 3.08572*10^16; 
Mpc = 3.08572*10^19 km; 
minute = 60; 
hour = 60 minute; 
day = 24*hour; 
year = 365.24219879*day; 
F0 = 2.51*10^-8  (*Zero flux brightness Wm^-2*); 
L0 = 3.09*10^28  (*Zero luminosity W*); 
L1a= 6.40949*10^35  (*Standard candle SNIa W*); 
 

" Basic Values " 
 
c=2.99792458*10^8;  (*Speed of light*); 
my0=4 Pi 10^-7;    (*Permeability of vacuum*);  
ka0=1.3697776631902217*10^93;    (*Conductivity of vacuum*);  
hb1=8.795625796565464*10^26;    (*Planck constant slashed init*);  
k=1.3806485279*10^-23;    (*Boltzmann constant*);  
me=9.109383701528*10^-31;    (*Electron rest mass with Q0 Magic value 1*);  
mp=1.6726219236951*10^-27;    (*Proton rest mass Magic value 2*); 
 

" Auxilliary Values " 
 
mep=SetPrecision[me/mp,20];  (*Mass ratio e/p*); 
ma=1822.8884862171988 me;  (*Atomic mass unit*); 
ϵ=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4;  (*RnB angle ϵ null(fix)*); 
γ=Pi/4-ϵ; (*RnB angle γ nullvector*); 
ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep; (*re-correction factor*); 
xtilde=xtilde=3+N[ProductLog[-3E^-3]]; (*Wien displacement law constant (ν)*); 
alpha=Sin[Pi/4-\[Epsilon]]^2/(4Pi); (*Correction factor QED \[Alpha](Q0)*); 
delta=4Pi/alpha*mep; (*Correction factor QED \[Delta](Q0)*); 

(*Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb0SI)^(-3/4) (*Phase Q0=2ω0t during calibration*);*) 
Q0=(9 Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7); (*Phase Q0=2ω0t after calibration*); 
 

" Composed Expressions " 
 
Z0=my0 c;  (*Field wave impedance of vacuum*); 
ep0=1/(my0 c^2)  (* Permittivity of vacuum*); 
R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);  (*Rydberg constant*); 
Om1=ka0/ep0;  (*Cutoff frequency of subspace*); 
Om0=Om1/Q0;  (*Planck’s frequency*); 
OmR∞=2 Pi c R∞;  (*Rydberg angular frequency*); 
cR∞=c R∞;  (*Rydberg frequency*); 
H0=Om1/Q0^2;  (*Hubble parameter local*); 
H1=3/2*H0;  (*Hubble parameter whole universe*); 
r1=1/(ka0 Z0);  (*Planck’s length subspace*); 
a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);  (*Bohr radius*); 
ΛbarC=a0 alpha;  (*Reduced Compton wavelength*); 
ΛC=2 Pi ΛbarC;  (*Compton wavelength electron*); 
re= r1 (2/3)^(1/3)/ζ Q0^(4/3);  (*Classic electron radius*); 
r0= r1 Q0;  (*Planck’s length vac*); 
R= r1 Q0^2;  (*World radius*); 
RR=R/Mpc/1000;  (*World radius Gpc*); 
t1=1/(2 Om1);  (*Planck time subspace*); 
t0=1/(2 Om0);  (*Planck time vacuum*); 
T=1/(2 H0);  (*World time constant*); 
TT=2T/year;  (*The Age*); 
hb0=hb1/Q0;  (*Planck constant slashed*); 
h0=2Pi*hb0;  (*Planck constant unslashed*); 
q1=Sqrt[hb1/Z0];  (*Universe charge*); 
q0=Sqrt[hb1/Q0/Z0];  (*or qe/Sin[π/4-ε] Planck charge*); 
qe=q0 Sin[Pi/4-ε];  (*Elementary charge e*); 
M2=my0 ka0 hb1;  (*Total mass with Q=1*); 
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M1=M2/Q0;  (*Mach mass*); 
m0=M2/Q0^2;  (*Planck mass downwardly*); 

(*m0=(9Pi^2Sqrt[2]*delta*me)^.75*(my0*ka0*hb0SI)^.25;  (*Planck mass upwardly*);*) 
mp=4Pi me/alpha/delta;  (*Proton rest mass with Q0*); 

