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Abstract 

This article contains additional analysis to my article viXra: 2006.0022 “A straightforward and 
Lagrangian proof of the Einsteinian equivalence between the mass and the internal energy V2." 
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1. A small reminder of the conclusion of “A straightforward and Lagrangian proof of the 
Einsteinian equivalence between the mass and the inernal energy (i.e. rest energy) V2” 

We have a way to demonstrate the famous Einstein formula E*=Mc² directly from an appropriate 
Lagrangian function selecting the correct variables. 

Instead of 𝐿 ቀ{𝒓𝒂}, ቄ
ௗ𝒓𝒂

ௗ௧
ቅቁ, we use  𝐿ᇱ ቀ{𝒓𝒂

∗ }, ቄ
ௗ𝒓𝒂

∗

ௗ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቁ =

௅∗൬{𝒓𝒂
∗ },൜ఊ(𝑽𝐂)

೏𝒓𝒂
∗

೏೟
ൠ൰

ఊ(𝑽𝐂)
.  

Instead of 𝐿 ቂ{𝜑}, ቄ
డఝ

డ𝒓
ቅ , ቄ

డఝ

డ௧
ቅቃ, we use 𝐿′ ቂ{𝜑∗}, ቄ

డఝ∗

డ𝒓∗
ቅ , ቄ

డఝ∗

డ௧
ቅ , 𝑹𝐂, 𝑽𝐂ቃ ≡

∭ ௸∗ቀఝ∗,
ങക∗

ങ𝒓∗ ,ఊ(𝑽𝐂)
ങക∗

ങ೟
ቁௗ௏∗

ఊ(𝑽𝐂)
.  

In the two cases we’ve calculated directly that  𝑷𝒄 ≡
డ௅ᇲ

డ𝑽𝐂

= 𝛾
ா∗

௖²
𝑽𝐂 

 
In this article, we also showed: 

 The strong link with this law and the time dilation formula that highlight the crucial role of 
the Einstein’s requirement of non-universality of time;  

 A discussion on the meaning of the new set of variables chosen with an amusing  modified 
velocity addition formula that does not contradict the of Einstein-Poincaré one; 

 A discussion of the origin of the energy scale and the link to mass as stated by Landau-
Lifchitz; 

 Why in Newtonian mechanic Einstein’s law is hidden; 
 I also add some elements for a Hamiltonian analysis and a discussion about the model of 

electron that allows the formalism to be applied to a concrete example. 
 

Erratum from the previous article: some small corrections (Lagrangian correction) have been made 
but one of them important (in the modified velocity addition formula) as I show that even with the 
new set of variable used, the speed of light (Einstein constant) is again constant. 

 

 

 

 

 

 

 

 

 

 



2. Annex 
2.1. Elements of Hamiltonian analysis for a material system free  

 Hamiltonian map 

The 4-momentum is 𝑃௜(𝐾∗) = (𝑀𝑐, 𝑷) = ቀ𝛾
ா∗

௖
, 𝛾

ா∗

௖మ 𝑽𝐂ቁ 

Then 

ฮ𝑃௜(𝐾∗)ฮ
ଶ

= ൬
𝐸

𝑐
൰

ଶ

− 𝑷ଶ = ൬𝛾
𝐸∗

𝑐
൰

ଶ

− ൬𝛾
𝐸∗

𝑐ଶ
𝑽𝐂൰

ଶ

= ൬𝛾
𝐸∗

𝑐
൰

ଶ

ቆ1 − ൬
𝑽𝐂

1
൰

ଶ

ቇ = ൬
𝐸∗

𝑐
൰

ଶ

 

=> ൬
𝐸∗

𝑐
൰

ଶ

= ൬
𝐸

𝑐
൰

ଶ

− 𝑷ଶ 

<=> 𝐸ଶ = 𝐸∗ଶ + 𝑐²𝑷ଶ 

<=>𝐸 = ඥ𝐸∗ଶ + 𝑐²𝑷ଶ  

Having also 𝐸∗ = ∑ 𝐸௔
∗

௔ = ∑ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔  

=>𝐸 = ඩ൭෍ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔

൱

ଶ

+ 𝑐²𝑷ଶ  

Thus the Hamiltonian map 𝐻: ({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) → 𝐻({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) ≡  𝐸 is 

𝐻({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) = ට𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗})ଶ + 𝑐²𝑷ଶ 

𝑤𝑖𝑡ℎ 

𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗}) = ෍ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔

 

 
With 𝐻∗: ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) → 𝐻∗({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) ≡  𝐸∗ 

 
I give below with evident notation 3 kinds of approximation: 

 𝐻{௔}ே௘௪௧௢௡௜௔௡({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) = ඥ𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗})ଶ + 𝑐²𝑷ଶ 
with 

𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗}) = ෍ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

=

௔

෍(𝑚௔𝑐²)ඨ1 +
𝑐²𝑷𝒂

∗ଶ

(𝑚௔𝑐²)ଶ
௔

≈ ෍ 𝑚௔𝑐² ൭1 +
1

2

𝑐²𝑷𝒂
∗ଶ

(𝑚௔𝑐²)ଶ
൱

௔

= 𝑀𝛴𝑐² + ෍
𝑷𝒂

∗ଶ

2𝑚௔
௔

 



=> 𝐻{௔}ே௘௪௧௢௡௜௔௡({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) = ඩ൭𝑀ఀ𝑐² + ෍
𝑷𝒂

∗ଶ

2𝑚௔
௔

൱

ଶ

+ 𝑐²𝑷ଶ

= ඩ(𝑀ఀ𝑐²)ଶ ൭1 +
1

𝑀ఀ𝑐²
෍

𝑷𝒂
∗ଶ

2𝑚௔
௔

൱

ଶ

+ 𝑐²𝑷ଶ

≈ ඨ(𝑀ఀ𝑐²)ଶ ൭1 +
2

𝑀ఀ𝑐²
෍

𝑷𝒂
∗ଶ

2𝑚௔
௔

൱ + 𝑐²𝑷ଶ 

= ඨ(𝑀ఀ𝑐²)ଶ + 𝑐² ෍ ൬
𝑀ఀ

𝑚௔

൰ 𝑷𝒂
∗ଶ

௔

+ 𝑐²𝑷ଶ = ට(𝑀ఀ𝑐²)ଶ + 𝑐²𝑷ଶඩ1 +
𝑐² ∑ ቀ

𝑀ఀ

𝑚௔
ቁ 𝑷𝒂

∗ଶ
௔

(𝑀ఀ𝑐²)ଶ + 𝑐²𝑷ଶ
 

≈ ට(𝑀ఀ𝑐²)ଶ + 𝑐²𝑷ଶ ൮1 +
1

2

𝑐² ∑ ቀ
𝑀ఀ

𝑚௔
ቁ 𝑷𝒂

∗ଶ
௔

(𝑀ఀ𝑐²)ଶ + 𝑐²𝑷ଶ
൲ = ට(𝑀ఀ𝑐²)ଶ + 𝑐²𝑷ଶ +

1

ඨ1 +
𝑐²𝑷ଶ

(𝑀ఀ𝑐²)ଶ

෍ ቆ
𝑷𝒂

∗ଶ

2𝑚௔

ቇ

௔

 

=> 𝐻{௔}ே௘௪௧௢௡௜௔௡({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) ≈ ට(𝑀𝛴𝑐²)2 + 𝑐²𝑷ଶ +
1

ඨ1 +
𝑐²𝑷ଶ

(𝑀𝛴𝑐²)2

෍ ൭
𝑷𝒂

∗ଶ

2𝑚௔
൱

௔

 

𝑤𝑖𝑡ℎ 𝑀𝛴 ≡ ෍ 𝑚௔

௔

 

We have also 

1

ඨ1 +
𝑐ଶ𝑷ଶ

(𝑀ఀ𝑐ଶ)ଶ

=
1

ඨ1 +
𝑐ଶ𝛾𝟐𝑀ଶ𝑽𝐂

ଶ

(𝑀ఀ𝑐ଶ)ଶ

=
1

ඪ
1 − ቀ

𝑽𝐂

𝑐 ቁ
ଶ

+
𝑐ଶ𝑀ଶ𝑽𝐂

ଶ

(𝑀ఀ𝑐ଶ)ଶ

1 − ቀ
𝑽𝐂

𝑐
ቁ

ଶ

= ඪ
1 − ቀ

𝑽𝐂

𝑐
ቁ

ଶ

1 − ቀ
𝑽𝐂

𝑐
ቁ

ଶ

+
𝑐ଶ𝑀ଶ𝑽𝐂

ଶ

(𝑀ఀ𝑐ଶ)ଶ

=

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

1 − ቀ
𝑽𝐂

𝑐
ቁ

ଶ

1 − ቀ
𝑽𝐂

𝑐
ቁ

ଶ

+

𝑐ଶ ቆ𝑀ఀ + ∑
𝑷𝒂

∗ଶ

2𝑚௔𝑐ଶ௔ ቇ

ଶ

𝑽𝐂
ଶ

(𝑀ఀ𝑐ଶ)ଶ

 

=

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

1 − ቀ
𝑽𝐂

𝑐
ቁ

ଶ

1 − ቀ
𝑽𝐂

𝑐
ቁ

ଶ

+

𝑐ଶ𝑀ఀ
ଶ ቆ1 + ∑

𝑷𝒂
∗ଶ

2𝑚௔𝑐ଶ𝑀ఀ
௔ ቇ

ଶ

𝑽𝐂
ଶ

(𝑀ఀ𝑐ଶ)ଶ

=

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓

ለ⃓
1 − ቀ

𝑽𝐂

𝑐
ቁ

ଶ

1 − ቀ
𝑽𝐂

𝑐
ቁ

ଶ

+
𝑐ଶ𝑀ఀ

ଶ𝑽𝐂
ଶ

(𝑀ఀ𝑐ଶ)ଶ +
𝑐ଶ𝑀ఀ

ଶ ∑
𝑷𝒂

∗ଶ

𝑚௔𝑀ఀ𝑐ଶ௔ 𝑽𝐂
ଶ

(𝑀ఀ𝑐ଶ)ଶ

=

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓

ለ⃓
1 − ቀ

𝑽𝐂

𝑐
ቁ

ଶ

1 +
𝑀ఀ ∑

𝑷𝒂
∗ଶ

𝑚௔
௔ 𝑽𝐂

ଶ

(𝑀ఀ𝑐ଶ)ଶ

 

= ඨ1 − ൬
𝑽𝐂

𝑐
൰

ଶ

⎝

⎛1 −
1

2

∑
𝑷𝒂

∗ଶ

𝑚௔
௔

𝑀ఀ𝑐ଶ

𝑽𝐂
ଶ

𝑐ଶ

⎠

⎞ = ඨ1 − ൬
𝑽𝐂

𝑐
൰

ଶ

൮1 − ෍
𝑷𝒂

∗ଶ

2𝑚௔
௔

𝑽𝐂
ଶ

𝑐ଶ

𝑀ఀ𝑐ଶ
൲ =

1

𝛾(𝑽𝐂)
൮1 − ෍

𝑷𝒂
∗ଶ

2𝑚௔
௔

ቀ
𝑽𝐂

𝑐
ቁ

ଶ

𝑀ఀ𝑐ଶ
൲ 

=> 𝐻{௔}ே௘௪௧௢௡௜௔௡({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷)

= ට(𝑀𝛴𝑐²)2 + 𝑐²𝑷ଶ +
1

𝛾(𝑽𝐂)
൮1 − ෍

𝑷𝒂
∗ଶ

2𝑚௔
௔

ቀ
𝑽𝐂
𝑐

ቁ
ଶ

𝑀𝛴𝑐ଶ ൲ ෍ ൭
𝑷𝒂

∗ଶ

2𝑚௔
൱

௔

 

≈ ට(𝑀𝛴𝑐²)2 + 𝑐²𝑷ଶ +
1

𝛾(𝑽𝐂)
෍ ൭

𝑷𝒂
∗ଶ

2𝑚௔
൱

௔

 



=>𝐻{௔}ே௘௪௧௢௡௜௔௡({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) ≈ ට(𝑀𝛴𝑐²)2 + 𝑐²𝑷ଶ +
1

𝛾(𝑽𝐂)
෍ ൭

𝑷𝒂
∗ଶ

2𝑚௔
൱

௔

 

 

 

This result is surprisingly for the second term ଵ

ఊ(𝑽𝐂)
∑ ൬

𝑷𝒂
∗మ

ଶ௠ೌ
൰௔  because the dilation of time factor 

𝛾(𝑽𝐂) divides the internal (“kinematic”) energy instead of multiplying it as in the relation E= 𝛾 E*.  
 

