At the time of writing the communication mentioned in the title, it was unknown to the first author that mathematical analytical expressions for both of \(d_2\) and \(d_3\) constants indeed do exist. These analytical expressions were first derived by the English statistician L. H. C. Tippett\(^1\). A further account of these expressions for both of \(d_2\) and \(d_3\) constants can be found in the SAS/QC 15.1 User's Guide\(^2\). The constant \(d_3\) depends on the constants \(d_2\) and \(a_3\). In this communication three theorems are stated on the generating functions for the constants \(d_2\) and \(a_3\). The first two theorems provide analytical expressions for these generating functions, whereas the third theorem relates them. The \(d_2\) and \(d_3\) constants depend on the variable \(n\) and are expressed in this User Guide as

\[
d_2(n) := \int_{-\infty}^{+\infty} \left[1 - (1 - \Phi(x))^n - n \Phi(x)^n \right] dx
\]

In the above expression \(\Phi(x)\) denotes the standard normal cumulative distribution function with average \(\mu = 0\), and standard deviation \(\sigma = 1\) i.e.

\[
\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{\xi^2}{2}} d\xi
\]

Likewise, the constant \(d_3(n)\) is analytically expressed as\(^3\)

\[
d_3(n) := \sqrt{2 \cdot a_3(n) - (d_2(n))^2}
\]

in which

\[
a_3(n) := \int_{-\infty}^{+\infty} \int_{-\infty}^{y} \left[1 - \Phi(y)^n - (1 - \Phi(x))^n + \Phi(y) - \Phi(x) \right] dx dy
\]

In the following, a short program in Matlab is proposed that calculates both constants with substantial gain of speed and improvement of accuracy compared to the Matlab program published in "On the computation of the principal constants \(d_2\) and \(d_3\) used to construct control limits for control charts applied in statistical process control", see viXra:2103.0018.
Matlab programs
The Matlab (R2021 a) programs proposed here were run using an Intel® Core™ i7 9850H CPU @ 2.60 GHz processor and 32 GByte RAM.

Program 1
In this program, the d_2 — and d_3 — constants are calculated according to the definitions given above for $2 \leq n \leq k$ using symbolic definition for both x and y. To calculate the integrals, the function `vpaintegral` is used and the `tic()-toc()`-function measures the execution time of the code.

```
clear
tic();
k = 9;
d2 = zeros(1, k);
d3 = zeros(1, k);
i = (1 : k);
for n = 2 : k
    syms x y
    d2(n) = vpaintegral(1-(1-normcdf(x)).^n - (normcdf(x)).^n, [-Inf, Inf], 'AbsTol', 1e-8);
    f(x,y) = 1 - (normcdf(y)).^n - (1 - normcdf(x)).^n + (normcdf(y) - normcdf(x)).^n;
    Fxy = vpaintegral(vpaintegral(f, x, [-inf, y], 'AbsTol', 1e-8), y, [-inf, inf], 'AbsTol', 1e-8);
    d3(n) = sqrt(2*Fxy-d2(n).^2);
end
T = [i' d2' d3'
T(1,:) = [];
fprintf('n   |   d2    |    d3  
', T')
toc()
```

The results of this code are:

<table>
<thead>
<tr>
<th>n</th>
<th>d2</th>
<th>d3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.12838</td>
<td>0.85250</td>
</tr>
<tr>
<td>3</td>
<td>1.69257</td>
<td>0.88837</td>
</tr>
<tr>
<td>4</td>
<td>2.05875</td>
<td>0.87981</td>
</tr>
<tr>
<td>5</td>
<td>2.32593</td>
<td>0.86408</td>
</tr>
<tr>
<td>6</td>
<td>2.53441</td>
<td>0.84804</td>
</tr>
<tr>
<td>7</td>
<td>2.70436</td>
<td>0.83321</td>
</tr>
<tr>
<td>8</td>
<td>2.84720</td>
<td>0.81983</td>
</tr>
<tr>
<td>9</td>
<td>2.97003</td>
<td>0.80783</td>
</tr>
</tbody>
</table>

Elapsed time is 26.030876 seconds.

