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Abstract

A lower bound is given for the number of primes in a special linear
form less than N , under the assumption of the weakened Elliott-
Halberstam conjecture.

1 Introduction

Using the weight function of the form (q,pt - prime numbers)

(1.1) v(2n) = 1− 1

2

∑
z≤q<y
qk‖2n

k− 1

2

∑
2p1p2p3=2n

z≤p1<y≤p2≤p3

1− 1

2

∑
2p1p2=2n
z≤p1<y≤p2

1−
∑

2p1p2=2n
y≤p1≤f≤p2

1,

(such a weight function v(2n) leaves only prime numbers when sifting (i.e.
v(2n) = 1 with n = p ≥ z and v(2n) ≤ 0 for other values of n) for∑

2n∈A
(2n,P (z))=1

v(2n)

) , where

z � N0.25001; y � N
1
3 ; f � N

1
2 ; (2n,N) = 1; 2n < N.

And the weakened conjecture of the Elliott-Halberstam

(1.2)
∑
d≤D

max
(a,d)=1

∣∣∣∣ψ(y; q, a)− y

φ(q)

∣∣∣∣� x

(log x)B
,

where
|a| ≤ (logN)B; D = N1−C ; C ≈ 0.002; B ≥ 3,
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it can be proved that there are infinitely many prime numbers in linear form

pr = 2pu + a.

The main role is played by the upper bound for the sum for numbers of the
form

2p1p2 ∈ A = {p−a; p ≤ N, p ∈ P, z ≤ p1 < y ≤ p2, |a| ≤ (logN)B, B ≥ 3}.

2 Main results

Theorem 2.1. Assuming (1.2) there are infinitely many primes of the form

pr = 2pu + a,

where a is an arbitrary fixed odd integer.

The proof of Theorem 2.1 is given at the end of the paper. We now give
several intermediate theorems and lemmas.

Theorem 2.2. (See Theorem 9.7 (Jurkat-Richert) [1])
Let J = {a(n)}∞n=1 be an arithmetic function such that

a(n) ≥ 0 for all n

and

|J | =
∞∑
n=1

a(n) <∞.

Let P be a set of prime numbers (2 6∈ P) and, for z ≥ 2, let

P (z) =
∏
p∈P
p<z

p.

Let

S(J,P, z) =
∞∑
n=1

(n,P (z))=1

a(n).

For every n ≥ 1, let gn(d) be a multiplicative function such that

0 ≤ gn(p) < 1 for all p ∈ P.

Define r(d) by

|Jd| =
∞∑
n=1
d|n

a(n) =
∞∑
n=1

a(n)gn(d) + r(d).
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Let Q be a finite subset of P, and let Q be the product of the primes in Q.
Suppose that, for some ε satisfying 0 < ε < 1

200
, the inequality∏

p∈P\Q
u≤p<z

(1− gn(p))−1 < (1 + ε)
log z

log u

holds for all n and 1 < u < z. Then for any D ≥ z there is the upper bound

(2.1) S(J,P, z) < (F (s) + εe14−s)X +R,

and for any D ≥ z2 there is the lower bound

(2.2) S(J,P, z) > (f(s)− εe14−s)X −R,

where
s =

logD

log z
,

F (s) and f(s) are the continuous functions defined as

F (s) = 1+
∞∑
n=1

n≡1(mod2)

fn(s) for s ≥ 1; f(s) = 1−
∞∑
n=2

n≡0(mod2)

fn(s) for s ≥ 2,

X =
∞∑
n=1

a(n)
∏
p|P (z)

(1− gn(p)),

and the remainder term is

R =
∑
d|P (z)
d<DQ

|r(d)|.

If there is a multiplicative function g(d) such that gn(d) = g(d) for all n,
then

X = V (z)|J |,

where
V (z) =

∏
p|P (z)

(1− g(p)).