 𝐻ே௘௪௧௢௡௜௔௡({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) ≈ (𝑀𝛴𝑐²) ቂ1 +
ଵ

ଶ

௖²

(𝑀𝛴௖²)2
ቀ∑ ቀ

𝑀𝛴

௠ೌ
ቁ 𝑷𝒂

∗ଶ
௔ + 𝑷ଶቁቃ 

= 𝑀ఀ𝑐² +
1
2

1
𝑀ఀ

൭෍ ൬
𝑀ఀ

𝑚𝑎
൰ 𝑷𝒂

∗2

𝑎

+ 𝑷2
൱ = 𝑀ఀ𝑐² + ෍ ቌ

𝑷𝒂
∗2

2𝑚𝑎
ቍ

𝑎

+
𝑷2

2𝑀ఀ

 

=>𝐻ே௘௪௧௢௡௜௔௡({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) ≈ 𝑀𝛴𝑐² + ෍
𝑷𝒂

∗ଶ

2𝑚௔
௔

+
𝑷ଶ

2𝑀𝛴

 

 𝐻஼,ே௘௪௧௢௡௜௔௡({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) = ඥ𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗})ଶ + 𝑐²𝑷ଶ 

= ඩ൥෍ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔

൩

ଶ

+ 𝑐²𝑷ଶ 

= ൥෍ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔

൩
ඪ

1 +
𝑐²𝑷ଶ

ቈ∑ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔ ቉

ଶ 

= ൥෍ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔

൩

⎝

⎜
⎛

1 +
1

2

𝑐²𝑷ଶ

ቈ∑ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔ ቉

ଶ

⎠

⎟
⎞

 

=>𝐻஼,ே௘௪௧௢௡௜௔௡({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) ≈ ෍ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔

+
1

2

𝑐²𝑷ଶ

∑ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔

 

 
 Hamiltonian equations 
We can verify if the form of the Hamiltonian verifies the Hamilton equation: 

𝜕𝐻

𝜕𝑷𝒂ᇱ
∗ ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) =

𝜕

𝜕𝑷𝒂ᇱ
∗ ට𝐻∗({𝒓𝒂

∗ }, {𝑷𝒂
∗})ଶ + 𝑐²𝑷ଶ =

= 𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗})
𝜕𝐻∗({𝒓𝒂

∗ }, {𝑷𝒂
∗})

𝜕𝑷𝒂ᇱ
∗

1

𝐻({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷)
 

With 
𝜕𝐻∗({𝒓𝒂

∗ }, {𝑷𝒂
∗})

𝜕𝑷𝒂ᇱ
∗ = ෍

𝜕

𝜕𝑷𝒂ᇱ
∗

ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ

௔

= ෍ 𝑐²𝑷𝒂
∗ 𝜕𝑷𝒂

∗

𝜕𝑷𝒂ᇱ
∗

1

𝐻௔
∗({𝒓𝒂

∗ }, {𝑷𝒂
∗})

௔

= ෍ 𝑐²𝛿௔௔

𝑷𝒂
∗

ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ଶ௔

=
𝑐²𝑷𝒂ᇱ

∗

ට(𝑚𝒂ᇱ𝑐²)ଶ + 𝑐²𝑷𝒂ᇱ
∗ଶ

=
𝑐²𝑷𝒂ᇱ

∗

𝐻௔ᇱ
∗ (𝒓𝒂ᇱ

∗ , 𝑷𝒂ᇱ
∗)

 

𝑇ℎ𝑒𝑛 



𝜕𝐻

𝜕𝑷𝒂
∗ ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) =

𝑐²𝑷𝒂
∗

𝐻௔
∗(𝒓𝒂

∗ , 𝑷𝒂
∗)

𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗})

𝐻({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷)

=
𝑐²𝑷𝒂

∗ . 𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗})

𝐻({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷). 𝐻௔
∗(𝒓𝒂

∗ , 𝑷𝒂
∗)

 

=>𝑐²
𝑷𝒂

∗

𝛾. 𝐸௔
∗ =

𝜕𝐻

𝜕𝑷𝒂
∗ ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) 

But as for the center of mass we can write 

 𝑷𝒂
∗ =  

ாೌ
∗

௖²

ௗ𝒓𝒂
∗

ௗ௧∗  with 𝐸௔
∗ = 𝛾௔

∗𝐸௔
௄ೌ

∗

 

Where 𝐸௔
௄ೌ

∗

 is the internal energy of the particle “a” in its own center of mass. This internal 
energy is equal to its mass only when the particle is free (as for the global center of mass). 

ቀ𝐸௔
௄ೌ

∗

ቁ
௔ ௜௦ ௙௥௘௘

= 𝑚௔𝑐² 

Then we can write in general 

𝑐²

𝐸௔
∗

𝑐²
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝛾. 𝐸௔
∗ =

𝜕𝐻

𝜕𝑷𝒂
∗ ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) 

1

𝛾

𝑑𝒓𝒂
∗

𝑑𝑡∗
=

𝑑𝒓𝒂
∗

𝑑𝑡
=

𝜕𝐻

𝜕𝑷𝒂
∗ ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) 

=>
𝑑𝒓𝒂

∗

𝑑𝑡
=

𝜕𝐻

𝜕𝑷𝒂
∗ ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) 

 
This is again coherent with a first Hamiltonian equation. 

 
𝜕𝐻

𝜕𝒓𝒂ᇱ
∗ ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) =

𝜕

𝜕𝒓𝒂ᇱ
∗ ට𝐻∗({𝒓𝒂

∗ }, {𝑷𝒂
∗})ଶ + 𝑐²𝑷ଶ =

=
𝐻∗({𝒓𝒂

∗ }, {𝑷𝒂
∗})

𝐻({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷)

𝜕𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗})

𝜕𝒓𝒂ᇱ
∗ = −

𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗})

𝐻({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷)

𝑑𝑷𝒂
∗

𝑑𝑡∗
 

Since డு∗({𝒓𝒂
∗ },{𝑷𝒂

∗})

డ𝒓𝒂ᇲ
∗ =

డ൤∑ 𝑷𝒂
∗೏𝒓𝒂

∗

೏೟
ି௅∗

𝒂 ൨

డ𝒓𝒂ᇲ
∗ = −

డ௅∗

డ𝒓𝒂ᇲ
∗ = −

ௗ𝑷𝒂
∗

ௗ௧∗  

𝜕𝐻

𝜕𝒓𝒂
∗ ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) = −

𝐸∗

𝛾𝐸∗

𝑑𝑷𝒂
∗

𝑑𝑡∗
= −

1

𝛾

𝑑𝑷𝒂
∗

𝑑𝑡∗
= −

𝑑𝑷𝒂
∗

𝑑𝑡
 

=>
𝑑𝑷𝒂

∗

𝑑𝑡
= −

𝜕𝐻

𝜕𝒓𝒂
∗ ({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) 

 
This is again consistent with a second Hamiltonian equation. 

We then see that for the particular variables chosen in the Lagrangian analysis  ቀௗ𝒓𝒂
∗

ௗ௧
, 𝒓𝒂

∗ ቁ we 

find what we should expect for a Hamiltonian analysis with the variable (𝑷𝒂
∗, 𝒓𝒂

∗ ), that is to 
say the Hamiltonian equation. 
 
For the center of mass we have obviously 

𝜕𝐻

𝜕𝑷
({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) =

𝜕

𝜕𝑷
ට𝐻∗({𝒓𝒂

∗ }, {𝑷𝒂
∗})ଶ + 𝑐²𝑷ଶ =

𝑐²𝑷

𝐻({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷)
 

=
𝑐²

𝐸
𝑐²

𝑽𝐂

𝐸
= 𝑽𝐂 



=>𝑽𝐂 =
𝜕𝐻

𝜕𝑷
({𝒓𝒂

∗ }, {𝑷𝒂
∗}, 𝑹𝐂, 𝑷) 

 
The second equation, as already showed (cf. [2]): 

𝑑𝑷

𝑑𝑡
=

𝜕 ∑ 𝑷𝒂
∗ 𝑑𝒓𝒂

∗

𝑑𝑡
+ 𝑷𝑽𝐂 − 𝐻′𝒂

𝜕𝑹𝐂
= −

𝜕𝐻′

𝜕𝑹𝐂

({𝒓𝒂
∗ }, {𝑷𝒂

∗}, 𝑹𝐂, 𝑷) 

 
We see that if we want to quantize any system in parallel with its center of mass, we should 
choose the quantum operator associated to the corresponding canonical couples of classical 
variables: 

 {(𝒓𝒂
∗ , 𝑷𝒂

∗)}, (𝑹𝐂, 𝑷) for a system of particles 

 ቄቀ𝜑∗,
డఝ∗

డ𝒓∗ ቁቅ , (𝑹𝐂, 𝑷) for a field (scalar for example) 

 𝑒𝑡𝑐.. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.2. Application: the electromagnetic model of the electron [3], [9 ], [23]-[25] 

Just before and during the construction of the Special Relativity , some theoretical physicists used an 
electromagnetic model of the electron in order to untangle the ball of wool constituted by different 
to date of physical theories and experiments about the electrodynamics (and the optic) of moving  
bodies. The model of electron was used by notably Lorentz and improving by Poincaré (who shares 
with Einstein the privilege to have realized the last step of the discovery/invention of Special 
Relativity, both (very different) way of thinking have their own charm) which is interesting to use at 
least to treat classically the interaction between matter and electromagnetic field without 
divergence. The latter appears indeed for a material point as showed in [1]. One can always (in a 
classical universe with matter and electromagnetism living in a static Minkowskian space-time) 
physically replace a material point by a continuum if one always works for dimensions infinitely 
larger than the dimension of the continuum. The interest is to have a clear mathematic expression 
for the mass, even if the model is actually fundamentally wrong (but the ugly last point is here 
“sufficiently” hidden). 

My interest in using this model is to see how a complex system behaves with the particular choice of 
variables and so thus to see the influence of the dynamics of the center of mass on the internal 
dynamics, in particular the mass behaviour itself. The model I decided to use is slightly different from 
the one used by Poincaré since I want to maintain the mass of the continuum without let all the mass 
to the electromagnetic energy field (as Poincaré & Lorentz & others have done). 

I will present the first attempt of the electron model which is unstable and then the one used by 
Poincaré with his internal “pressure”.  

The electron model is: 

o a continuum spherical surface in its rest frame K* characterized by a surface density of mass σ; 
o the speed of all the material points of the continuum are radial (at an instant t) 
o and the mass distribution  is spherical K*(at an instant t). 

We assume that, the internal spherical behaviour is maintained during motion, although according to 
[9], this model is in fact unstable. 

The Lagrangian is 

𝐿 ൬{𝒓𝒂(𝑡)}, ൜
𝑑𝒓𝒂

𝑑𝑡
ൠ , 𝑡൰ = ෍ ൤−𝑚௔. 𝑐

𝑑𝑠௔

𝑑𝑡
−

𝑒௔

𝑐
. 𝐴௜(𝑥௔௜)

𝑑𝑥௔௜

𝑑𝑡
൨

௔

 

=>𝐿′ ቀ{𝒓𝒂
∗ (𝑡)}, ቄ

ௗ𝒓𝒂
∗

ௗ௧
ቅ , 𝑹𝐂, 𝑽𝐂, 𝑡ቁ = −

∑ ൤
೘ೌ.೎మ

ംೌ
∗ ା௘ೌ.ఝ∗(𝒓𝒂

∗ ,௧∗)൨ೌ

ఊ(𝑽𝐂)
+ ∑

௘ೌ

௖
𝑨∗(𝒓𝒂

∗ , 𝑡∗).
ௗ𝒓𝒂

∗

ௗ௧௔  

= −
∑ ൤

೘ೌ.೎మ

ംೌ
∗ ା௘ೌ.ఝ∗(𝒓𝒂

∗ ,௧∗)൨ೌ

ఊ(𝑽𝐂)
  via the isotropy hypothesis 

= −
∬൤

഑೘
∗ .೎మ

ം∗ ାఙ೐
∗.ఝ∗(𝒓∗,௧∗)൨ௗௌ∗

ఊ(𝑽𝐂)
 since we have a continuum 



= −
൤

഑೘
∗ .೎మ

ം∗ ାఙ೐
∗.ఝ∗(𝒓∗,௧∗)൨ௌ∗

ఊ(𝑽𝐂)
 via the isotropy of the speed in K* 

= −

ಾ೸.೎మ

ം∗ ା௘.ఝ∗(௥∗,௧∗)

ఊ(𝑽𝐂)
 since the additive mass 𝑀ఀ = 𝜎௠

∗ 𝑆∗ and the charge e=𝜎௘
∗𝑆∗ are relativistic 

invariants and the distribution of material points is spherical. 

We have 𝑒. 𝜑∗(𝑟∗, 𝑡∗) = 𝐸௘௠
∗ (𝑟∗) = 𝐸௘௠,௘௤

∗ ௥೐೜
∗

௥∗  where 𝐸௘௠
∗ (𝑟∗) is the electromagnetic energy and the 

quantities with index “eq” are the associated quantities for an eventual equilibrium point. 

We have also 𝛾∗ = 𝛾∗ ቀ
ௗ௥∗

ௗ௧∗ቁ =
ଵ

ටଵି
భ

೎²
ቀ

೏ೝ∗

೏೟∗ቁ
మ

= 𝛾∗ ቀ𝛾(𝑽𝐂)
ௗ௥∗

ௗ௧
ቁ =

ଵ

ඨଵି
ം൫𝑽𝐂൯

మ

೎²
ቀ

೏ೝ∗

೏೟
ቁ

మ

= 𝛾∗ ቀ𝑽𝐂,
ௗ௥∗

ௗ௧
ቁ 

=>𝐿ᇱ ቀ{𝒓𝒂
∗ (𝑡)}, ቄ

ௗ𝒓𝒂
∗

ௗ௧
ቅ , 𝑹𝐂, 𝑽𝐂, 𝑡ቁ = 𝐿ᇱ ቀ𝑟∗,

ௗ௥∗

ௗ௧
, 𝑹𝐂, 𝑽𝐂, 𝑡ቁ = −

ଵ

ఊ(𝑽𝐂)
ቆ

ெ೸௖మ

ఊ∗ቀ𝑽𝐂,
೏ೝ∗

೏೟
ቁ

+ 𝐸௘௠,௘௤
∗ ௥೐೜

∗

௥∗ ቇ 

Which gives 

𝑷𝒄 =
𝜕𝐿ᇱ

𝜕𝑽𝐂

= 𝛾(𝑽𝐂) ቆ
∑ [𝛾௔

∗. 𝑚௔ . 𝑐ଶ + 𝑒௔ . 𝜑∗(𝒓𝒂
∗ , 𝑡∗)]௔

𝑐ଶ ቇ 𝑽𝐂 = 𝛾(𝑽𝐂) ቆ𝛾∗. 𝑀ఀ +
𝐸௘௠,௘௤

∗

𝑐ଶ

𝑟௘௤
∗

𝑟∗ ቇ 𝑽𝐂 

=>𝑷𝒄 = 𝛾(𝑽𝐂)𝑀𝑽𝐂 

With 𝑀 = 𝛾∗. 𝑀ఀ +
ா೐೘,೐೜

∗

௖మ

௥೐೜
∗

௥∗  

And 𝛾∗ = 𝛾∗ ቀ𝑽𝐂,
ௗ௥∗

ௗ௧
ቁ =

ଵ

ଵି
ം൫𝑽𝐂൯

మ

೎²
ቀ

೏ೝ∗

೏೟
ቁ

మ
 

We see that the mass is (modulo c²) the sum of the total internal free energy 𝛾∗. 𝑀ఀ  with the 

electromagnetic energy 
ா೐೘,೐೜

∗

௖మ

௥೐೜
∗

௥∗  (a potential energy).  

Moreover, the value of the mass depends of the “external” dynamics of the center of mass. 