However, the execution time of computation of both constants can appreciably be improved by approximately a factor of 3 (around 9 s compared to around 26 s for $k = 9$) using the Matlab code below. This code employs the symmetry properties of the integral definitions of both d_2 — and d_3 — constants derived below: in contrast to the integral definitions above, now integration interval values of $[0, +\infty)$ and $[-y, +y]$ are used rather than $(-\infty, +\infty)$ and $(-\infty, +y]$ as above in program 1.
Program 2

clear
tic();
k = 9;
d2 = zeros(1, k);
d3 = zeros(1, k);
i = (1 : k);
for n = 2 : k
 syms x y
 d2(n) = 2.*vpaintegral(1-(normcdf(x)).^n - (normcdf(x)).^n, [0, Inf], 'AbsTol', 1e-8);
 f(x,y) = 1 - (normcdf(y)).^n - (normcdf(x)).^n + (normcdf(y) - normcdf(x)).^n;
 Fxy = 2.*vpaintegral(vpaintegral(f, x, [-y, y], 'AbsTol', 1e-8), y, [0, inf], 'AbsTol', 1e-8);
 d3(n) = sqrt(2*Fxy-d2(n).^2);
end
T = [i' d2' d3'];
T(1,:) = [];
fprintf('%i | %1.5f | %1.5f
', T')
toc()

Using the Matlab code given above, the following figures result:

<table>
<thead>
<tr>
<th>n</th>
<th>d2</th>
<th>d3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.12838</td>
<td>0.85250</td>
</tr>
<tr>
<td>3</td>
<td>1.69257</td>
<td>0.88837</td>
</tr>
<tr>
<td>4</td>
<td>2.05875</td>
<td>0.87981</td>
</tr>
<tr>
<td>5</td>
<td>2.32593</td>
<td>0.86408</td>
</tr>
<tr>
<td>6</td>
<td>2.53441</td>
<td>0.84804</td>
</tr>
<tr>
<td>7</td>
<td>2.70436</td>
<td>0.83321</td>
</tr>
<tr>
<td>8</td>
<td>2.84720</td>
<td>0.81983</td>
</tr>
<tr>
<td>9</td>
<td>2.97003</td>
<td>0.80783</td>
</tr>
</tbody>
</table>

Elapsed time is 9.061348 seconds.

Compared to literature values, the results of the calculation of both constants using either Matlab code proposed above fully agree:

<table>
<thead>
<tr>
<th>n</th>
<th>d2</th>
<th>d3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.128</td>
<td>0.8525</td>
</tr>
<tr>
<td>3</td>
<td>1.693</td>
<td>0.8884</td>
</tr>
<tr>
<td>4</td>
<td>2.059</td>
<td>0.8798</td>
</tr>
<tr>
<td>5</td>
<td>2.326</td>
<td>0.8641</td>
</tr>
<tr>
<td>6</td>
<td>2.534</td>
<td>0.8480</td>
</tr>
<tr>
<td>7</td>
<td>2.704</td>
<td>0.8332</td>
</tr>
<tr>
<td>8</td>
<td>2.847</td>
<td>0.8198</td>
</tr>
<tr>
<td>9</td>
<td>2.970</td>
<td>0.8078</td>
</tr>
</tbody>
</table>
Lemma
Let
\[f_n(x, y) := 1 - \Phi(y)^n - \Phi(-x)^n + (\Phi(y) - \Phi(x))^n \]
and its generating function
\[F(x, y, t) := \sum_{n=2}^{\infty} f_n(x, y) \cdot t^n \]
Then
\[F(x, y, t) = \frac{t^2 \cdot \Phi(x) \cdot \Phi(-y) \cdot (1 - t \cdot \Phi(-x)) \cdot (1 - t \cdot \Phi(y)) \cdot (1 - t \cdot (\Phi(y) - \Phi(x)))}{1 - t \cdot (\Phi(y) + \Phi(-x))} \]

