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Abstract: 


It is shown in this monograph that the Gravitational Time Dilation Equation, together with the 
well-known Equivalence Principle relating gravitation and acceleration, produce results that 
contradict the required outcome at the reunion of the twins in the famous twin ‘paradox’. The 
Equivalence Principle Version of the Gravitational Time Dilation Equation (the “EPVGTD” 
equation) produces results that say that, when the traveling twin (he) instantaneously changes 
his velocity, in the direction TOWARD the distant home twin (her), that he will conclude that her 
age instantaneously becomes INFINITE. It is well known that, according to her, at their reunion, 
she will be older than him, but both of their ages will be FINITE. The twins clearly MUST be in 
agreement about their respective ages at the reunion, because they are co-located there. 


____________________________________________________________________________________


Section 1. The Gravitational Time Dilation Equation 

The Gravitational Time Dilation Equation is described in Wikipedia:


  https://en.wikipedia.org/wiki/Gravitational_time_dilation 


It says, in particular, that for two clocks in a constant and uniform gravitational field of force per 
unit mass “g”, separated by the constant distance “d” in the direction of the field, the clock 
that is closer to the source of the field will run slower than the other clock, by the factor

exp(g d).

 

The equivalence principle then says that for two clocks that are accelerating with the same 
acceleration “A”, separated by the constant distance “d” in the direction of the acceleration, 
the trailing clock will run slower than the other clock, by the factor exp(A d). The two values “g” 
and “A” are numerically the same.


 

Section 2. A Possible Proof that Negative Aging Doesn’t Occur in Special Relativity 


Consider the following scenario: 


At some instant, the perpetually-inertial "home twin" (she) is 20 years old, and is holding a 
display that always shows her current age. Facing (and co-located with) her is the "helper 
friend" (the "HF") of an observer (he) who is "d" ly away to her right. Both the HF and he are 
also 20 years old, and are stationary with respect to her at that instant. Like her, he and the HF 
are each holding a display that always shows their current ages. 


 



Now, suppose that he and his helper friend then both start accelerating at a constant "A" ly/y/y 
toward the right. He knows that his helper friend (the HF) is then ageing at a constant rate that 
is slower than his own rate of ageing, by the factor exp(A d). 


An instant later, his display shows the time 20 + epsilon_1, where epsilon_1 is a very small 
positive number. He knows that HF's display shows the time 20 + epsilon_2, where

epsilon_2 = epsilon_1 / exp(A d).

 

She can still see HF's display (because HF has only moved an infinitesimal distance away from 
her, to her right). She will see that HF's display reads 20 + epsilon_1 / exp(A d). And likewise, 
HF can still see her display. What does HF see on her display? Does HF see that she is now 
slightly YOUNGER than 20?  No!  It would clearly be absurd for someone essentially co-
located with her to see her get younger.  What HF would see her display reporting is that she 
was some very small positive amount epsilon_3 OLDER than she was at the instant before the 
acceleration. HF then sends a message to him, telling him that she was 20 + epsilon_3 years 
old right then. When he receives that message, he then knows that her current age, when he 
was 20 + epsilon_1 years old, was 20 + epsilon_3. So he KNOWS that she didn't get younger 
when he accelerated away from her. That contradicts what the well-known Co-Moving Inertial 
Reference Frames (CMIF) simultaneity method says.

 

In the above, I asked

 
"What does HF see on her display?”.

 

And I answered

 

"HF would see her display reporting that she was some very small amount epsilon_3 OLDER 
that she was at the instant before the acceleration.”

 

Since the above argument makes use of very small (unspecified) quantities, it could be argued 
that time delays due to the speed of light might also need to be taken into account when 
describing what the HF sees on her display.

 
But I think any such concerns can be addressed by pointing out that the separation "d" 
between him and her can be made arbitrarily large, and CMIF simultaneity says that the 
amount of negative ageing that occurs is proportional to their separation. Since the errors 
involved due to the finite speed of light between her and the HF are essentially independent of 
the distance "d", those errors become negligible for sufficiently large “d".

 

There is another argument that shows that the HF ("Helper Friend") can't conclude that the 
home twin (she) is less than 20 years old when the HF is 20 + epsilon_2. We can require that 
she transmits NO light messages to him when she is 20 years old or younger. Suppose the HF 

receives a light message from her when he is 20 + epsilon_2 years old. By the requirement, she 
must have been older than 20 years old when she sent that message. When the HF receives 
that message, he knows that she must be older than when she sent the message, so she must 
definitely be older than 20 years old when the HF is 20+epsilon_2. Therefore, she did NOT get 
younger, according to him, when he accelerated away from her. [Note: we can’t KNOW that the 
HF received that light message; we’re just supposing it, so I now don’t consider this additional 
argument to be valid.]