The relativistic dynamic is: 

𝑑

𝑑𝑡
൬𝛾(𝑽𝐂)

𝐸∗

𝑐²
𝑽𝐂൰ =

𝜕

𝜕𝑹𝐂

𝐿ᇱ ൬𝑟∗,
𝑑𝑟∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂, 𝑡൰ 

 
𝑑

𝑑𝑡
൬𝛾௔

∗𝑚௔.
𝑑𝒓𝒂

∗

𝑑𝑡∗
൰ =

1

𝛾(𝑽𝐂)

𝜕

𝜕𝒓𝒂
∗ 𝐿∗ ൬{𝒓𝒂

∗ }, ൜𝛾(𝑽𝐂)
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ൰ 

=> ௗ

ௗ௧
ቀ𝛾∗𝑀ఀ .

ௗ௥∗

ௗ௧∗ቁ =
ିଵ

ఊ(𝑽𝐂)

డ

డ௥∗ ቆ
ெ೸௖మ

ఊ∗ቀ𝑽𝐂,
೏ೝ∗

೏೟
ቁ

+ 𝐸௘௠,௘௤
∗ ௥೐೜

∗

௥∗ ቇ =
ଵ

ఊ(𝑽𝐂)
𝐸௘௠,௘௤

∗ ௥೐೜
∗

௥∗మ 

=> ௗ

ௗ௧
ቀ𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

ௗ௥∗

ௗ௧
ቁ =

ଵ

ఊ(𝑽𝐂)
𝐸௘௠,௘௤

∗ ௥೐೜
∗

௥∗మ 

One can see that this model is internally radially unstable since there is only a repulsive term. 



In order to improve he model we can add to it a (Poincaré-)truncated cosmological constant [9] 
which is null everywhere but not into the spherical electron. 

The new Lagrangian is ([9] & [3]) 

𝐿ᇱ ൬𝑟∗,
𝑑𝑟∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂, 𝑡൰ = −

1

𝛾(𝑽𝐂)
ቌ

𝑀ఀ𝑐ଶ

𝛾∗ ቀ𝑽𝐂,
𝑑𝑟∗

𝑑𝑡
ቁ

+ 𝐸௘௠,௘௤
∗

𝑟௘௤
∗

𝑟∗
−

𝑐ସ

8𝜋𝑘
ම 𝛬௉ . 𝜃(𝑅∗ − 𝑟∗)ඥ−𝑔∗𝑑ଷ𝑹∗ቍ 

With 

 𝜃(𝑅∗ − 𝑟∗) ≡ 1 𝑓𝑜𝑟𝑅∗ ≤ 𝑟∗  

         ≡ 0 𝑓𝑜𝑟𝑅∗ > 𝑟∗  

But the space-time is Minkowskian and the electron is spherical in K*. Then 

𝐿ᇱ ൬𝑟∗,
𝑑𝑟∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂, 𝑡൰ = −

1

𝛾(𝑽𝐂)
ቌ

𝑀𝛴𝑐2

𝛾∗ ቀ𝑽𝐂,
𝑑𝑟∗

𝑑𝑡
ቁ

+ 𝐸௘௠,௘௤
∗

𝑟௘௤
∗

𝑟∗
−

𝑐ସ

8𝜋𝑘

4

3
𝜋𝛬௉ . 𝑟∗ଷቍ 

A false problem 

We can remark that this Lagrangian naively suggests that the interaction terms acts instantaneously 
which would be inconsistent with Relativity. But actually the interaction term comes from fields that 
act  just exactly at points where the material points are located, that is to say on the sphere and not 
at the center of the sphere. 

A digression towards some intriguing Uniform-Energy-Region 

The cosmological term in the Lagrangian is not the one used by Einstein since it is not applied to the 
whole space-time. This is very surprising for me since the general famous theorem (Lovelock) 
established that the cosmological term à la Einstein (in addition to the Ricci term) is the only one 
allowed in General Relativity in order to respect the general requirement of this theory: second order 
equation for dynamics and invariance of physical laws for any transformation of coordinates.  A 
natural question is why the addition of the Poincaré term is authorized in Relativity ? In a more 
intuitive reasoning (which allows to reveal the solution): saying that a cosmological term applied only 
to a given fixed region seems to contradict the epistemological views of General Relativity [22] saying 
in particular that any effect of a phenomenon has to be caused by a direct measurable cause. This 
direct measurable cause has to be a physical phenomenon, governed by dynamical equations, which 
interact with other fields and matters (that is why reference frame must not be allowed to influence 
phenomena via inertial forces, the equivalence principle permitting precisely to make the latters 
dynamic by unifying them with the dynamical field of gravity).  The solution to my problem is 
therefore that the boundary of the region, where the Poincaré pressure term is applied, is 
dynamically coupled with the distribution of the material system localized in the region.  This has an 
interesting consequence: General Relativity allows a priori the existence of an arbitrary number n of 
deformed closed surfaces surrounding internal regions, of volume ∭ 𝜃(‖𝑹𝒏‖ − ‖𝒓𝒏‖)ඥ−𝑔. 𝑑ଷ𝑹𝒏 , 
each containing a “Constant-cosmological” term 𝛬௡ with an arbitrary value. This in the condition that 



all these borders are dynamical coupled with a border variable  𝒓𝒏 . Explicitly, General Relativity 
permits an action as 

𝑆[{𝑔௜௞(𝑥, 𝑡)}, {𝑟௡(𝑡)}]

=
−𝑐ଷ

16𝜋𝑘
න ම(𝑅 − 2𝛬ா)ඥ−𝑔𝑑Ω + ෍

𝑐ସ

8𝜋𝑘
න ම 𝛬௡. 𝜃(‖𝑹𝒏‖ − ‖𝒓𝒏‖)ඥ−𝑔. 𝑑ଷ𝑹𝒏

௡

𝑑𝑡 + 𝑆[{𝑟௡(𝑡), … }] 

Thus, Lovelock theorem applied, as it should, to a free gravitation field and the other “cosmological” 
terms are not affected by it since they necessitate the use of other dynamical variables. 

Of course, although allowed, the other cosmological terms are not very “natural” because we have to 
add them arbitrary by hand. However they are not more “unnatural” than the complex topologies 
already often used and a priori allowed. If one accepts such new terms we must therefore complete 
the action with another part implying the dynamic of a 2D membrane for which every point behaves 
as a material point, each providing a “ds” term in the action. Hence, this membrane is sensitive to (as 
it should) the gravitation field (and a priori only to it) and is deformed by it. We can imagine a space 
time bathed by these Uniform-Energy-Regions. The problem of this kind of Uniform-Energy-Regions 
is the instabilities of their shape since they behave internally like a dynamical min-de-sitter (or anti-
de-sitter) universe and not like a wiser Einstein-static one.  Another problem that comes in mind is 
the possible appearance of gravitational singularities when 2 free point of the same (infinitely thin 
surface) surface (or even several surface) meet at the same point during their “free” movement (but 
this problem can be maybe cured by a quantum “bandage”). In spite of all these oddities, it is 
important to keep in mind (surely already known, perhaps by Dirac) all the mathematical possibilities 
permitted by the standard paradigm of physics, which is still today partly constituted by classical 
General Relativity. After a reading of the Jean Pierre Luminet’s book [17], it seems that these 
speculations look a bit like the concept of gravastars which were conceptually invented in 2001 by 
Mazur & Mottola: Is “the Uniform-Energy-Regions” the same speculative concept as gravastars ? Is 
the gravastar the rebirth of the old Lorentz-Poincaré electron in an astrophysical domain? One of the 
differences would be that the Uniform-Energy-Regions are put by hand as one can put by hand a 
cosmological constant or the existence of some material points instead of being the result of a 
dynamical collapse of an existing massive star (with some exotic-innovative behaviour).  

 Returning to our (simpler) initial problem 

𝐿ᇱ ൬𝑟∗,
𝑑𝑟∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂, 𝑡൰ = −

1

𝛾(𝑽𝐂)
ቌ

𝑀𝛴𝑐2

𝛾∗ ቀ𝑽𝐂,
𝑑𝑟∗

𝑑𝑡
ቁ

+ 𝐸௘௠,௘௤
∗

𝑟௘௤
∗

𝑟∗
−

𝑐ସ

2𝑘

1

3
𝛬௉ . 𝑟∗ଷቍ 

Which gives 

𝑷𝒄 =
𝜕𝐿ᇱ

𝜕𝑽𝐂

= 𝛾(𝑽𝐂) ቆ
∑ [𝛾௔

∗. 𝑚௔ . 𝑐ଶ + 𝑒௔ . 𝜑∗(𝒓𝒂
∗ , 𝑡∗)]௔

𝑐ଶ ቇ 𝑽𝐂

= 𝛾(𝑽𝐂) ቆ𝛾∗. 𝑀ఀ +
𝐸௘௠,௘௤

∗

𝑐ଶ

𝑟௘௤
∗

𝑟∗
−

𝑐ଶ

2𝑘

1

3
𝛬௉ . 𝑟∗ଷቇ 𝑽𝐂 

 

 



=>𝑷𝒄 = 𝛾(𝑽𝐂)𝑀𝑽𝐂 

With 𝑀 = 𝛾∗. 𝑀ఀ +
ா೐೘,೐೜

∗

௖మ

௥೐೜
∗

௥∗ −
௖మ

଺௞
𝛬௉. 𝑟∗ଷ 

And 𝛾∗ = 𝛾∗ ቀ𝑽𝐂,
ௗ௥∗

ௗ௧
ቁ =

ଵ

ඨଵି
ം൫𝑽𝐂൯

మ

೎²
ቀ

೏ೝ∗

೏೟
ቁ

మ

 

We see that the mass is (modulo c²) the sum of the total internal free energy with the 
electromagnetic energy (which behaves as a potential energy) and with the pressure-Poincaré 
energy.  

Moreover, the value of the mass depends of the “external” dynamics of the center of mass. 

The relativistic dynamic for the internal part is now: 

𝑑

𝑑𝑡
൬𝛾௔

∗𝑚௔.
𝑑𝒓𝒂

∗

𝑑𝑡∗
൰ =

1

𝛾(𝑽𝐂)

𝜕

𝜕𝒓𝒂
∗ 𝐿∗ ൬{𝒓𝒂

∗ }, ൜𝛾(𝑽𝐂)
𝑑𝒓𝒂

∗

𝑑𝑡
ൠ൰ 

=> ௗ

ௗ௧
ቀ𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

ௗ௥∗

ௗ௧
ቁ =

ିଵ

ఊ(𝑽𝐂)

డ

డ௥∗ ቆ
ெ೸௖మ

ఊ∗ቀ𝑽𝐂,
೏ೝ∗

೏೟
ቁ

+ 𝐸௘௠,௘௤
∗ ௥೐೜

∗

௥∗ −
௖ర

଺௞
𝛬௉ . 𝑟∗ଷቇ 

=
1

𝛾(𝑽𝐂)
𝐸௘௠,௘௤

∗
𝑟௘௤

∗

𝑟∗ଶ +
1

𝛾(𝑽𝐂)

𝑐ସ

2𝑘
𝛬௉ . 𝑟∗ଶ 

=> ௗ

ௗ௧
ቀ𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

ௗ௥∗

ௗ௧
ቁ =

ଵ

ఊ(𝑽𝐂)
𝐸௘௠,௘௤

∗ ௥೐೜
∗

௥∗మ +
ଵ

ఊ(𝑽𝐂)

௖ర

ଶ௞
𝛬௉ . 𝑟∗ଶ 

In addition to the repulsive Coulomb term, the Poincaré term add a pressure force 

 𝑆∗. 𝑝 =
ଵ

ఊ(𝑽𝐂)

௖ర

ଶ௞
𝛬௉ . 𝑟∗ଶ 

=> 𝑝 =

భ

ം(𝑽𝐂)

೎ర

మೖ
௸ು.௥∗మ

4𝜋௥∗మ =
ଵ

ఊ(𝑽𝐂)

௖ర

଼𝜋௞
𝛬௉ 

In order to stabilize the sphere, we put 𝛬௉ = −|𝛬௉| 

Hence we have 

𝑑

𝑑𝑡
൬𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
൰ =

1

𝛾(𝑽𝐂)
𝐸௘௠,௘௤

∗
𝑟௘௤

∗

𝑟∗ଶ −
1

𝛾(𝑽𝐂)

𝑐ସ

2𝑘
|𝛬௉|. 𝑟∗ଶ  

The internal equilibrium is realized when (we put by definition 𝑟∗ = 𝑟௘௤
∗ ): 

ቆ
1

𝛾(𝑽𝐂)
𝐸௘௠,௘௤

∗
𝑟௘௤

∗

𝑟∗ଶ =
1

𝛾(𝑽𝐂)

𝑐ସ

2𝑘
|𝛬௉|. 𝑟∗ଶቇ

௥∗ ୀ௥೐೜
∗

 

<=> 𝐸௘௠,௘௤
∗ =

௖ర

ଶ௞
|𝛬௉|. 𝑟௘௤

∗ ଷ 



<=>𝑟௘௤
∗ ଷ = 2

𝑘

|𝛬௉|𝑐ସ
𝐸௘௠,௘௤

∗  

Moreover 

=> ௗ

ௗ௧
ቀ𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

ௗ௥∗

ௗ௧
ቁ =

ଵ

ఊ(𝑽𝐂)
𝐸௘௠,௘௤

∗ ௥೐೜
∗

௥∗మ −
ଵ

ఊ(𝑽𝐂)
ቀ

௖ర

ଶ௞
|𝛬௉|ቁ . 𝑟∗ଶ =

ଵ

ఊ(𝑽𝐂)
𝐸௘௠,௘௤

∗ ௥೐೜
∗

௥∗మ −
ଵ

ఊ(𝑽𝐂)
൬

ா೐೘,೐೜
∗

௥೐೜
∗ య ൰ . 𝑟∗ଶ 

=>
𝑑

𝑑𝑡
൬𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
൰ =

1

𝛾(𝑽𝐂)
𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ 

𝑀 = 𝛾∗. 𝑀ఀ +
𝐸௘௠,௘௤

∗

𝑐ଶ

𝑟௘௤
∗

𝑟∗
−

𝑐ଶ

6𝑘
𝛬௉ . 𝑟∗ଷ = 𝛾∗. 𝑀ఀ +

𝐸௘௠,௘௤
∗

𝑐ଶ

𝑟௘௤
∗

𝑟∗
+

1

3
ቆ

𝑐ଶ

2𝑘
|𝛬௉|ቇ . 𝑟∗ଷ

= 𝛾∗. 𝑀ఀ +
𝐸௘௠,௘௤

∗

𝑐ଶ

𝑟௘௤
∗

𝑟∗
+

1

3
ቆ

𝐸௘௠,௘௤
∗

𝑐ଶ𝑟௘௤
∗ ଷቇ . 𝑟∗ଷ = 𝛾∗. 𝑀ఀ +

𝐸௘௠,௘௤
∗

𝑐ଶ ቆ
𝑟௘௤

∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇ 

=>𝑀 = 𝛾∗. 𝑀ఀ +
𝐸௘௠,௘௤

∗

𝑐ଶ ቆ
𝑟௘௤

∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇ 

The mass is a function 𝑀 = 𝑀 ቀ𝑟∗,
ௗ௥∗

ௗ௧
, 𝑽𝐂ቁ 

For the equilibrium point  we have the well known result (with the famous intriguing 4/3 term). 

