Abstract:
Argentest II is born, a personal research project that develops a new exclusive probabilistic primality test for Twin prime numbers. I present a test similar to Fermat’s little theorem.

Twin prime numbers

A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin or prime pair.

Usually the pair (2, 3) is not considered to be a pair of twin primes. Since 2 is the only even prime, this pair is the only pair of prime numbers that differ by one; thus twin primes are as closely spaced as possible for any other two primes.

The first few twin prime pairs are:
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), ... OEIS: A077800.

Five is the only prime that belongs to two pairs, as every twin prime pair greater than (3,5) is of the form (6n+1, 6n-1) for some natural number n.

Probabilistic primality test for Twin prime numbers

$$\exists k > 0 \in \mathbb{N}/2k + 1 = p$$

$$\frac{2^{p+2} - 8 \pmod{p}}{p} \equiv 3 \iff p, p + 2 \text{ are primes}$$

$$\therefore P \land P + 2 \text{ are Twin primes}$$
Examples

When the two numbers are prime it has congruence.

Examples

A. Test for 3 and 5
\[
\frac{2^5 - 8}{3} \equiv 3 \, (\text{Mod} \ 5)
\]

B. Test for 5 and 7
\[
\frac{2^7 - 8}{5} \equiv 3 \, (\text{Mod} \ 7)
\]

C. Test for 11 and 13
\[
\frac{2^{13} - 8}{11} \equiv 3 \, (\text{Mod} \ 13)
\]

D. Test for 17 and 19
\[
\frac{2^{19} - 8}{17} \equiv 3 \, (\text{Mod} \ 19)
\]

E. Test for 29 and 31
\[
\frac{2^{31} - 8}{29} \equiv 3 \, (\text{Mod} \ 31)
\]

F. Test for 41 and 43
\[
\frac{2^{43} - 8}{41} \equiv 3 \, (\text{Mod} \ 43)
\]

G. Test for 59 and 61
\[
\frac{2^{61} - 8}{59} \equiv 3 \, (\text{Mod} \ 61)
\]

When at least one of the two numbers is not a prime number, it has no congruence.

Examples

H. Test for 9 and 11
\[
\frac{2^{11} - 8}{9} \not\equiv 3 \, (\text{Mod} \ 11)
\]

I. Test for 13 and 15
\[
\frac{2^{15} - 8}{13} \not\equiv 3 \, (\text{Mod} \ 15)
\]

J. Test for 15 and 17
\[
\frac{2^{17} - 8}{15} \not\equiv 3 \, (\text{Mod} \ 17)
\]

K. Test for 19 and 21
\[
\frac{2^{21} - 8}{19} \not\equiv 3 \, (\text{Mod} \ 21)
\]

L. Test for 21 and 23
\[
\frac{2^{23} - 8}{21} \not\equiv 3 \, (\text{Mod} \ 23)
\]

M. Test for 23 and 25
\[
\frac{2^{25} - 8}{23} \not\equiv 3 \, (\text{Mod} \ 25)
\]

N. Test for 27 and 29
\[
\frac{2^{29} - 8}{27} \not\equiv 3 \, (\text{Mod} \ 29)
\]

This test is probabilistic since there are pseudo-prime numbers that pass the test like 561.

Test for 561 and 563
\[
\frac{2^{563} - 8}{561} \equiv 3 \, (\text{Mod} \ 563)
\]

561 is a composite number.
563 is a prime number.
Therefore these numbers are not twin prime.

Pseudo prime numbers (Psp) are a tiny portion of composite numbers that pass the test, these are known as Carmichael numbers.
These Pseudoprime have a prime partner \(P = Psp + 2 \)

\[Psp = \{561, 1905, 2465, 4371, 23001, 25761, 60701, 72249, 158369, \ldots \} \]

These prime have a pseudoprime partner \(Psp = P + 2 \)

\[P = \{1103, 2699, 2819, 3643, 4679, 6599, 10259, 12799, 14489, 18719, \ldots \} \]

Probabilistic primality test for Twin prime numbers

Demonstration

\[\exists k > 0 \in \mathbb{N} / 2k + 1 = p \]

\[\frac{2^{p+2} - 8}{p} \equiv 3(\text{Mod } p + 2) \iff p, p + 2 \text{ are primes} \]

Demonstration when \(p = \text{prime number and } (p + 2) \) also.