 

A still simpler argument is that, if the HF ever concluded that she got younger when he 
accelerated away from her, he would be concluding that she was less than 20 years old, when 
he himself was more than 20 years old, at that instant of his acceleration. But BEFORE his 
acceleration, the HF was co-located and stationary with her, and they always shared the same 

 



exact age then (less than 20).  So, we first CONJECTURE that after they separated, he was 
over 20 when she was under 20.  But we KNOW that for EACH instant in her life when she was 
under 20, he was co-located with her and they shared the same age.  So the conjecture is 
false.

 

It seems to me that, once the distant accelerating observer (the “AO”) has a way to set up an 
array of clocks (with attending helper observers) that he can use to define his concept of 
"NOW" (analogous to how Einstein did it for perpetually-inertial observers), it becomes 
IMPOSSIBLE for the home twin to age negatively, according to the distant accelerating 
observer.  It's true that those clocks aren't synchronized as they are in the perpetually-inertial 
case, but they don't have to be, since the distant AO knows exactly how the rates of those 
clocks compare to his own clock, and he can compensate for their different readings.

 

The way the accelerating observer defines his "NOW" instant at distant locations comes 
directly from the gravitational time dilation equation, via the equivalence principle. It says that a 
"helper friend" (HF), who always is accelerating exactly as the AO is accelerating, with 
acceleration “A”, will age at a rate that is a fixed known ratio of the AO's rate. The given HF 
and the AO are always a constant distance "d" apart. If the chosen HF is BEHIND the AO 
(compared to the direction of the acceleration), that HF will age SLOWER than the AO by the 
factor exp(A d). To keep things as simple as possible, we can always let all of the HF's and the 
AO's ages be the same, immediately before they all start accelerating. Then the ratio of the age 
of the "behind" HF's age to the AO's age is just 1/exp(A d). And if, instead, another HF is 
AHEAD of the AO (compared to the direction of the acceleration), then the ratio of that "ahead" 
HF's age to the AO's age is just exp(A d). (Of course, different "behind" HF's will have different 
distances "d" to the AO, and likewise for the "ahead" HF's.) So, at some instant T in the AO's 
life, he computes that the original "behind" HF's current age is ( T / exp(A d) ). Or, alternatively, 
he computes that the "ahead" HF's current age is ( T exp(A d) ). The way he SELECTS the HF 
from among all possible HF's (both ahead and behind him) is such that the chosen HF is 
momentarily co-located with the home twin (her) at the instant the AO wants to know her 
current age.

 

So, if all of the above is correct, that allows the AO to construct an array of (effectively) 
synchronized clocks, with attending helper observers, that are “attached” to him, similar to 
what a perpetually-inertial observer can do, and that can put an observer momentarily co-
located with the distant twin (her) at the instant in the AO's life when he wants to know her 
current age. And in both the perpetually-inertial and the accelerated cases, it would be 
ABSURD for that momentarily co-located observer to observe a large and abrupt change 
(either positive or negative) in her age at that instant.


 

Section 3. Instantaneous Velocity Changes in the Equivalence Principle Version of the 
Gravitational Time Dilation Equation  

When using the CMIF simultaneity method, the analysis is GREATLY simplified by using 
instantaneous velocity changes, rather than finite accelerations that last for a finite amount of 
time. So I decided to try using instantaneous velocity changes in the Equivalence-Principle 
Version of the Gravitational Time Dilation equation (the "EPVGTD" equation). The result 
(assuming I haven't made a mistake somewhere) is unexpected and disturbing. My analysis 
found that the age change of the HF, produced by an instantaneous velocity change by the AO 
and the HF, from zero to 0.866 lightseconds/second (ls/s), directed TOWARD the home twin 
(her), is INFINITE! 


I'll describe my analysis, and perhaps someone can find an error somewhere.


 



 

Before the instantaneous velocity change, the AO (he), the HF, and the home twin (she) are

all mutually stationary. She and the HF are initially co-located, and the AO (he) is "d" 
lightseconds away from her and the HF. 