𝑀௘௤ = 𝛾∗. 𝑀ఀ +
4

3

𝐸௘௠,௘௤
∗

𝑐ଶ
= ቆ𝑀ఀ +

4

3

𝐸௘௠,௘௤
∗

𝑐ଶ ቇ
௜௙ 

ௗ௥∗

ௗ௧
ୀ଴

 

Hence, as already many time said, for example in [3] & [9], the a priori astonishing factor mass ସ
ଷ
 is 

due to the necessity of a confining term (Poincaré term) which add an energical contribution. 

𝑀௘௤ = (𝛾∗. 𝑀ఀ)ெ௔௧௘௥௜௔௟ ௣௢௜௡௧௦ + ൬
𝐸௘௠,௘௤

∗

𝑐ଶ
൰

ா௟௘௖௧௥௢௠௔௚௡௘௧௜௖ ௙௜௘௟ௗ 
+ ൬

1

3

𝐸௘௠,௘௤
∗

𝑐ଶ
൰

௉௢௜௡௖௔௥é ௖௢௡௙௜௡௠௘௡௧
 

Another look  at the internal equation of motion of the sphere  

We start from the equation 

𝛾(𝑽𝐂)
𝑑

𝑑𝑡
൬𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ   

The quantity  𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .
ௗ௥∗

ௗ௧
 is physically clear as it is the Lagrangian well-defined internal 

momentum  of the sphere: 

𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .
𝑑𝑟∗

𝑑𝑡
=  𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡∗
= 𝑃∗ =

𝜕

𝜕
𝑑𝑟∗

𝑑𝑡

𝐿ᇱ ൬𝑟∗,
𝑑𝑟∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂, 𝑡൰ 

We can re-express it as 

 



𝑃∗ = 𝑀௄
௄∗

.
𝑑𝑟∗

𝑑𝑡
 

Where  𝑀௄
௄∗

≡ 𝛾(𝑽𝐂). 𝛾∗𝑀ఀ is the inertia of 𝑟∗ "𝑠𝑒𝑒𝑛 𝑓𝑟𝑜𝑚 𝐾 " (=with its time t) 

The equation can be re-written  

𝛾(𝑽𝐂)
𝑑

𝑑𝑡
൬𝑀௄

௄∗
.
𝑑𝑟∗

𝑑𝑡
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ 

<=> 𝛾(𝑽𝐂)
𝑑𝑀௄

௄∗

𝑑𝑡
.
𝑑𝑟∗

𝑑𝑡
+ 𝛾(𝑽𝐂)𝑀௄

௄∗
.

𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ 

<=> 𝑀௄
௄∗

.
𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ =

𝐸௘௠,௘௤
∗

𝛾(𝑽𝐂)
ቆ

𝑟௘௤
∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ −

𝑑𝑀௄
௄∗

𝑑𝑡
.
𝑑𝑟∗

𝑑𝑡
 

𝑀௄
௄∗ 𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ = 𝜗. 𝐸𝑒𝑚,𝑒𝑞

∗ ቆ
𝑟𝑒𝑞

∗

𝑟∗2 −
𝑟∗2

𝑟𝑒𝑞
∗ 3ቇ − 𝛼.

𝑑𝑟∗

𝑑𝑡
 

With: 

 𝑀௄
௄∗

≡ 𝛾(𝑽𝐂). 𝛾∗𝑀ఀ  

 𝛼 = 𝛼 ൬𝑽𝐂, 𝒂𝐂,
𝑑𝑟∗

𝑑𝑡
,

𝑑
2

𝑟∗

𝑑𝑡
2 ൰ =

𝑑𝑀𝐾
𝐾∗

𝑑𝑡
 

 𝜗 = 𝜗(𝑽𝐂) =
ଵ

ఊ(𝑽𝐂)మ 

We want express the coefficient of the viscous term 𝛼 in term of Energy and internal energy (or 
mass). 

𝐸 = 𝛾(𝑽𝐂)𝐸∗ = 𝛾(𝑽𝐂)𝑀𝑐² = 𝛾(𝑽𝐂) ቌ𝛾∗. 𝑀ఀ𝑐ଶ + 𝐸௘௠,௘௤
∗ ቆ

𝑟௘௤
∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇቍ 

= 𝑀௄
௄∗

𝑐ଶ + 𝛾(𝑽𝐂)𝐸௘௠,௘௤
∗ ቆ

𝑟௘௤
∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇ 

=>
𝑑𝐸

𝑑𝑡
=

𝑑𝑀௄
௄∗

𝑑𝑡
. 𝑐ଶ +

𝑑𝛾(𝑽𝐂)

𝑑𝑡
𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇ + 𝛾(𝑽𝐂)𝐸௘௠,௘௤

∗
𝑑

𝑑𝑡
ቆ

𝑟௘௤
∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇ 

=
𝑑𝑀௄

௄∗

𝑑𝑡
. 𝑐ଶ +

𝑑𝛾(𝑽𝐂)

𝑑𝑡
𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇ − 𝛾(𝑽𝐂)𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ

𝑑𝑟∗

𝑑𝑡
 

 

=>
𝑑𝑀௄

௄∗

𝑑𝑡
=

1

𝑐ଶ

𝑑𝐸

𝑑𝑡
−

1

𝑐ଶ

𝑑𝛾(𝑽𝐂)

𝑑𝑡
𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇ +

1

𝑐ଶ
 𝛾(𝑽𝐂)𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ

𝑑𝑟∗

𝑑𝑡
 

=
1

𝑐ଶ

𝑑𝐸

𝑑𝑡
−

1

𝑐ଶ

𝑑𝛾(𝑽𝐂)

𝑑𝑡
[𝑀𝑐ଶ − 𝛾∗. 𝑀ఀ𝑐ଶ] +

1

𝑐ଶ
 𝛾(𝑽𝐂)𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ

𝑑𝑟∗

𝑑𝑡
 

 
Then 



𝑀௄
௄∗

.
𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ =

𝐸௘௠,௘௤
∗

𝛾(𝑽𝐂)
ቆ

𝑟௘௤
∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ

− ቈ
1

𝑐ଶ

𝑑𝐸

𝑑𝑡
−

1

𝑐ଶ

𝑑𝛾(𝑽𝐂)

𝑑𝑡
[𝑀𝑐ଶ − 𝛾∗. 𝑀ఀ𝑐ଶ] +

1

𝑐ଶ
 𝛾(𝑽𝐂)𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ

𝑑𝑟∗

𝑑𝑡
቉ .

𝑑𝑟∗

𝑑𝑡
 

 

<=> 𝑀௄
௄∗

.
𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ = 

= 𝐸௘௠,௘௤
∗ ቆ

𝑟௘௤
∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ ቆ

1

𝛾(𝑽𝐂)
−

1

𝑐ଶ
 𝛾(𝑽𝐂) ൬

𝑑𝑟∗

𝑑𝑡
൰

𝟐

ቇ − ൥
1

𝑐ଶ

𝑑𝐸

𝑑𝑡
−

1

𝑐ଶ

𝑑𝛾(𝑽𝐂)

𝑑𝑡
[𝑀𝑐ଶ − 𝛾∗. 𝑀ఀ𝑐ଶ]൩ .

𝑑𝑟∗

𝑑𝑡
 

Using 
 

 𝛾∗ = 𝛾∗ ቀ𝑽𝐂,
ௗ௥∗

ௗ௧
ቁ =

ଵ

ඨଵି
ം൫𝑽𝐂൯

మ

೎మ ቀ
೏ೝ∗

೏೟
ቁ

మ

 

=> 𝛾∗ଶ =
1

1 −
𝛾(𝑽𝐂)ଶ

𝑐²
ቀ

𝑑𝑟∗

𝑑𝑡
ቁ

ଶ 

 𝐸 = 𝛾𝐸∗  

=>
ௗா

ௗ௧
=

ௗఊ(𝑽𝐂)

ௗ௧
𝐸∗ + 𝛾(𝑽𝐂)

ௗா∗

ௗ௧
 

<=>
1

𝛾(𝑽𝐂)

𝑑𝐸

𝑑𝑡
=

1

𝛾(𝑽𝐂)

𝑑𝛾(𝑽𝐂)

𝑑𝑡
𝐸∗ +

𝑑𝐸∗

𝑑𝑡
 

 

<=>
𝑑𝛾(𝑽𝐂)

𝑑𝑡
=

1

𝐸∗

𝑑𝐸

𝑑𝑡
− 𝛾(𝑽𝐂)

1

𝐸∗

𝑑𝐸∗

𝑑𝑡
 

Thus 

𝑀௄
௄∗

.
𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ =

1

𝛾(𝑽𝐂)𝛾∗ଶ 𝐸௘௠,௘௤
∗ ቆ

𝑟௘௤
∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ

− ൥
1

𝑐ଶ

𝑑𝐸

𝑑𝑡
−

1

𝑐ଶ
൬

1

𝐸∗

𝑑𝐸

𝑑𝑡
− 𝛾(𝑽𝐂)

1

𝐸∗

𝑑𝐸∗

𝑑𝑡
൰ [𝑀𝑐ଶ − 𝛾∗. 𝑀ఀ𝑐ଶ]൩ .

𝑑𝑟∗

𝑑𝑡
 

=
1

𝛾(𝑽𝐂)𝛾∗ଶ 𝐸௘௠,௘௤
∗ ቆ

𝑟௘௤
∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ

−
1

𝑐ଶ ൤
𝑑𝐸

𝑑𝑡
− ൬

1

𝐸∗

𝑑𝐸

𝑑𝑡
[𝑀𝑐ଶ − 𝛾∗. 𝑀ఀ𝑐ଶ] − 𝛾(𝑽𝐂)

1

𝐸∗

𝑑𝐸∗

𝑑𝑡
[𝑀𝑐ଶ − 𝛾∗. 𝑀ఀ𝑐ଶ]൰൨ .

𝑑𝑟∗

𝑑𝑡
 

=
1

𝛾(𝑽𝐂)𝛾∗ଶ 𝐸௘௠,௘௤
∗ ቆ

𝑟௘௤
∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ

−
1

𝑐ଶ ൥൬1 −
1

𝑀𝑐ଶ
[𝑀𝑐ଶ − 𝛾∗. 𝑀ఀ𝑐ଶ]൰

𝑑𝐸

𝑑𝑡
+ 𝛾(𝑽𝐂)

1

𝑀𝑐ଶ

𝑑𝑀𝑐ଶ

𝑑𝑡
[𝑀𝑐ଶ − 𝛾∗. 𝑀ఀ𝑐ଶ]൩ .

𝑑𝑟∗

𝑑𝑡
 

=
1

𝛾(𝑽𝐂)𝛾∗ଶ 𝐸௘௠,௘௤
∗ ቆ

𝑟௘௤
∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ − ൭

𝛾∗. 𝑀ఀ

𝑀𝑐ଶ

𝑑𝐸

𝑑𝑡
+ 𝛾(𝑽𝐂)

𝑑𝑀

𝑑𝑡
൬1 −

𝛾∗. 𝑀ఀ

𝑀
൰൱ .

𝑑𝑟∗

𝑑𝑡
 

 
 
 
 
 
 

=> 



𝑀௄
௄∗ 𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ = 𝜗. 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ − 𝛼.

𝑑𝑟∗

𝑑𝑡
 

 𝑀௄
௄∗

≡ 𝛾(𝑽𝐂). 𝛾∗𝑀ఀ  

 𝛼 = 𝛼 ቀ𝑽𝐂, 𝒂𝐂,
ௗ௥∗

ௗ௧
,

ௗమ௥∗

ௗ௧మ ቁ 

=
𝛾∗. 𝑀ఀ

𝑀𝑐ଶ

𝑑𝐸

𝑑𝑡
+ 𝛾(𝑽𝐂)

𝑑𝑀

𝑑𝑡
൬1 −

𝛾∗. 𝑀ఀ

𝑀
൰ = ൤𝛾(𝑽𝐂)

𝑑𝑀

𝑑𝑡
൬1 −

𝛾∗. 𝑀ఀ

𝑀
൰൨

௜௙ ாୀ௖௧௘
 

              = ఊ∗.ெ೸

ா

ௗா

ௗ௧
+ 𝛾(𝑽𝐂)

ଵ

௖²

ௗா∗

ௗ௧
ቀ1 −

ఊ∗.ெ೸௖²

ா
ቁ = ቂ𝛾(𝑽𝐂)

ଵ

௖²

ௗா∗

ௗ௧
ቀ1 −

ఊ∗.ெ೸௖²

ா
ቁቃ

௜௙ ாୀ௖௧௘
 

 𝜗 = 𝜗 ቀ𝑽𝐂,
ௗ௥∗

ௗ௧
ቁ =

ଵ

ఊ(𝑽𝐂)ఊ∗మ 

Or in a “more internal” point of view  

𝛾∗𝑀ఀ

𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ = 𝜗. 𝐸𝑒𝑚,𝑒𝑞

∗ ቆ
𝑟𝑒𝑞

∗

𝑟∗2 −
𝑟∗2

𝑟𝑒𝑞
∗ 3ቇ − 𝛼.

𝑑𝑟∗

𝑑𝑡
 

 𝛼 = 𝛼 ቀ𝑽𝐂, 𝒂𝐂,
ௗ௥∗

ௗ௧
,

ௗమ௥∗

ௗ௧మ ቁ = ቂ
ௗெ

ௗ௧
ቀ1 −

ఊ∗.ெ೸

ெ
ቁቃ

௜௙ ாୀ௖௧௘
 

                                              = ቈ
1

𝑐²

𝑑𝐸∗

𝑑𝑡
ቆ1 −

𝛾∗. 𝑀ఀ𝑐²

𝐸
ቇ቉

௜௙ ாୀ௖௧௘

 

 𝜗 = 𝜗 ቀ𝑽𝐂,
ௗ௥∗

ௗ௧
ቁ =

ଵ

ఊ(𝑽𝐂)మఊ∗మ 

 
With this effective Newtonian form one can interpret more intuitively the internal relativistic 
equation of the sphere: 

 The latter has an apparent mass 𝛾∗𝑀ఀ  (=internal kinetic energy of the material system) 
 a factor 𝜗 affecting the repulsive Coulombian force and the attractive Poincaré-pressure 

force 

 a viscous term -𝛼.
ௗ௥∗

ௗ௧
 due to the exchange between  internal energy (the mass) and the total 

energy since it is proportional to the rate of increase of internal energy ௗா∗

ௗ௧
. 