<table>
<thead>
<tr>
<th>First part</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{2^{p+2} - 8}{p} \equiv 3(\text{Mod } p + 2)]</td>
<td>[\frac{2^{19} - 8}{17} \equiv 3(\text{Mod } 19)]</td>
</tr>
<tr>
<td>[\frac{2^p - 8}{p-2} \equiv 3(\text{Mod } p)]</td>
<td>[\frac{2^{19} - 8}{17} \equiv 3(\text{Mod } 19)]</td>
</tr>
<tr>
<td>[\frac{2^p - 8}{p-2} \equiv 3(\text{Mod } p)]</td>
<td>[\frac{2^{19} - 8}{17} \equiv 3(\text{Mod } 19)]</td>
</tr>
<tr>
<td>[\frac{2^p - 8}{p-2} \equiv 3(\text{Mod } p)]</td>
<td>[\frac{2^{19} - 8}{17} \equiv 3(\text{Mod } 19)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second part</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\frac{2^{p+2} - 8}{p} \equiv 3(\text{Mod } p + 2)]</td>
<td>[\frac{2^{19} - 8}{17} \equiv 3(\text{Mod } 19)]</td>
</tr>
<tr>
<td>[\frac{2^p - 8}{p-2} \equiv 3(\text{Mod } p)]</td>
<td>[\frac{2^{19} - 8}{17} \equiv 3(\text{Mod } 19)]</td>
</tr>
<tr>
<td>[\frac{2^p - 8}{p-2} \equiv 3(\text{Mod } p)]</td>
<td>[\frac{2^{19} - 8}{17} \equiv 3(\text{Mod } 19)]</td>
</tr>
<tr>
<td>[\frac{2^p - 8}{p-2} \equiv 3(\text{Mod } p)]</td>
<td>[\frac{2^{19} - 8}{17} \equiv 3(\text{Mod } 19)]</td>
</tr>
</tbody>
</table>

Fermat's theorem

Theorem: Fermat's Little Theorem, if \(p \) is a prime number, then, for each natural number \(a \), with \(a > 0 \)

\[a^p \equiv a \ (\text{mod } p) \]
Program with Python 3.9

Probabilistic primality test for Twin prime numbers.
Author Gabriel M Zeolla

n = input("Enter Odd number: ")
if int(n) % 2 == 0:
 print("ERROR")
 n = input("Enter Odd number: ")
 if int(n) % 2 == 0:
 print("ERROR")

x = ((2**(int(n)+2) - 8) // (int(n)))
r = x % (int(n)+2)

p = r == 3

if p is True:
 print(n, "and", int(n)+2, " are probable Twin prime numbers")
else:
 print(n, "and", int(n)+2, 'are not Twin Prime!!')

Conclusion

Except for the difficulty generated by the pseudo-prime numbers, this test works correctly for all twin prime numbers without any exception.

Professor Zeolla Gabriel Martín

Other works of the author
https://independent.academia.edu/GabrielZeolla
References

1. The First 100,000 Twin Primes
2. Caldwell, Chris K. "Are all primes (past 2 and 3) of the forms 6n+1 and 6n-1?". The Prime Pages. The University of Tennessee at Martin. Retrieved 2018-09-27.
5. de Polignac, A. (1849). "Recherches nouvelles sur les nombres premiers" [New research on prime numbers]. Comptes rendus (in French). 29: 397–401. From p. 400: "1er Théorème. Tout nombre pair est égal à la différence de deux nombres premiers consécutifs d'une infinité de manières … " (1st Theorem. Every even number is equal to the difference of two consecutive prime numbers in an infinite number of ways …)
14. de Polignac, A. (1849). "Recherches nouvelles sur les nombres premiers" [New research on prime numbers]. Comptes rendus (in French). 29: 397–401. From p. 400: "1er Théorème. Tout nombre pair est égal à la différence de deux nombres premiers consécutifs d'une infinité de manières … " (1st Theorem. Every even number is equal to the difference of two consecutive prime numbers in an infinite number of ways …)
15. Caldwell, Chris K. "The Prime Database: 2996863034895*2^1290000-1".
16. "World Record Twin Primes Found!".