Proof
\[\sum_{n=2}^{\infty} f_n(x, y) \cdot t^n = \sum_{n=2}^{\infty} \left[1 - \Phi(y)^n - \Phi(-x)^n + (\Phi(y) - \Phi(x))^n \right] \cdot t^n \]
\[= \sum_{n=2}^{\infty} \left[t^n \cdot \Phi(y)^n \cdot t^n - \Phi(-x)^n \cdot t^n + (\Phi(y) - \Phi(x))^n \cdot t^n \right] \]
\[= \frac{t^2}{1 - t} \cdot \frac{t^2 \cdot \Phi(y)^2}{1 - t \cdot \Phi(y)} - \frac{t^2 \cdot \Phi(-x)^2}{1 - t \cdot \Phi(-x)} + \frac{t^2 \cdot (\Phi(y) - \Phi(x))^2}{1 - t \cdot (\Phi(y) - \Phi(x))} \]
\[= \frac{t^2 \cdot \Phi(x) \cdot \Phi(-y)}{1 - t} \cdot \frac{2 - t \cdot (\Phi(y) + \Phi(-x))}{(1 - t \cdot \Phi(-x)) \cdot (1 - t \cdot \Phi(y)) \cdot (1 - t \cdot (\Phi(y) - \Phi(x)))} \]

Theorem 1
Let
\[a_3(n) := 2 \cdot \int_0^\infty \int_{-y}^y f_n(x, y) \cdot dx \]
and its generating function
\[\alpha_3(t) := \sum_{n=2}^{\infty} a_3(n) \cdot t^n \]
Then
\[\alpha_3(t) = \frac{2 \cdot t^2}{1 - t} \cdot \int_0^\infty \int_{-y}^y \frac{2 - t \cdot (\Phi(y) + \Phi(-x))}{(1 - t \cdot \Phi(-x)) \cdot (1 - t \cdot \Phi(y)) \cdot (1 - t \cdot (\Phi(y) - \Phi(x)))} \cdot \Phi(x) \cdot \Phi(-y) \cdot dx \]
Proof
\[\alpha_3(t) = \sum_{n=2}^{\infty} a_3(n) \cdot t^n \]
\[= \sum_{n=2}^{\infty} 2 \cdot \int_0^\infty dy \cdot \int_{-y}^{y} f_n(x, y) \cdot dx \cdot t^n \]
\[= 2 \cdot \int_0^\infty dy \cdot \int_{-y}^{y} \left[\sum_{n=2}^{\infty} f_n(x, y) \cdot t^n \right] \cdot dx \]
\[= 2 \cdot \int_0^\infty dy \cdot \int F(x, y, t) \cdot dx \]

Using the previous lemma:
\[\alpha_3(t) = 2 \cdot \int_0^\infty dy \cdot \int_{-y}^{y} \left[\frac{t^2 \cdot \Phi(x) \cdot \Phi(-y)}{1 - t} \cdot \frac{2 - t \cdot (\Phi(y) + \Phi(-x))}{(1 - t \cdot \Phi(-x)) \cdot (1 - t \cdot \Phi(y)) \cdot (1 - t \cdot (\Phi(y) - \Phi(x)))} \right] \cdot dx \]
\[= \frac{2 \cdot t^2}{1 - t} \cdot \int_0^\infty dy \cdot \int_{-y}^{y} \frac{2 - t \cdot (\Phi(y) + \Phi(-x))}{(1 - t \cdot \Phi(-x)) \cdot (1 - t \cdot \Phi(y)) \cdot (1 - t \cdot (\Phi(y) - \Phi(x)))} \cdot \Phi(x) \cdot \Phi(-y) \cdot dx \]

\[\square \]

Figure 1: Generating function \(\alpha_3(t) \) for the constants \(a_3(n) \).
Theorem 2