It is very surprising that if internal energy increases, the viscous term increases (!) (ఊ∗.ெ೸௖²

ா
< 1). This 

is the total opposite of what I expected since one might think that the representative of this internal 

dynamics ௗ௥∗

ௗ௧
 must intuitively “accelerate” (≡ "𝑟∗ accelerate relative to t”). But we must remember 

that ௗ௥∗

ௗ௧
 is actually not the representative of the true internal dynamics which is played by 

ௗ௥∗

ௗ௧∗ = 𝛾(𝑽𝐂)
ௗ௥∗

ௗ௧
. Moreover if 𝐸∗increases, then 𝛾(𝑽𝐂)decreases (𝐸 =  𝛾(𝑽𝐂)𝐸∗ = 𝑐𝑡𝑒), and, in this 

case,  𝜗ᇱᇱand thus the Coulombian force increases. It is then finally not obvious that the accumulation 

of internal energy have to “accelerate” the quantity  ௗ௥∗

ௗ௧
. 

We can still notice that, if 𝐸∗ increases, 𝛾(𝑽𝐂) decreases (𝐸 =  𝛾(𝑽𝐂)𝐸∗ = 𝑐𝑡𝑒) and then  



ௗ௥∗

ௗ௧
=

ଵ

ఊ(𝑽𝐂)

ௗ௥∗

ௗ௧∗ seems to decrease (for a given ௗ௥∗

ௗ௧∗). But the growth of 𝐸∗ can increase  ௗ௥∗

ௗ௧∗  which 

counterbalance the time dilation effect. So the reasoning is finally consistent.  

Instability of the expression of the viscous force with respect to the studied quantity 

Despite the apparent paradoxical behaviour of the viscous force above, I will now show the radical 
modification of the viscous force if we change slightly the studied quantity:   

 𝛾∗𝑀ఀ .
ௗ௥∗

ௗ௧∗ = 𝛾(𝑽𝐂)𝑀ఀ .
ௗ௥∗

ௗ௧
   

 or 𝑀ఀ .
ௗ௥∗

ௗ௧
 

 or 𝛾∗ 𝑀ఀ .
ௗ௥∗

ௗ௧
 

Now, we study the equation associated to 𝛾∗ 𝑀ఀ .
ௗ௥∗

ௗ௧
 

In we start again from  

𝛾(𝑽𝐂)
𝑑

𝑑𝑡
൬𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ   

(which is equivalent to ௗ

ௗ௧∗ ቀ𝛾∗𝑀ఀ .
ௗ௥∗

ௗ௧∗ቁ = 𝐸௘௠,௘௤
∗ ൬

௥೐೜
∗

௥∗మ −
௥∗మ

௥೐೜
∗ య൰) 

<=> 𝛾(𝑽𝐂)
𝑑𝛾(𝑽𝐂)

𝑑𝑡
. 𝛾∗𝑀ఀ.

𝑑𝑟∗

𝑑𝑡
+ 𝛾(𝑽𝐂)ଶ𝛾∗𝑀ఀ.

𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ + 𝛾(𝑽𝐂)ଶ

𝑑𝛾∗

𝑑𝑡
𝑀ఀ.

𝑑𝑟∗

𝑑𝑡
= 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ 

<=> 𝛾(𝑽𝐂)ଶ𝛾∗𝑀ఀ .
𝑑ଶ𝑟∗

𝑑𝑡ଶ
+ 𝛾(𝑽𝐂)ଶ

𝑑𝛾∗

𝑑𝑡
𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
= 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ −

𝑑𝛾(𝑽𝐂)

𝑑𝑡
𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
 

<=> 𝛾(𝑽𝐂)ଶ
𝑑

𝑑𝑡
൬𝛾∗𝑀ఀ

𝑑𝑟∗

𝑑𝑡
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ −

𝑑𝛾(𝑽𝐂)

𝑑𝑡
𝛾(𝑽𝐂). 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
 

But ௗఊ(𝑽𝐂)

ௗ௧
=

ଵ

ா∗

ௗா

ௗ௧
− 𝛾(𝑽𝐂)

ଵ

ா∗

ௗா∗

ௗ௧
 

Thus 

𝑑

𝑑𝑡
൬𝛾∗𝑀ఀ

𝑑𝑟∗

𝑑𝑡
൰ = 𝜗. 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ − 𝛼.

𝑑𝑟∗

𝑑𝑡
 

 𝛼 = 𝛼 ቀ𝑽𝐂, 𝒂𝐂,
ௗ௥∗

ௗ௧
ቁ =

ଵ

ா∗

ௗா

ௗ௧
− 𝛾(𝑽𝐂)

ଵ

ா∗

ௗா∗

ௗ௧
 

                                          = ቀ−
ఊ∗ெ೸

ா∗

ௗா∗

ௗ௧
ቁ

௜௙ ாୀ௖௧௘
= ቀ−

ఊ∗ெ೸

ெ

ௗெ

ௗ௧
ቁ

௜௙ ாୀ௖
 

 𝜗 = 𝜗(𝑽𝐂) =
ଵ

ఊ(𝑽𝐂)మ 

One can remark the change of the sign of the viscous force. Here, an increase of the internal energy 

is traduced by an increase of the quantity 𝛾∗𝑀ఀ
ௗ௥∗

ௗ௧
. 



In this sense the latter quantity maintain characteristics more in accordance with our intuition. But of 
course, whatever the quantity used, the dynamics of the different point of view express a total 
physical equivalence. 

A summary: 

If we studied: 

 𝑃∗ = 𝛾∗𝑀ఀ .
ௗ௥∗

ௗ௧∗ = 𝛾(𝑽𝐂)𝑀ఀ.
ௗ௥∗

ௗ௧
 then : 

o the equation of motion is 𝛾(𝑽𝐂)
ௗ

ௗ௧
ቀ𝛾(𝑽𝐂)𝛾∗𝑀ఀ .

ௗ௥∗

ௗ௧
ቁ = 𝐸௘௠,௘௤

∗ ൬
௥೐೜

∗

௥∗మ −
௥∗మ

௥೐೜
∗ య൰ 

o with no viscous force: 𝐹௩ = 0 

 𝑀ఀ
ௗ௥∗

ௗ௧
 then : 

o the equation of motion is 𝛾∗ ௗ

ௗ௧
ቀ𝑀ఀ

ௗ௥∗

ௗ௧
ቁ = 𝜗. 𝐸௘௠,௘௤

∗ ൬
௥೐೜

∗

௥∗మ −
௥∗మ

௥೐೜
∗ య൰ − 𝛼.

ௗ௥∗

ௗ௧
 

o with viscous force  𝐹௩ = −𝛼.
ௗ௥∗

ௗ௧
= −

ௗெ

ௗ௧
ቀ1 −

ఊ∗.ெ೸

ெ
ቁ .

ௗ௥∗

ௗ௧
 

 𝛾∗𝑀ఀ
ௗ௥∗

ௗ௧
 then : 

o the equation of motion is ௗ

ௗ௧
ቀ𝛾∗𝑀ఀ

ௗ௥∗

ௗ௧
ቁ = 𝜗. 𝐸௘௠,௘௤

∗ ൬
௥೐೜

∗

௥∗మ −
௥∗మ

௥೐೜
∗ య൰ − 𝛼.

ௗ௥∗

ௗ௧
 

o with viscous force  𝐹௩ = −𝛼.
ௗ௥∗

ௗ௧
= + ቀ

ఊ∗ெ೸

ெ

ௗெ

ௗ௧
ቁ

ௗ௥∗

ௗ௧
 

---------------------------------------- 

Consistency check (at least for myself) with another way of computation : 

Since  

𝑑ଶ

𝑑𝑡ଶ
= −𝛾(𝑽𝐂)

𝑽𝐂. 𝒂𝐂

𝑐²
൬

𝑑

𝑑𝑡∗
൰ +

1

𝛾(𝑽𝐂)ଶ

𝑑

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰ 

 
------------------------------------ 

 
𝑑ଶ

𝑑𝑡ଶ
=

𝑑

𝑑𝑡
൬

𝑑

𝑑𝑡
൰ =

1

𝛾(𝑽𝐂)

𝑑

𝑑𝑡∗
൬

1

𝛾(𝑽𝐂)

𝑑

𝑑𝑡∗
൰ 

=
1

𝛾(𝑽𝐂)
ቈ
𝑑𝛾(𝑽𝐂)ିଵ

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰ +

1

𝛾(𝑽𝐂)

𝑑

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰቉ 

=
1

𝛾(𝑽𝐂)
ቈ

𝑑𝑡

𝑑𝑡∗

𝑑𝛾(𝑽𝐂)ିଵ

𝑑𝑡
൬

𝑑

𝑑𝑡∗
൰ +

1

𝛾(𝑽𝐂)

𝑑

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰቉ 

=
1

𝛾(𝑽𝐂)

⎣
⎢
⎢
⎢
⎡

𝛾(𝑽𝐂)

𝑑 ቆ1 −
𝑽𝐂

𝟐

𝑐²
ቇ

ଵ/ଶ

𝑑𝑡
൬

𝑑

𝑑𝑡∗
൰ +

1

𝛾(𝑽𝐂)

𝑑

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰

⎦
⎥
⎥
⎥
⎤

 

=
1

𝛾(𝑽𝐂)
൥𝛾(𝑽𝐂)

1

2
൬−2

𝑽𝐂

𝑐²
൰ 𝒂𝐂 ቆ1 −

𝑽𝐂
𝟐

𝑐²
ቇ

ିଵ/ଶ

൬
𝑑

𝑑𝑡∗
൰ +

1

𝛾(𝑽𝐂)

𝑑

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰൩ 

=
1

𝛾(𝑽𝐂)
൤−𝛾(𝑽𝐂)ଶ

𝑽𝐂. 𝒂𝐂

𝑐²
൬

𝑑

𝑑𝑡∗
൰ +

1

𝛾(𝑽𝐂)

𝑑

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰൨ 

= −𝛾(𝑽𝐂)
𝑽𝐂. 𝒂𝐂

𝑐²
൬

𝑑

𝑑𝑡∗
൰ +

1

𝛾(𝑽𝐂)ଶ

𝑑

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰ 

------------------------------------ 
 

 

=> 𝛾(𝑽𝐂)ଶ
𝑑

𝑑𝑡
൬𝛾∗𝑀ఀ

𝑑𝑟∗

𝑑𝑡
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ −

𝑽𝐂. 𝒂𝐂

𝑐²
𝛾(𝑽𝐂)ସ. 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
 

𝛾(𝑽𝐂)ଶ
𝑑𝛾∗

𝑑𝑡
𝑀ఀ

𝑑𝑟∗

𝑑𝑡
+ 𝛾(𝑽𝐂)ଶ𝛾∗𝑀ఀ

𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ −

𝑽𝐂. 𝒂𝐂

𝑐²
𝛾(𝑽𝐂)ସ. 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
 

𝛾(𝑽𝐂)ଶ
𝑑𝛾∗

𝑑𝑡
𝑀ఀ

𝑑𝑟∗

𝑑𝑡
+ 𝛾(𝑽𝐂)ଶ𝛾∗𝑀ఀ ൤−𝛾(𝑽𝐂)

𝑽𝐂. 𝒂𝐂

𝑐²
൬

𝑑𝑟∗

𝑑𝑡∗
൰ +

1

𝛾(𝑽𝐂)ଶ

𝑑

𝑑𝑡∗
൬

𝑑𝑟∗

𝑑𝑡∗
൰൨ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ −

𝑽𝐂. 𝒂𝐂

𝑐²
𝛾(𝑽𝐂)ସ. 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
 



𝛾(𝑽𝐂)ଶ
𝑑𝛾∗

𝑑𝑡
𝑀ఀ

𝑑𝑟∗

𝑑𝑡
− 𝛾(𝑽𝐂)𝛾(𝑽𝐂)ଶ𝛾∗𝑀ఀ

𝑽𝐂. 𝒂𝐂

𝑐²
൬

𝑑𝑟∗

𝑑𝑡∗
൰ +

𝛾(𝑽𝐂)ଶ𝛾∗𝑀ఀ

𝛾(𝑽𝐂)ଶ

𝑑

𝑑𝑡∗
൬

𝑑𝑟∗

𝑑𝑡∗
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ −

𝑽𝐂. 𝒂𝐂

𝑐²
𝛾(𝑽𝐂)ସ. 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
 

  

𝛾(𝑽𝐂)ଶ
𝑑𝛾∗

𝑑𝑡
𝑀ఀ

𝑑𝑟∗

𝑑𝑡
− 𝛾(𝑽𝐂)ଷ𝛾∗𝑀ఀ

𝑽𝐂. 𝒂𝐂

𝑐²
൬

𝑑𝑟∗

𝑑𝑡∗
൰ + 𝛾∗𝑀ఀ

𝑑

𝑑𝑡∗
൬

𝑑𝑟∗

𝑑𝑡∗
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ −

𝑽𝐂. 𝒂𝐂

𝑐²
𝛾(𝑽𝐂)ସ. 𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡
 

𝛾(𝑽𝐂)ଶ
𝑑𝛾∗

𝑑𝑡
𝑀ఀ

𝑑𝑟∗

𝑑𝑡
+ 𝛾∗𝑀ఀ

𝑑

𝑑𝑡∗
൬

𝑑𝑟∗

𝑑𝑡∗
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ 

𝑑

𝑑𝑡∗
൬𝛾∗𝑀ఀ .

𝑑𝑟∗

𝑑𝑡∗
൰ = 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ 

As it should. 