(*me=Sqrt[hb1/Q0/Z0]*Sin[Pi/4-ε];  (*if using Q0 as Magic value*);*) 
MH=M2/Q0^3;  (*Hubble mass*); 
G0=c^2*r0/m0; (*hb0*c/m0^2*)  (*Gravity constant local*); 
G1=G0/Q0^2;  (*Gravity constant Mach*); 
G2=G0/Q0^3;  (*Gravity constant Init*); 
U0=Sqrt[c^4/4/Pi/ep0/G0];  (*Planck voltage generic*); 
U1=U0*Q0;  (*Planck voltage Mach*); 
W1=Sqrt[hb1 c^5/G2];  (*Energy with Q=1*); 
W0=W1/Q0^2;  (*Planck energy*); 
S1=hb1 Om1^2/r1^2;  (*Poynting vector metric with Q=1*); 
S0=S1/Q0^5;  (*Poynting vector metric actual*); 
Sk1=4Pi^2*E^2/18^4/60*hb1*Om1^2/r1^2;                  (*Poyntingvec CMBR initial*); 
Sk0=Sk1/Q0^4/Q0^3/E^2;                                  (*Poyntingvec CMBR actual*); 
wk1=Sk1/c ;                                         (*Energy density CMBR initial*); 
wk0=Sk0/c ;                                          (*Energy density CMBR actual*); 
Wk1=wk1*r1^3;                                               (*Energy CMBR initial*);  
µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[γ]/my0/ka0 Q0^(5/6);  (*Bohr magneton*); 
µN=-µB*mep;  (*Nuclear magneton*); 
µe=1.0011596521812818 µB  (*Electron magnetic moment*); 
Tk1=hb1 Om1/18/k;  (*CMBR-temperature Q=1*); 
Tk0=Tk1/Q0^(5/2);  (*CMBR-temperature*); 
Tp0=Sqrt[hb0 c^5/G0]/k; Tp1=Tp0*Q0; Tp2=Tp0*Q0^2; (*Planck-temperature*); 
Φ0=Pi Sqrt[hb1 Z0/Q0 ]/Sin[Pi/4-ε];  (*Magnetic flux quantum Pi ħ/e)*); 
GQ0=1/Pi/Z0*Sin[Pi/4-ε]^2;  (*Conductance quantum e^2/Pi ħ*); 
KJ=2q0 Sin[Pi/4-ε]/h0;  (*Josephson constant 2e/h*); 
RK=.5 my0 c/alpha;  (*von Klitzing constant µ0c/2α*); 
σe=8Pi/3 re^2;  (*Thomson cross section (8Pi/3)re^2*); 
ae=SetPrecision[µe/µB,20]-1;  (*Electron magnetic moment anomaly*); 
ge=-2(1+ae);  (*electron g-factor*); 
γe=2 Q0 Abs[µe]/hb1;  (*electron gyromagnetic ratio*); 
σ1= SetPrecision[Pi^2/60 k^4/c^2/hb1^3, 16];  (*Stefan-Boltzmann constant initial*); 
σ=σ1*Q0^3;   (*Stefan-Boltzmann constant*); 
 

" Basic Functions " 
 
cMc=Function[-2 I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]; 
Qr=Function[#1/Q0/2/#2]; 
PhiQ=Function[If[#>10^4,-Pi/4-3/4/#,                                                       
Arg[1/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]-Pi/2]];  (*Angle of c arg θ(Q)*); 
PhiR=Function[PhiQ[Qr[#1,#2]]]; 
RhoQ=Function[If[#<10^4,N[2/#/Abs[Sqrt[1-
HankelH1[2,#]/HankelH1[0,#])^2]]],1/Sqrt[#]]];  
RhoR=Function[RhoQ[Qr[#1,#2]]]; 
AlphaQ=Function[Pi/4-PhiQ[#]];  (*Angle α*); 
AlphaR=Function[N[Pi/4-PhiR[#1,#2]]]; 
BetaQ=Function[Sqrt[#1]*((#2)^2+#1^2*(1-(#2)^2)^2)^(-.25)]; 
GammaPQ=Function[N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]]; 
HPC=Function[Om1/#^2/km*Mpc]; (*H0=ƒ(Q0)[km*s-1*Mpc-1]*); 
rq={{0,0}}; 
For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rq,{10^x,N[10^x*RhoQ[10^x]]}]]; 
RhoQ1=Interpolation[rq]; 
RhoQQ1=Function[If[#<10^3,RhoQ1[#],Sqrt[#]]];  (*Interpolation RhoQ*); 
Rk=Function[If[#<10^5,3/2*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],6#]]; 
Rn=Function[Abs[3/2*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]]; 
RnB=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]];  
alphaF=Function[Sin[Pi/2+ϵ-(*RNBP*)RnB[#]]^2 /(4Pi)];  (*RNBP def further below*); 
deltaF=Function[4Pi/alphaF[#]*mep];     (*Correction factor QED ΔQ)*); 
 

" End of Metric System Definition " 
____________________________________________________________________________________________________ 
 
rn={}; 
For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[rn,{d,RnB[10^d]/Pi}]] 
RNB1=Interpolation[rnb];        (*RnB angle ϵ nullvector from Q*); 
RNB=Function[If[#<10^-8,Null,If[#<10^6,RNB1[Log10[#]],-.25]]]; 
RNBP=Function[If[#<10^-8,Null,If[#<10^6,Pi RNB1[Log10[#]],-Pi/4]]]; 
alphaF=Function[Sin[Pi/2+ϵ-RNBP[#]]^2/(4Pi)];  (*Redfinition for faster calculation*); 
 

" End of Optional Metric System Definition " 
____________________________________________________________________________________________________ 