Let

\[d_2(n) := 2 \cdot \int_0^\infty f_n(x, x) \cdot dx \]

and its generating function

\[\delta_2(t) := \sum_{n=2}^\infty d_2(n) \cdot t^n \]

Then

\[\delta_2(t) = 2 \cdot t^2 \cdot \frac{2 - t}{1 - t} \int_0^\infty \frac{\Phi(x) \cdot \Phi(-x)}{(1 - t \cdot \Phi(x)) \cdot (1 - t \cdot \Phi(-x))} \cdot dx \]

Proof

\[\delta_2(t) = \sum_{n=2}^\infty d_2(n) \cdot t^n \]

\[= \sum_{n=2}^\infty 2 \cdot \int_0^\infty f_n(x, x) \cdot dx \cdot t^n \]

\[= 2 \cdot \int_0^\infty \left[\sum_{n=2}^\infty f_n(x, x) \cdot t^n \right] \cdot dx \]

\[= 2 \cdot \int_0^\infty F(x, x, t) \cdot dx \]

Using the previous lemma for \(y = x \):

\[\delta_2(t) = 2 \cdot \int_0^\infty \left[\frac{t^2 \cdot \Phi(x) \cdot \Phi(-x)}{1 - t} \cdot \frac{2 - t \cdot (\Phi(x) + \Phi(-x))}{(1 - t \cdot \Phi(-x)) \cdot (1 - t \cdot \Phi(x)) \cdot (1 - t \cdot (\Phi(x) - \Phi(x)))} \right] \cdot dx \]

\[= 2 \cdot t^2 \cdot \frac{2 - t}{1 - t} \int_0^\infty \frac{\Phi(x) \cdot \Phi(-x)}{(1 - t \cdot \Phi(x)) \cdot (1 - t \cdot \Phi(-x))} \cdot dx \]

\[\square \]
Theorem 3

Let

\[A_3(v, t) := 4 \cdot \int_0^v d\tilde{v} \cdot \int_0^\infty F(u - \tilde{v}, u + \tilde{v}, t) \cdot du \]

Then

(1) \[\alpha_3(t) = \lim_{v \to \infty} A_3(v, t) \]

and

(2) \[\delta_2(t) = \frac{1}{2} \cdot \frac{\partial}{\partial v} A_3(v, t) \bigg|_{v=0} \]

Proof

Using the transformation \(x = u - \tilde{v}, y = u + \tilde{v} : \)

(1) \[2 \cdot \int_0^\infty dy \cdot \int_0^y F(x, y, t) \cdot dx = 4 \cdot \int_0^\infty d\tilde{v} \cdot \int_0^\infty F(u - \tilde{v}, u + \tilde{v}, t) \cdot du = \lim_{v \to \infty} 4 \cdot \int_0^\infty d\tilde{v} \cdot \int_0^\infty F(u - \tilde{v}, u + \tilde{v}, t) \cdot du = \lim_{v \to \infty} A_3(v, t) = \alpha_3(t) \]

(2) \[\frac{1}{2} \cdot \frac{\partial}{\partial v} A_3(v, t) = \frac{1}{2} \cdot \frac{\partial}{\partial v} \left[4 \cdot \int_0^v d\tilde{v} \cdot \int_0^\infty F(u - \tilde{v}, u + \tilde{v}, t) \cdot du \right] = 2 \cdot \int_0^\infty F(u - v, u + v, t) \cdot du \]

Substituting \(v = 0 : \)

\[\frac{1}{2} \cdot \frac{\partial}{\partial v} A_3(v, t) \bigg|_{v=0} = 2 \cdot \int_0^\infty F(u, u, t) \cdot du = \delta_2(t) \]

Acknowledgement
The authors acknowledge the support of Ad Klein and Charlotte Creusen of the Department of Engineering of Zuyd University of Applied Sciences.

Literature

4) https://de.mathworks.com/help/symbolic/vpaintegral.html