------------------ 

The internal equation of motion of the sphere in second order approximation 

We clarify the following factor 

𝛾∗ = 𝛾∗ ൬𝑽𝐂,
𝑑𝑟∗

𝑑𝑡
൰ =

1

ඨ1 −
𝛾(𝑽𝐂)ଶ

𝑐²
ቀ

𝑑𝑟∗

𝑑𝑡
ቁ

ଶ

=
1

ඪ
1 −

(𝑽𝐂)ଶ

𝑐²
−

1
𝑐²

ቀ
𝑑𝑟∗

𝑑𝑡
ቁ

ଶ

1 −
(𝑽𝐂)ଶ

𝑐²

= ඪ
1 −

(𝑽𝐂)ଶ

𝑐²

1 −
(𝑽𝐂)ଶ

𝑐²
−

1
𝑐²

ቀ
𝑑𝑟∗

𝑑𝑡
ቁ

ଶ

≈ ቆ1 −
1

2

(𝑽𝐂)ଶ

𝑐²
ቇ ቆ1 +

1

2

(𝑽𝐂)ଶ

𝑐²
+

1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

ቇ

= ቌ1 +
1

2

𝑽𝐂
ଶ

𝑐²
+

1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

−
1

2

𝑽𝐂
ଶ

𝑐²
ቆ1 +

1

2

𝑽𝐂
ଶ

𝑐²
+

1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

ቇቍ 

= 1 +
1

2

𝑽𝐂
ଶ

𝑐²
+

1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

−
1

2

𝑽𝐂
ଶ

𝑐²
−

1

4

𝑽𝐂
ଶ

𝑐²

𝑽𝐂
ଶ

𝑐²
−

1

4

𝑽𝐂
ଶ

𝑐²

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

 

=> 𝛾∗ = 1 +
1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

−
1

4

(𝑽𝐂)ସ

𝑐ସ
−

1

4

(𝑽𝐂)ଶ

𝑐²

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

 

=>𝛾∗ = 1 +
1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

+ 𝜃 ቆ
𝑣ସ

𝑐ସቇ 

Then, using  

𝑑𝑀

𝑑𝑡
=

1

𝑐ଶ

𝑑𝑀𝑐ଶ

𝑑𝑡
=

1

𝑐ଶ

𝑑𝐸∗

𝑑𝑡
=

1

𝑐ଶ

𝑑
𝐸

𝛾(𝑽𝐂)

𝑑𝑡
=

1

𝛾(𝑽𝐂)

1

𝑐ଶ

𝑑𝐸

𝑑𝑡
+

𝐸

𝑐ଶ

𝑑
1

𝛾(𝑽𝐂)

𝑑𝑡
 

=
1

𝛾(𝑽𝐂)

1

𝑐²

𝑑𝐸

𝑑𝑡
+

𝐸

𝑐²

𝑑ට1 − ቀ
𝑽𝐂
𝑐

ቁ
ଶ

𝑑𝑡
 



=
1

𝛾(𝑽𝐂)

1

𝑐²

𝑑𝐸

𝑑𝑡
+

𝛾(𝑽𝐂)

2

𝐸

𝑐²

𝑑 ቆ1 − ቀ
𝑽𝐂
𝑐

ቁ
ଶ

ቇ

𝑑𝑡
=

1

𝛾(𝑽𝐂)

1

𝑐²

𝑑𝐸

𝑑𝑡
−

𝛾(𝑽𝐂)

2

𝐸

𝑐²
2

𝑽𝐂𝒂𝐂

𝑐²

=
1

𝛾(𝑽𝐂)

1

𝑐²

𝑑𝐸

𝑑𝑡
− 𝛾(𝑽𝐂)ଶ𝑀

𝑽𝐂𝒂𝐂

𝑐²
 

=>
𝑑𝑀

𝑑𝑡
=

1

𝛾(𝑽𝐂)

1

𝑐²

𝑑𝐸

𝑑𝑡
− 𝑀. 𝛾(𝑽𝐂)ଶ

𝑽𝐂𝒂𝐂

𝑐²
= ൤−𝛾(𝑽𝐂)ଶ𝑀

𝑽𝐂𝒂𝐂

𝑐²
൨

௜௙ ாୀ௖௧௘
 

We have 

𝛾∗𝑀ఀ

𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ =

1

𝛾(𝑽𝐂)ଶ𝛾∗ଶ . 𝐸𝑒𝑚,𝑒𝑞
∗ ቆ

𝑟𝑒𝑞
∗

𝑟∗2 −
𝑟∗2

𝑟𝑒𝑞
∗ 3ቇ −

𝑑𝑀

𝑑𝑡
൬1 −

𝛾∗. 𝑀ఀ

𝑀
൰ .

𝑑𝑟∗

𝑑𝑡
 

<=> 𝑀ఀ

𝑑

𝑑𝑡
൬

𝑑𝑟∗

𝑑𝑡
൰ =

1

𝛾(𝑽𝐂)ଶ𝛾∗ଷ . 𝐸𝑒𝑚,𝑒𝑞
∗ ቆ

𝑟𝑒𝑞
∗

𝑟∗2 −
𝑟∗2

𝑟𝑒𝑞
∗ 3ቇ −

𝑑𝑀

𝑑𝑡
൬

1

𝛾∗
−

𝑀ఀ

𝑀
൰ .

𝑑𝑟∗

𝑑𝑡
 

<=> 𝑀ఀ

𝑑2𝑟∗

𝑑𝑡2
=

1

𝛾(𝑽𝐂)ଶ ቆ1 +
1
2

1
𝑐²

ቀ
𝑑𝑟∗

𝑑𝑡
ቁ

ଶ

ቇ

ଷ . 𝐸𝑒𝑚,𝑒𝑞
∗ ቆ

𝑟𝑒𝑞
∗

𝑟∗2 −
𝑟∗2

𝑟𝑒𝑞
∗ 3ቇ

+ 𝛾(𝑽𝐂)ଶ𝑀
𝑽𝐂𝒂𝐂

𝑐²
ቆ1 −

1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

−
𝑀ఀ

𝑀
ቇ .

𝑑𝑟∗

𝑑𝑡
 

=
1 −

3
2

1
𝑐²

൬
𝑑𝑟∗

𝑑𝑡
൰

2

𝛾(𝑽𝐂)2
. 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ + 𝑀𝛾(𝑽𝐂)2 𝑽𝐂𝒂𝐂

𝑐²
൭1 −

1

2

1

𝑐²
ቆ

𝑑𝑟∗

𝑑𝑡
ቇ

2

−
𝑀𝛴

𝑀
൱ .

𝑑𝑟∗

𝑑𝑡
 

Then 

𝑀ఀ

𝑑ଶ𝑟∗

𝑑𝑡ଶ
= 𝜗. 𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ − 𝛼.

𝑑𝑟∗

𝑑𝑡
 

 𝜗 = 𝜗 ቀ𝑽𝐂,
ௗ௥∗

ௗ௧
ቁ =

ଵି
య

೎²
ቀ

೏ೝ∗

೏೟
ቁ

మ

ఊ(𝑽𝐂)మ  

 𝛼 = 𝛼 ቀ𝑽𝐂, 𝒂𝐂,
ௗ௥∗

ௗ௧
ቁ = ൤−𝑀ఀ𝛾(𝑽𝐂)ଶ ൬1 −

ଵ

ଶ

ଵ

௖²
ቀ

ௗ௥∗

ௗ௧
ቁ

ଶ
−

ெ೸

ெ
൰

𝑽𝐂𝒂𝐂

௖²
൨

௜௙ ாୀ௖௧௘
 

As noted above we find (surprisingly) that the viscous term shows a “capture” of the kinetic energy 
of the center of mass by the internal system when the center of mass is accelerated.  

But as explain there is an ambiguity between different variables that can express the internal 

dynamics and the one we have chosen to study 𝑀ఀ
ௗ௥∗

ௗ௧
 is different from the classical 𝛾∗𝑀ఀ .

ௗ௥∗

ௗ௧∗. 

The Newtonian oscillator in the field of the center of mass 

We see that in general there is a coupling between the external dynamic and the internal dynamic. 
But this coupling is clearly due to the relativistic regime: outside this regime, the external dynamic 
does not affect the internal dynamic (since K* is a local Galilean frame, there are no inertial forces). 



The case of a non-relativistic internal dynamic (ଵ

௖

𝑑𝑟∗

𝑑𝑡
≈ 0) gives: 

 𝜗 = 𝜗 ቀ𝑽𝐂,
ௗ௥∗

ௗ௧
ቁ =

1

𝛾(𝑽𝐂)2
= 1 −

𝑽𝐂
మ

௖²
 

 𝛼 = 𝛼 ቀ𝑽𝐂,
ௗ௥∗

ௗ௧
ቁ ≈ −𝑀𝛴𝛾(𝑽𝐂)2 ቀ1 −

𝑀𝛴

𝑀
ቁ

𝑽𝐂𝒂𝐂

𝑐²
= −

𝑀𝛴൬1−
𝑀𝛴
𝑀

൰

𝑐²

𝑽𝐂𝒂𝐂

ଵି
𝑽𝐂

మ

೎²

 

=> 𝛼 ௗ௥∗

ௗ௧
= −

𝑀𝛴൬1−
𝑀𝛴
𝑀

൰

𝑐²

𝑽𝐂𝒂𝐂

ଵି
𝑽𝐂

మ

೎²

ௗ௥∗

ௗ௧
= 𝐾.

1

𝑐

ௗ௥∗

ௗ௧
≈ 0 

=> 𝑀ఀ

𝑑ଶ𝑟∗

𝑑𝑡ଶ
≈

1

𝛾(𝑽𝐂)2
𝐸௘௠,௘௤

∗ ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ 

To simplify the dynamics, I will assume that the system is close to the equilibrium point. Then we can 

Taylor the function 𝑓(𝑟∗) ≡
௥೐೜

∗

௥∗మ −
௥∗మ

௥೐೜
∗ య near this point. 

𝑓(𝑟∗) ≈ 𝑓൫𝑟௘௤
∗ ൯ +

𝑑𝑓

𝑑𝑟∗ ൫𝑟௘௤
∗ ൯. ൫𝑟∗ − 𝑟௘௤

∗ ൯ = ቆ
𝑟௘௤

∗

𝑟∗ଶ −
𝑟∗ଶ

𝑟௘௤
∗ ଷቇ ൫𝑟௘௤

∗ ൯ + ቆ−2
𝑟௘௤

∗

𝑟∗ଷ − 2
𝑟∗

𝑟௘௤
∗ ଷቇ ൫𝑟௘௤

∗ ൯. ൫𝑟∗ − 𝑟௘௤
∗ ൯

= (0) −
4

𝑟௘௤
∗ ଶ . ൫𝑟∗ − 𝑟௘௤

∗ ൯ 

=>𝑀ఀ
ௗమ௥∗

ௗ௧మ ≈ −
ସ

௥೐೜
∗ మ

1

𝛾(𝑽𝐂)2
𝐸௘௠,௘௤

∗ ൫𝑟∗ − 𝑟௘௤
∗ ൯ 

If the speed of the center of mass varies sufficiently slowly (adiabatically), we have as desired the 
case of an effective oscillator around a center of mass velocity 𝑽𝐂

ଶ: 

𝑀ఀ

𝑑ଶ𝑟∗

𝑑𝑡ଶ
≈ −𝑘𝑽𝐂

. ൫𝑟∗ − 𝑟௘௤
∗ ൯ 

With 𝑘𝑽𝐂
≡

ସா೐೘,೐೜
∗

௥೐೜
∗ మ

1

𝛾(𝑽𝐂)2
=

௞𝟎

𝛾(𝑽𝐂)2
 

𝜔𝑽𝐂
= ඨ

𝑘𝑽𝐂

𝑀ఀ
=

1

𝛾(𝑽𝐂)
ඨ

𝑘𝟎

𝑀ఀ
=

𝜔𝟎

𝛾(𝑽𝐂)
 

Moreover, taking into account 𝑟௘௤
∗ ଷ = 2

௞

|௸ು|௖ర 𝐸௘௠,௘௤
∗  , the pulsation of the oscillator is then: 

𝜔𝑽𝐂
= ඨ

𝑘𝑽𝐂

𝑀ఀ
≈

2

𝑟௘௤
∗ ට𝐸௘௠,௘௤

∗
1

𝛾(𝑽𝐂)
=

2ඥ𝐸௘௠,௘௤
∗

൬2
𝑘

|𝛬௉|𝑐ସ 𝐸௘௠,௘௤
∗ ൰

ଵ/ଷ

1

𝛾(𝑽𝐂)
= 2ଶ/ଷ ቆ

𝑐ସ|𝛬௉|

𝑘
ቇ

ଵ/ଷ

𝐸௘௠,௘௤
∗ ଵ/଺ 1

𝛾(𝑽𝐂)
 

 

 

 

 



𝜔𝑽𝐂
=

𝜔𝟎

𝛾(𝑽𝐂)
≈ ቆ1 −

1

2

𝑽𝐂
ଶ

𝑐²
ቇ 𝜔𝟎 = 𝜔𝟎 + ∆𝜔𝑽𝐂

 

 𝜔𝟎 ≡ ට
௞𝟎

ெ೸
= 2ට

ா೐೘,೐೜
∗

ெ೸.௥೐೜
∗ మ ≈ 2ଶ/ଷ ቀ

௖ర|௸ು|

௞
ቁ

ଵ/ଷ

𝐸௘௠,௘௤
∗ ଵ/଺ 

 ∆𝜔𝑽𝐂
≈ −

ଵ

ଶ

𝑽𝐂
మ

௖²
𝜔𝟎 

Hence,  

 if the “internal” system has Newtonian dynamics ; 
 if the velocity of the center of mass is not negligible relative to the “Einstein constant” c ([5’]); 
 and if the speed of the center of mass varies sufficiently slowly with respect to the internal 

dynamics, 

Then the “internal” oscillator sees its frequency  𝜔𝑽𝐂
 decreasing (red-shift) to the value: 

−∆𝜔𝑽𝐂
≈

1

2

𝑽𝐂
ଶ

𝑐²
𝜔𝟎 

A complex system whose center of mass moves at a sufficiently high speed affects the internal 
dynamics of the system.  
 