Lemma 2.3. (See Theorem 4, Theorem 1 [3] and Lemma 2 [1])
An arithmetic function λ(d) is said to be well-factorable of level D ≥ 1 if

for any R, S ≥ 1 with RS = D there are functions δr, ηs with |δr|, |ηs| ≤ 1

supported on r < R, s < S, such that

λ(d) =
∑
rs=d

δrηs.
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Let 0 < ε < 1
8
, 2 ≤ z ≤ D. Then from Theorem 4 [3] it follows

(2.3) S(J,P, z) ≤ X(F (
logD

log z
) + E) +

∑
l<L

∑
d|P (z)

λ+l (d)r(J, d).

J ,P,z,X are defined as in Theorem 2.2. In this formula, L depends only on
ε and λ+l - is well factorable coefficient of order 1 and of level D, and the
constant E satisfies

E = O(ε+ ε−8eK(logD)−
1
3 ),

where K is some constant > 1. Using the definition given in Theorem 2.2

F (s) =
2eγ

s
for 0 < s ≤ 2

with γ - EulerâĂŞMascheroni constant.

Lemma 2.4. (See Lemma 6 [1])
We denote by |αh|, |βm| ≤ 1 two sequences with h ∈ [H, 2H) and m ∈

[M, 2M), also define ν = logH
logN

, N = 2HM and the following equality

(2.4)
∑

(d,a)=1

λ(d)

 ∑
hm≡a[d]

αhβm −
1

ϕ(d)

∑
(hm,d)=1

αhβm

 = OB

(
N

(logN)B

)

is true for B ≥ 3, uniformly for |a| ≤ (logN)B, for any positive ε, for any ν
(ε ≤ ν ≤ 1−ε), with D = N θ(ν)−ε, where the function θ(ν) has the following
value: 

2
3
− ν

3
for 1

4
< ν ≤ 2

7
,

1
2
+ ν

4
for 2

7
≤ ν ≤ 2

5
,

1− ν for 2
5
≤ ν ≤ 1

2
.

Lemma 2.5. To estimate the sum

1

2

∑
2n∈A

∑
2n=2p1p2
z≤p1<y≤p2

1

we pass from one set A to another F (switching principle), we obtain

(2.5)
1

2
S(F,P, f) ≤ 0.1773748

eγ

2

N

logN
V (z) +O

(
N

(logN)B

)
,

where

F = {2p1p2+a : z ≤ p1 < y ≤ p2, 2p1p2 < N, (2p1p2, N) = 1, |a| ≤ (logN)B, B ≥ 3}.
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Proof. The remainder term of the sieving function S(F,P, f) by Lemma 2.3
will be equal to ∑

d

λ(d)

(
|Fd| −

|F |
φ(d)

)
= O

(
N

(logN)B

)
with (2, d) = 1 and D = N θ(ν)−ε. The minimum value for θ(ν) is defined in
Lemma 2.4, i.e

θ

(
log p1
logN

)
≥ 4

7
for z ≤ p1 ≤ y.

Since V (f)
V (z)

= log z
log f

(
1 +O

(
1

logN

))
= 0.50002 + O

(
1

logN

)
(using the defini-

tion for V (z) in Theorem 2.2) we have

1

2
S(F,P, f) ≤ 0.50002

7

8

eγ

2

∫ 1/3

0.25001

dt

t(1− t))
N

logN
V (z) +O

(
N

(logN)B

)
.

3 Proof of Theorem 2.1

Let z(2p + a,N) be the number of primes of the form pr = 2pu + a ≤ N ,
where a is an arbitrary fixed odd integer and N > e|a|

1
B ; B = 3. We also

denote A = {p−a; p ≤ N, p ∈ P, |a| ≤ (logN)B, B ≥ 3} and P (z) =
∏
p∈P
p<z

p.

We give a lower bound for z(2p+ a,N) using the weight function (1.1).

z(2p+ a,N) ≥
∑
2n∈A

n∈{1,p≥z}

1 ≥
∑
2n∈A

(2n,P (z))=1
n∈{1,p≥z}

1 ≥
∑
2n∈A

(2n,P (z))=1

v(2n).

