Abstract:

This paper introduces a new set of descriptors for usage in cheminformatics.

A gradient of Electrostatic [Potential] Energy, or GEE, Descriptors. Consider a molecule so either Cartesian or spherical coordinates can be used to describe the atoms present in the compound:

Electrostatic potential for an atom directly correlates with or is proportional to the atom’s electronegativity:

\[V_{E,i} \propto \chi_i \]
where \(V_{E,i} \) is the electrostatic potential of atom \(E \) and \(\chi \) is the electronegativity of atom \(i \). Thus, the electrostatic potential energy for atom \(i \), or \(E_i \), can be expressed as the following:

\[
E_i \propto \chi_i \rho_i
\]

where \(\rho_i \) is the magnitude of the distance of atom \(i \) energy from an origin, or the center of the molecule. The above would suggest the total electrostatic energy of a molecule about its center would be defined as:

\[
E = \sum_i \chi_i \rho_i
\]

The gradient of electrostatic potential energy about the center of a molecule would be as follows:

\[
\nabla E = \nabla \sum_i \chi_i \rho_i
\]

where the \(\nabla \) is the del operator. After the application of the chain rule of differentiation, one obtains:

\[
\nabla E = \nabla \sum_i \chi_i \rho_i
= \sum_i \rho_i \nabla \chi_i + \sum_i \chi_i \nabla \rho_i
\]

Since the electronegativity of an atom is relatively constant, the left term of the above expression drops out leaving:

\[
\nabla E = \sum \chi_i \nabla \rho_i
\]

Assuming one is working with spherical coordinates, the gradient of \(\rho_i \) will reduce to:

\[
\nabla \rho_i = \frac{1}{\rho_i} \langle x_i, y_i, z_i \rangle,
\]

where \(x_i, y_i, \) and \(z_i \) are the Cartesian coordinates of atom \(i \) from the center of the molecule.

Substituting in the spherical coordinates associated with the Cartesian system:

\[
x = \rho \cos \theta \sin \phi,
\]

\[
y = \rho \sin \theta \sin \phi,
\]

\[
z = \rho \cos \phi.
\]

The gradient of \(\rho_i \) simplifies to:

\[
\nabla \rho_i = \langle \cos \theta_i \sin \phi_i, \sin \theta_i \sin \phi_i, \cos \phi_i \rangle.
\]

Knowing \(\theta \) and \(\phi \) are defined as:
then the gradient of ρ_i becomes:

$$\nabla \rho_i = \left(\cos \left(\arctan \left(\frac{y_i}{x_i} \right) \right) \sin \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right), \sin \left(\arctan \left(\frac{z_i}{x_i} \right) \right) \sin \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right), \cos \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right) \right).$$

Thus, the gradient of the electrostatic potential energy about the center of the molecule is given as the following expression:

$$\nabla E = \sum_i \chi_i \left(\cos \left(\arctan \left(\frac{y_i}{x_i} \right) \right) \sin \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right), \sin \left(\arctan \left(\frac{y_i}{x_i} \right) \right) \sin \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right), \cos \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right) \right).$$

Next, one can define a set of descriptors based upon the distance from the center of a compound:

$$GEE \left(\rho \right) = \sum_i \sum_j \left(u_{\rho_j} \left(\rho \right) - u_{\rho_j+40} \left(\rho \right) \right) \chi_i \left(\cos \left(\arctan \left(\frac{y_i}{x_i} \right) \right) \sin \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right), \sin \left(\arctan \left(\frac{y_i}{x_i} \right) \right) \sin \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right), \cos \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right) \right).$$

which can be reduced to Cartesian components:

$$GEE_{j,x} \left(\rho \right) = \sum_i \sum_j \left(u_{\rho_j} \left(\rho \right) - u_{\rho_j+40} \left(\rho \right) \right) \chi_i \cos \left(\arctan \left(\frac{y_i}{x_i} \right) \right) \sin \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right),$$

$$GEE_{j,y} \left(\rho \right) = \sum_i \sum_j \left(u_{\rho_j} \left(\rho \right) - u_{\rho_j+40} \left(\rho \right) \right) \chi_i \sin \left(\arctan \left(\frac{y_i}{x_i} \right) \right) \sin \left(\arccos \left(\frac{z_i}{\rho_i} \right) \right),$$

$$GEE_{j,z} \left(\rho \right) = \sum_i \sum_j \left(u_{\rho_j} \left(\rho \right) - u_{\rho_j+40} \left(\rho \right) \right) \chi_i \frac{z_i}{\rho_i}.$$

Finally, the net GEE descriptors for ρ at j would be defined as the following expression:

$$GEE_1 \left(\rho \right) = \sqrt{GEE_{j,x}^2 \left(\rho \right) + GEE_{j,y}^2 \left(\rho \right) + GEE_{j,z}^2 \left(\rho \right)}.$$