The dynamic effect is actually a kinematic one 
 
This, a priori dynamics effect, is actually rather a kinematic one, Einstein’s law of time dilation: 
Indeed, the latter said 

𝑑𝑡 = 𝛾(𝑽𝐂)𝑑𝑡∗ 
Which is traduced in term of decreases of frequencies ቀ∝

ଵ

ௗ௧
ቁ since 

1

𝑑𝑡
≈

1

𝛾(𝑽𝐂)

1

𝑑𝑡∗
 

 
Another way to see it is to consider the relation given above 

𝑑ଶ

𝑑𝑡ଶ
= −𝛾(𝑽𝐂)

𝑽𝐂. 𝒂𝐂

𝑐²
൬

𝑑

𝑑𝑡∗
൰ +

1

𝛾(𝑽𝐂)ଶ

𝑑

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰ 

In the Newtonian limit, for the same reasons than above, we can neglect the viscous term : 

𝑀ఀ

𝑑ଶ𝑟∗

𝑑𝑡ଶ
≈ −𝑘𝑽𝐂

. ൫𝑟∗ − 𝑟௘௤
∗ ൯ = −

𝑘𝟎

𝛾(𝑽𝐂)2
. ൫𝑟∗ − 𝑟௘௤

∗ ൯ 

<=> 𝑀ఀ

1

𝛾(𝑽𝐂)ଶ

𝑑

𝑑𝑡∗
൬

𝑑

𝑑𝑡∗
൰ 𝑟∗ ≈ −

𝑘𝟎

𝛾(𝑽𝐂)2
. ൫𝑟∗ − 𝑟௘௤

∗ ൯ 

<=>𝑀ఀ

𝑑

𝑑𝑡∗
൬

𝑑𝑟∗

𝑑𝑡∗
൰ ≈ −𝑘𝟎. ൫𝑟∗ − 𝑟௘௤

∗ ൯ 

=> 𝜔𝟎 = ඨ
𝑘𝟎

𝑀ఀ
 𝑖𝑠 𝑖𝑛𝑑𝑒𝑒𝑑 𝑡ℎ𝑒 "𝑡𝑟𝑢𝑒" 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

 

=>What we see with the variable ௗ௥∗

ௗ௧
 is indeed the time dilated internal dynamics of the “true” one 

classically given by  ௗ௥∗

ௗ௧∗ 

 



This is consistent with the intuition coming from the simple relation  
𝑑𝑟∗

𝑑𝑡
=

1

𝛾(𝑽𝐂)

𝑑𝑟∗

𝑑𝑡∗
 

 
It is tempting to anticipate a quantum treatment (as I tried to do in an older version of this article) by 

quantizing the system associated with the dynamics variable pair ቀ𝑟∗, 𝑀ఀ
ௗ௥∗

ௗ௧
ቁ which behaves as an 

oscillator with pulsation 𝜔௏ి
= ට

௞ೇి

ெ೸
=

ଵ

ఊ(௏ి)
ට

௞బ

ெ೸
=

ఠబ

ఊ(௏ి)
 .This eventual quantum treatment would 

produce quantum characteristics (quantum energy & zero point energy) red-shifted (a kind of tiny 
renormalization) by thermal energy (for a macroscopic number of electrons thanks to the energy 
equipartition theorem). But this reasoning is finally suspect to me as I showed above during the 
Hamiltonian analysis that the canonical variable that I have identified is whereas 

ቀ𝑟∗, 𝛾(𝑽𝐂)𝛾∗ 𝑀ఀ
ௗ௥∗

ௗ௧
ቁ. 

The mass for the Newtonian oscillator  
In this situation the mass is now  

𝑀 = 𝛾∗. 𝑀ఀ +
𝐸௘௠,௘௤

∗

𝑐ଶ ቆ
𝑟௘௤

∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇ ≈ ቆ1 +

1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

ቇ . 𝑀ఀ +
𝐸௘௠,௘௤

∗

𝑐ଶ
𝑔(𝑟∗) 

With the function 𝑔(𝑟∗) ≡
௥೐೜

∗

௥∗ +
ଵ

ଷ

௥∗య

௥೐೜
∗ య 

Taking account that for the equilibrium point ቀ ௗ௚

ௗ௥∗ቁ
௥೐೜

∗
= 0, since the mass is an internal energy near 

the equilibrium point, we have 

𝑔(𝑟∗) = 𝑔൫𝑟௘௤
∗ ൯ +

1

2
ቆ

𝑑ଶ𝑔

𝑑𝑟∗ଶቇ
௥೐೜

∗

൫𝑟∗ − 𝑟௘௤
∗ ൯

ଶ
=

4

3
+

1

2
ቆ

𝑑

𝑑𝑟∗
ቈ

𝑑

𝑑𝑟∗ ቆ
𝑟௘௤

∗

𝑟∗
+

1

3

𝑟∗ଷ

𝑟௘௤
∗ ଷቇ቉ቇ

௥೐೜
∗

൫𝑟∗ − 𝑟௘௤
∗ ൯

ଶ
 

=
4

3
+

1

2
ቌ

𝑑

𝑑𝑟∗ ቆ−
𝑟௘௤

∗

𝑟∗ଶ +
𝑟∗ଶ

𝑟௘௤
∗ ଷቇቍ

௥೐೜
∗

൫𝑟∗ − 𝑟௘௤
∗ ൯

ଶ
=

4

3
+

1

2
ቆ2

𝑟௘௤
∗

𝑟∗ଷ + 2
𝑟∗

𝑟௘௤
∗ ଷቇ

௥೐೜
∗

൫𝑟∗ − 𝑟௘௤
∗ ൯

ଶ
 

=
4

3
+

1

2
ቆ2

1

𝑟௘௤
∗ ଶ + 2

1

𝑟௘௤
∗ ଶቇ ൫𝑟∗ − 𝑟௘௤

∗ ൯
ଶ

=
4

3
+

2

𝑟௘௤
∗ ଶ ൫𝑟∗ − 𝑟௘௤

∗ ൯
ଶ

 

=> 𝑀 ≈ ቆ1 +
1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

ቇ . 𝑀ఀ +
𝐸௘௠,௘௤

∗

𝑐ଶ
ቈ
4

3
+

2

𝑟௘௤
∗ ଶ ൫𝑟∗ − 𝑟௘௤

∗ ൯
ଶ

቉ 

= ቆ1 +
1

2

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

ቇ . 𝑀ఀ +
𝐸௘௠,௘௤

∗

𝑐ଶ
ቈ
4

3
+

2

𝑟௘௤
∗ ଶ ൫𝑟∗ − 𝑟௘௤

∗ ൯
ଶ

቉ 

 

 



=> 𝑀 ≈ 𝑀௘௤ +
1

2
𝑀ఀ

1

𝑐²
൬

𝑑𝑟∗

𝑑𝑡
൰

ଶ

+
𝐸௘௠,௘௤

∗

𝑐ଶ
2

൫𝑟∗ − 𝑟௘௤
∗ ൯

ଶ

𝑟௘௤
∗ ଶ  

With  

𝑀௘௤ ≡ 𝑀ఀ +
4

3

𝐸௘௠,௘௤
∗

𝑐ଶ
 

The mass is a function 𝑀 = 𝑀 ቀ𝑟∗,
ௗ௥∗

ௗ௧
, 𝑽𝐂ቁ. 

The dynamic of the center of mass  

𝑑

𝑑𝑡
(𝛾(𝑽𝐂)𝑀𝑽𝐂) = 𝑀

𝑑

𝑑𝑡
(𝛾(𝑽𝐂)𝑽𝐂) + (𝛾(𝑽𝐂)𝑽𝐂)

𝑑𝑀

𝑑𝑡
 

But we know that 
𝑑𝑀

𝑑𝑡
=

1

𝛾(𝑽𝐂)

1

𝑐²

𝑑𝐸

𝑑𝑡
− 𝛾(𝑽𝐂)ଶ𝑀

𝑽𝐂𝒂𝐂

𝑐²
 

 

𝐵𝑢𝑡
𝑑

𝑑𝑡
(𝛾(𝑽𝐂)𝑀𝑽𝐂) =

𝜕

𝜕𝑹𝐂

𝐿′ ൬𝑟∗,
𝑑𝑟∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂, 𝑡൰ 

=> 𝑀
𝑑

𝑑𝑡
(𝛾(𝑽𝐂)𝑽𝐂) + (𝛾(𝑽𝐂)𝑽𝐂)

𝑑𝑀

𝑑𝑡
=

𝜕

𝜕𝑹𝐂

𝐿′ ൬𝑟∗,
𝑑𝑟∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂, 𝑡൰ 

Then 

𝑀
𝑑

𝑑𝑡
(𝛾(𝑽𝐂)𝑽𝐂) =

𝜕

𝜕𝑹𝐂
𝐿ᇱ ൬𝑟∗,

𝑑𝑟∗

𝑑𝑡
, 𝑹𝐂, 𝑽𝐂, 𝑡൰ − 𝛼. 𝑽𝐂 

𝑤𝑖𝑡ℎ 

 𝛼 = 𝛾(𝑽𝐂)
ௗெ

ௗ௧
=

ௗெ

ௗ௧∗ 

 ௗெ

ௗ௧
 =

ଵ

ఊ(𝑽𝐂)

ଵ

௖²

ௗா

ௗ௧
− 𝛾(𝑽𝐂)ଶ𝑀

𝑽𝐂𝒂𝐂

௖²
= ቂ−𝛾(𝑽𝐂)ଶ𝑀

𝑽𝐂𝒂𝐂

௖²
ቃ

௜௙ ாୀ௖௧௘
 

 𝑀 = 𝛾∗. 𝑀ఀ +
ா೐೘,೐೜

∗

௖మ ൬
௥೐೜

∗

௥∗ +
ଵ

ଷ

௥∗య

௥೐೜
∗ య൰ 

            ≈ ቆ𝑀௘௤ +
ଵ

ଶ
𝑀ఀ

ଵ

௖²
ቀ

ௗ௥∗

ௗ௧
ቁ

ଶ
+

ா೐೘,೐೜
∗

௖మ 2
൫௥∗ି௥೐೜

∗ ൯
మ

௥೐೜
∗ మ ቇ

௙௢௥ ௔ ே௘௪௧௢௡௜௔௡ ௜௡௧௘௥௡௔௟ ௢௦௖௜௟௟௔௧௢௥

 

The internal dynamics influence the dynamics of the center of mass. This coupling is not due to an 
eventual relativistic behaviour of the internal dynamics but especially to the relativistic behaviour of 

the center of mass itself. Indeed, we see that in the Newtonian limit (𝑽𝐂
మ

௖²
= 0), there is no longer a 

viscous term where the coupling appears (except if energy is exchange ௗா

ௗ௧
≠ 0 between the whole 

system and the exterior). This coupling is of course due to an exchange between the internal energy 
M and that of the center of mass (if E=cte). This variation of the internal energy modifies the inertia 
and then acts on the speed for a given momentum. 

 

 

 

 



2.3. Hamiltonian analysis: Hamilton-Jacobi equation(an attempt) for a material system free 

As for [1] and [2], we start from the norm equation: 

൬
𝐸∗

𝑐
൰

ଶ

= ൬
𝐸

𝑐
൰

ଶ

− 𝑷ଶ 

We have to express the different quantities in term of the action. For that, I search the expression of 
the action as the function of coordinates : that is to say the action resulting from the injection of the 
equation of motion in its variation. I need the 2 expressions below in term of coordinate: 

o By Mixing internal and external degree of freedom ({𝒓𝒂
∗ }, 𝑹𝒄, 𝑡)  

o And only using internal degree of freedom ({𝒓𝒂
∗ }, 𝑡∗)  

 

 𝑆({𝒓𝒂
∗ }, 𝑹𝒄, 𝑡) ≡ {𝑆[{𝒓𝒂

∗ (𝑡∗)}, 𝑹𝒄, 𝑡]}௥௘௔௟ ௧௥௔௝௘௖௧௢௥௬ = ∫
௅∗

ఊ
. 𝑑𝑡

௧,{𝒓𝒂
∗ },𝑹𝒄

௧భ
= ∫ 𝐿′. 𝑑𝑡

௧,{𝒓𝒂
∗ },𝑹𝒄

௧భ
 

=> 𝛿𝑆({𝒓𝒂
∗ }, 𝑹𝒄, 𝑡)

= න ቌ෍
𝜕𝐿′

𝜕𝒓𝒂
∗ 𝛿𝒓𝒂

∗

௔

+ ෍
𝜕𝐿′

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝛿
𝑑𝒓𝒂

∗

𝑑𝑡
௔

+
𝜕𝐿′

𝜕𝑹𝐂

𝛿𝑹𝐂 +
𝜕𝐿′

𝜕𝑽𝐂

𝛿𝑽𝐂 +
𝜕𝐿′

𝜕𝑡
𝛿𝑡ቍ

௧,{𝒓𝒂
∗ },𝑹𝒄

௧భ

𝑑𝑡 

= න ቌ෍
𝜕𝐿′

𝜕𝒓𝒂
∗ 𝛿𝒓𝒂

∗

௔

+
𝑑

𝑑𝑡
ቌ෍

𝜕𝐿′

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝛿𝒓𝒂
∗

௔

− 𝛿𝒓𝒂
∗

𝑑

𝑑𝑡
෍

𝜕𝐿′

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡௔

ቍ +
𝜕𝐿′

𝜕𝑹𝐂

𝛿𝑹𝐂

௧,{𝒓𝒂
∗ },𝑹𝒄

௧భ

+ ൭
𝑑

𝑑𝑡
ቆ

𝜕𝐿′

𝜕𝑽𝐂

𝛿𝑹𝐂ቇ − 𝛿𝑹𝐂 ቆ
𝑑

𝑑𝑡

𝜕𝐿′

𝜕𝑽𝐂

ቇ൱ +
𝜕𝐿′

𝜕𝑡
𝛿𝑡ቍ 𝑑𝑡 

= න ቐ෍ ቌ
𝜕𝐿′

𝜕𝒓𝒂
∗ −

𝑑

𝑑𝑡

𝜕𝐿′

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

ቍ 𝛿𝒓𝒂
∗

௔

+ ቆ
𝜕𝐿′

𝜕𝑹𝐂

−
𝑑

𝑑𝑡

𝜕𝐿′

𝜕𝑽𝐂

ቇ 𝛿𝑹𝐂 +
𝜕𝐿′

𝜕𝑡
𝛿𝑡

௧,{𝒓𝒂
∗ },𝑹𝒄

௧భ

+
𝑑

𝑑𝑡
ቌ෍

𝜕𝐿′

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝛿𝒓𝒂
∗

௔

+
𝜕𝐿′

𝜕𝑽𝐂

𝛿𝑹𝐂ቍቑ 𝑑𝑡 

=> 𝛿𝑆({𝒓𝒂
∗ }, 𝑹𝒄, 𝑡) = න 𝑑 ቌ෍

𝜕𝐿′

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝛿𝒓𝒂
∗

௔

+
𝜕𝐿′

𝜕𝑽𝐂

𝛿𝑹𝐂ቍ
௧,{ఋ𝒓𝒂

∗ },ఋ𝑹𝐂

௧భ

 