Now open the last sum and applying the switching principle for the set A
we obtain

z′(2p+a,N) = S(A,P, z)−1

2

∑
z≤q<y

S(Aq,P, z)−
1

2
S(B,P, f)−1

2
S(F,P, f)−S(E,P, f)+O(N

3
4 ),

where z(2p+ a,N) ≥ z′(2p+ a,N),

B = {2p1p2p3+a : z ≤ p1 < y ≤ p2 ≤ p3, 2p1p2p3 < N, (2p1p2p3, N) = 1, |a| ≤ (logN)B, B ≥ 3}

and

E = {2p1p2+a : y ≤ p1 < f ≤ p2, 2p1p2 < N, (2p1p2, N) = 1, |a| ≤ (logN)B, B ≥ 3}.
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The first two sums in z′(2p+ a,N) are estimated using the Theorem 2.2
and the weakened Elliott-Halberstam conjecture (1.2) with

f(s) =
2eγ log(s− 1)

s
for s =

logD

log z
∈ [3, 4]; F (sq) =

2eγ

sq
for sq =

log D
q

log z
∈ (0, 3].

Acting as in Theorem 10.4 [2] and Theorem 10.5 [2], only with the value
|a| ≤ (logN)B, B ≥ 3, z = N0.25001 and D = N1−C , C ≈ 0.002 we obtain

S(A,P, z) ≥ (f(s)−εe14−s)V (z)
∞∑
n=1

a(2n)+O

(
N

(logN)B

)
≥ 1.0981287

eγ

2

N

logN
V (z),

respectively

1

2

∑
z≤q<y

S(Aq,P, z) ≤ 0.50002 ∗ eγN
∑
z≤q<y

1

φ(q) log
(
D
q

) +O

(
N

(logN)B

)
≤

≤ 0.50002 ∗ eγ
∫ 1/3

0.25001

dt

t(0.998− t))
N

logN
V (z).

The third sum in z′(2p+a,N) is estimated as for Theorem 10.6 [2], only
with the value |a| ≤ (logN)B, B ≥ 3 and z = N0.25001 and since

V (f)

V (z)
=

log z

log f

(
1 +O

(
1

logN

))
= 0.50002 +O

(
1

logN

)
(using the definition for V (z) in Theorem 2.2) we obtain

1

2
S(B,P, f) ≤ 0.50002 ∗ eγV (z)

∑
z≤p1<y≤p2≤p3

2p1p2p3≤N

1 +O

(
N

(logN)B

)
≤

≤ 0.50002
eγ

2

∫ 1/3

0.25001

∫ (1−β)/2

1/3

dtdβ

tβ(1− t− β)
N

logN
V (z).

An estimate for the fourth sum is given in Lemma 2.5.

1

2
S(F,P, f) ≤ 0.1773748

eγ

2

N

logN
V (z).

It remains to estimate the last sum in z′(2p+a,N). Acting as in Lemma
2.5, we choose the minimum value of the function

θ

(
log p1
logN

)
≥ 1

2
for y ≤ p1 ≤ f,

so we have

S(E,P, f) ≤ 0.50002 ∗ eγ
∫ 1/2

1/3

dt

t(1− t))
N

logN
V (z) +O

(
N

(logN)B

)
≤
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≤ 0.693175
eγ

2

N

logN
V (z).

Putting together estimates for the sums in z′(2p+ a,N), we obtain

z(2p+a,N) ≥ (1.0981287−0.2032878−0.0240915−0.1773748−0.693175)e
γ

2

N

logN
V (z) ≥

(3.1) ≥ 0.00019
eγ

2

N

logN
V (z),

with

V (z) =
∏
p<z

(p,N)=1

(
1− 1

p− 1

)
=
∏
p>2

(
1− 1

(p− 1)2

)∏
p|N
p>2

p− 1

p− 2
∗ e
−γ

log z

(
1 +O

(
1

logN

))

for sufficiently large N , this proves Theorem 2.1.
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