Since 

 ቆ
డ௅

డ𝒓𝒂
∗ −

ௗ

ௗ௧

డ௅ᇱ

డ
೏𝒓𝒂

∗

೏೟

= 0ቇ

௙௢௥ ௔ ௥௘௔௟ ௧௥௔௝௘௖௧௢௥௬

 

 ቀ
డ௅

డ𝑹𝐂
−

ௗ

ௗ௧

డ௅ᇲ

డ𝑽𝐂
= 0ቁ

௙௢௥ ௔ ௥௘௔௟ ௧௥௔௝௘௖௧௢௥௬
 

Then we have the following result 
 



=> 𝑑𝑆({𝒓𝒂
∗ }, 𝑹𝒄, 𝑡) = ෍ ൬

𝜕𝑆

𝜕𝒓𝒂
∗ 𝑑𝒓𝒂

∗ ൰

௔

+
𝜕𝑆

𝜕𝑹𝐂

𝑑𝑹𝐂 +
𝜕𝑆

𝜕𝑡
𝑑𝑡 

= ෍
𝜕𝐿′

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡

𝑑𝒓𝒂
∗

௔

+
𝜕𝐿′

𝜕𝑽𝐂

𝑑𝑹𝐂 +
𝜕𝑆

𝜕𝑡
𝑑𝑡 

= ෍ 𝑷𝒂
∗ 𝑑𝒓𝒂

∗

௔

+ 𝑷𝑑𝑹𝐂 +
𝜕𝑆

𝜕𝑡
𝑑𝑡 

Then 

 𝑷𝒂
∗ ≡

డ௅ᇲ

డ
೏𝒓𝒂

∗

೏೟

=
డௌ

డ𝒓𝒂
∗   

 𝑷 ≡
డ௅ᇲ

డ𝑽𝐂

=
డௌ

డ𝑹𝐂

 

 𝐿ᇱ ≡
ௗௌ

ௗ௧
({𝒓𝒂

∗ }, 𝑹𝒄, 𝑡) 

 𝐻({𝒓𝒂
∗ }, {𝑷𝒂

∗ }, 𝑹𝒄, 𝑽𝒄) ≡ ∑ 𝑷𝒂
∗ ௗ𝒓𝒂

∗

ௗ௧௔ + 𝑷𝑽𝒄 − 𝐿ᇱ =
డௌ

డ𝑡
 

 𝑆({𝒓𝒂
∗ }, 𝑹𝒄, 𝑡) ≡ {𝑆[{𝒓𝒂

∗ (𝑡∗)}, 𝑹𝒄(𝑡)]}௥௘௔௟ ௧௥௔௝௘௖௧௢௥௬ 

 

 𝑆({𝒓𝒂
∗ }, 𝑡∗) = {𝑆[{𝒓𝒂

∗ (𝑡∗), 𝑡∗(𝑡)}]}௥௘௔௟ ௧௥௔௝௘௖௧௢௥௬ = ∫ 𝐿∗𝑑𝑡∗௧∗,{𝒓𝒂
∗ }

௧భ
∗  

𝛿𝑆({𝒓𝒂
∗ }, 𝑡∗) = {𝛿𝑆[{𝒓𝒂

∗ (𝑡∗)}, 𝑡∗(𝑡)]}௥௘௔௟ ௧௥௔௝௘௖௧௢௥௬ = න 𝛿(𝐿∗𝑑𝑡∗)
௧∗,{𝒓𝒂

∗ }

௧భ
∗

 

= න 𝛿௧∗(𝐿∗𝑑𝑡∗) + 𝛿{𝒓𝒂
∗ }(𝐿∗𝑑𝑡∗) + 𝛿

൜
ௗ𝒓𝒂

∗

ௗ௧∗ ൠ
(𝐿∗𝑑𝑡∗) + 𝛿௧(𝐿∗𝑑𝑡∗)

௧∗,{𝒓𝒂
∗ }

௧భ
∗

 

= න ቐ𝐿∗𝛿௧∗(𝑑𝑡∗) + 𝑑𝑡∗𝛿௧∗(𝐿∗) + ൭෍
𝜕𝐿∗

𝜕𝒓𝒂
∗ 𝛿𝒓𝒂

∗

௔

൱ 𝑑𝑡∗ + ቌ෍
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝛿
𝑑𝒓𝒂

∗

𝑑𝑡∗

௔

ቍ 𝑑𝑡∗ቑ
௧∗,{𝒓𝒂

∗ }

௧భ
∗

 

But 𝑑𝑡∗ is variable: 

𝛿
𝑑𝒓𝒂

∗

𝑑𝑡∗
= 𝛿 ൬

𝑑𝒓𝒂
∗

𝑑𝑡∗
൰ =

𝛿(𝑑𝒓𝒂
∗ )

𝑑𝑡∗
+ 𝑑𝒓𝒂

∗ 𝛿 ൬
1

𝑑𝑡∗
൰ =

𝑑𝛿𝒓𝒂
∗

𝑑𝑡∗
+ 𝑑𝒓𝒂

∗ ൬
−𝛿𝑑𝑡∗

𝑑𝑡∗ଶ ൰ =
𝑑𝛿𝒓𝒂

∗

𝑑𝑡∗
− 𝑑𝒓𝒂

∗ ൬
𝑑𝛿𝑡∗

𝑑𝑡∗ଶ൰ 

=
𝑑𝛿𝒓𝒂

∗

𝑑𝑡∗
−

𝑑𝒓𝒂
∗

𝑑𝑡∗
൬

𝑑𝛿𝑡∗

𝑑𝑡∗
൰ 

𝛿𝑆({𝒓𝒂
∗ }, 𝑡∗) = න ቐ𝑑(𝐿∗𝛿𝑡∗) − 𝛿𝑡∗𝑑𝐿∗ + 𝑑𝑡∗𝛿௧∗(𝐿∗) + ൭෍

𝜕𝐿∗

𝜕𝒓𝒂
∗

𝛿𝒓𝒂
∗

௔

൱ 𝑑𝑡∗
௧∗,{𝒓𝒂

∗ }

𝑡1
∗

+ ቌ෍
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

൭
𝑑𝛿𝒓𝒂

∗

𝑑𝑑𝑡∗
−

𝑑𝒓𝒂
∗

𝑑𝑡∗
൬

𝑑𝛿𝑡∗

𝑑𝑡∗
൰൱

௔

ቍ 𝑑𝑡∗ቑ 



= න ቐ
𝑑(𝐿∗𝛿𝑡∗)

𝑑𝑡∗
− 𝛿𝑡∗

𝑑𝐿∗

𝑑𝑡∗
+ 𝛿௧∗(𝐿∗) + ൭෍

𝜕𝐿∗

𝜕𝒓𝒂
∗

𝛿𝒓𝒂
∗

௔

൱ + ෍
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝛿𝒓𝒂
∗

𝑑𝑡∗
− ෍

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡∗
൬

𝑑𝛿𝑡∗

𝑑𝑡∗
൰

௔௔

ቑ
௧∗,{𝒓𝒂

∗ }

𝑡1
∗

𝑑𝑡∗ 

= න ൞
𝑑(𝐿∗𝛿𝑡∗)

𝑑𝑡∗
− 𝛿𝑡∗

𝑑𝐿∗

𝑑𝑡∗
+ 𝛿௧∗(𝐿∗) + ൭෍

𝜕𝐿∗

𝜕𝒓𝒂
∗ 𝛿𝒓𝒂

∗

௔

൱
௧∗,{𝒓𝒂

∗ }

௧భ
∗

+ ቌ
𝑑

𝑑𝑡∗
ቌ෍

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝛿𝒓𝒂
∗

௔

ቍ − ෍ 𝛿𝒓𝒂
∗

𝑑

𝑑𝑡∗
ቌ

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

ቍ

௔

ቍ

−

⎝

⎛
𝑑

𝑑𝑡∗
ቌ෍

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡∗
𝛿𝑡∗

௔

ቍ − 𝛿𝑡∗
𝑑

𝑑𝑡∗
ቌ෍

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡∗

௔

ቍ

⎠

⎞ൢ 𝑑𝑡∗ 

= න ൞𝛿𝑡∗ ቎−
𝑑𝐿∗

𝑑𝑡∗
+

𝜕𝐿∗

𝜕𝑡∗
+

𝑑

𝑑𝑡∗
ቌ෍

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡∗

௔

ቍ቏ + ෍

⎝

⎛
𝜕𝐿∗

𝜕𝒓𝒂
∗ −

𝑑

𝑑𝑡∗
ቌ

𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

ቍ

⎠

⎞ 𝛿𝒓𝒂
∗

௔

௧∗,{𝒓𝒂
∗ }

௧భ
∗

+
𝑑

𝑑𝑡∗

⎝

⎛෍
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝛿𝒓𝒂
∗

௔

− 𝛿𝑡∗ ቌ෍
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡∗

௔

− 𝐿∗ቍ

⎠

⎞ൢ 𝑑𝑡∗ 

 ቆ
ௗ

ௗ௧∗ ቆ
డ௅∗

డ
೏𝒓𝒂

∗

೏೟∗

ௗ𝒓𝒂
∗

ௗ௧∗ቇ −
ௗ௅∗

ௗ௧∗ = −
డ௅∗

డ௧∗ቇ

௙௢௥ ௔ ௥௘௔௟ ௧௥௔௝௘௖௧௢௥௬

 

 ቆ
ௗ

ௗ௧∗ ቆ
డ௅∗

డ
೏𝒓𝒂

∗

೏೟∗

ቇ =
డ௅∗

డ𝒓𝒂
∗ ቇ

௙௢௥ ௔ ௥௘௔௟ ௧௥௔௝௘௖௧௢௥௬

 

Then we have the following result 

=> 𝑑𝑆({𝒓𝒂
∗ }, 𝑡∗) = ෍

𝜕𝑆

𝜕𝒓𝒂
∗ 𝑑𝒓𝒂

∗

௔

+
𝜕𝑆

𝜕𝑡∗
𝑑𝑡∗ 

= ෍
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

௔

− ቌ෍
𝜕𝐿∗

𝜕
𝑑𝒓𝒂

∗

𝑑𝑡∗

𝑑𝒓𝒂
∗

𝑑𝑡∗

௔

− 𝐿∗ቍ 𝑑𝑡∗ 

= ෍ 𝑷𝒂
∗ 𝑑𝒓𝒂

∗

௔

− 𝐸∗𝑑𝑡∗ 

Then 

 𝑷𝒂
∗ ≡

డ௅ᇲ

డ
೏𝒓𝒂

∗

೏೟

=
డ௅∗

డ
೏𝒓𝒂

∗

೏೟∗

=
డௌ

డ𝒓𝒂
∗   

 𝐸∗ ≡ ∑
డ௅∗

డ
೏𝒓𝒂

∗

೏೟∗

ௗ𝒓𝒂
∗

ௗ௧∗௔ − 𝐿∗ =
డௌ

డ௧∗ 

 𝐿∗ ≡
ௗௌ

ௗ௧∗
({𝒓𝒂

∗ }, 𝑡∗, 𝑡) 

 𝐻∗({𝒓𝒂
∗ }, {𝑷𝒂

∗ }) ≡ ∑ 𝑷𝒂
∗ ௗ𝒓𝒂

∗

ௗ௧௔ − 𝐿∗ =
డௌ

డ௧∗ 

 𝑆({𝒓𝒂
∗ }, 𝑡∗) ≡ {𝑆[{𝒓𝒂

∗ (𝑡∗)}, 𝑡∗]}௥௘௔௟ ௧௥௔௝௘௖௧௢௥௬ 



൬
𝐸∗

𝑐
൰

ଶ

= ൬
𝐸

𝑐
൰

ଶ

− 𝑷ଶ 

We have the first equation 

1

𝑐ଶ
൬

𝜕𝑆

𝜕𝑡∗
൰

௧∗,{𝒓𝒂
∗ }

ଶ

=
1

𝑐ଶ
൬

𝜕𝑆

𝜕𝑡
൰

{𝒓𝒂
∗ },𝑹𝒄,௧

ଶ

− ൬
𝜕𝑆

𝜕𝑹𝒄
൰

{𝒓𝒂
∗ },𝑹𝒄,௧

ଶ

 

The expression uses the same quantity S but expressed as 2 functions of different variables.  

We can also express the equation in term of internal position  

𝐸∗ = ෍ 𝐸௔
∗

௔

 

With ቀ௠ೌ௖²

௖
ቁ

ଶ

= ቀ
ாೌ

∗

௖
ቁ

ଶ
− 𝑷𝒂

∗ ଶ 

=> 𝐸௔
∗ = ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂

∗ ଶ 

=> 𝐸∗ = ෍ ට(𝑚௔𝑐²)ଶ + 𝑐²𝑷𝒂
∗ ଶ

௔

 

=>ቌ෍ ඨቆ
𝑚௔𝑐²

𝑐
ቇ

ଶ

+ ൬
𝜕𝑆

𝜕𝒓𝒂
∗ ൰

௧∗,{𝒓𝒂
∗ }

ଶ

௔

ቍ

ଶ

=
1

𝑐ଶ
൬

𝜕𝑆

𝜕𝑡
൰

{𝒓𝒂
∗ },𝑹𝒄,௧

ଶ

− ൬
𝜕𝑆

𝜕𝑹𝒄
൰

{𝒓𝒂
∗ },𝑹𝒄,௧

ଶ

 

<=>෍ ඨቆ
𝑚௔𝑐²

𝑐
ቇ

ଶ

+ ൬
𝜕𝑆

𝜕𝒓𝒂
∗ ൰

௧∗,{𝒓𝒂
∗ }

ଶ

௔

= ඨ
1

𝑐ଶ
൬

𝜕𝑆

𝜕𝑡
൰

{𝒓𝒂
∗ },𝑹𝒄,௧

ଶ

− ൬
𝜕𝑆

𝜕𝑹𝒄
൰

{𝒓𝒂
∗ },𝑹𝒄,௧

ଶ

 

 

This equation is pretty complicated. To develop again the analysis, a quantum version (à la 
Schrödinger) using the action as the phase of a wave function would be interesting to obtain (with 
the internal degree of freedom and the center of mass as variables). Here we see that is seems not 
very straightforward (or not possible?).  
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