I start by considering a constant acceleration "A" ls/s/s that lasts for a very short but finite time 
of "tau" seconds. That acceleration lasting tau seconds causes the rapidity, theta, (which starts 
at zero) to increase to


  theta = ( A tau ) ls/s,

 
and so we get the following relationship:

 

  A = theta / tau.

 
We will need the above relationship shortly.

 

(Rapidity has a one-to-one relationship to velocity. Velocity of any object that has mass can 
never be equal to or greater than the velocity of light in magnitude, but rapidity can vary from 
-infinity to +infinity.)

 

We want the velocity, beta, to be 0.866 ls/s after the acceleration (because that results in the 
gamma factor having the nice value 2.0). Rapidity, theta, is related to velocity, beta, by the 
equation

 

  theta = arctanh (beta) = (1/2) ln [ (1 + beta) / (1 - beta) ].

 

("arctanh" just means the inverse of the hyperbolic tangent function.)

 

So velocity = 0.866 ls/s corresponds to a rapidity of about 1.317 ls/s.

 

When the acceleration is directed TOWARD the home twin (her), the "EPVGTD" equation says 
that the acceleration “A” will cause the HF to age FASTER than the AO by the factor exp(A d), 
where d is the constant separation between the AO and the HF.

 

Note that the argument in the exponential exp(A d) can be separated like this:


  exp(A d) = [exp(d)] sup A,

 

where "sup A" means "raise the quantity exp(d) to the power "A" ". The rationale for doing that 
is because the quantity exp(d) won't change as we make the acceleration greater and greater, 
and the duration of the acceleration shorter and shorter. That will make the production of the 
table below easier.

 

The CHANGE in the age of the HF, caused by an acceleration "A" that lasts "tau" seconds, is 
just


  tau [exp(d)] sup A, 


because [exp(d)] sup A is the constant RATE at which the HF is ageing, during the acceleration, 
and tau is how long that rate lasts.

 

But we earlier found that A = theta / tau, so we get


 



  tau [exp(d)] sup {theta / tau}  =  tau [exp( d theta )] sup {1/tau}


for the change in the age of the HF due to the short acceleration. So we have an expression for 
the change in the age of the HF that is a function of only the single variable tau ... all other 
quantities in the equation (d and theta) are fixed. We can now use that equation to create a 
table that shows the change in the age of the HF, as a function of the duration tau of the 
acceleration (while keeping the area under the acceleration-versus-tau graph constant).

 

In order to make the table as easy to produce as possible, I chose the arbitrary value of the 
distance "d" to be such that

 

   exp(d theta) = 20000.


Therefore we need

 

  ln[ exp (d theta) ]  =  d theta  =  ln (20000)  =  9.903,


and since theta = 1.317, d = 7.52 lightseconds.

 

If we were creating this table for the CMIF simultaneity method, we would find that as the 
duration tau of the acceleration decreases (with a corresponding increase in the magnitude of 
the acceleration, so that the product remains the same), the amount of ageing by the HF 
approaches a finite limit. I.e., in CMIF, eventually it makes essentially no difference in the age of 
the HF when we halve the duration of the acceleration, and make the acceleration twice as 
great.

 

But here is what I got for the EPVGTD simultaneity method:


(In the table, "10sup4" means "10 raised to the 4th power”.)

 

tau      |   (tau) (2000)sup(1/tau)

____________________________


1.0      |    2x10sup4 = 20000


 0.5     |    2x10sup8


 0.4     |    2.26x10sup10


 0.3     |    6.3x10sup13


 0.2     |    0.64x10sup21


 0.1     |    1.02x10sup42


 0.01   |    1.27x10sup428


 0.001 |     ? (My calculator overflowed at 10sup500)

 


Clearly, for the EPVGTD simultaneity method, when the acceleration is directed TOWARD the 
home twin, the HF's age goes to infinity as the acceleration duration goes to zero. That seems 

 



like an absurd result to me. And it is radically different from what happens with CMIF 
simultaneity, where the HF's age quickly approaches a finite limit as tau goes to zero.


What does the EPVGTD simultaneity method say, when the acceleration is directed AWAY 
FROM the home twin?  In that case, the "EPVGTD" equation says that the acceleration “A” will 
cause the HF to age SLOWER than the AO by the factor exp(-A d).  The CHANGE in the age of 
the HF, caused by an acceleration "A" that lasts "tau" seconds, is just


  tau [exp(-d A)]  =  tau [exp( -d theta / tau ) ] .


As tau goes to zero, the first factor (tau) goes to zero, and so does the second factor (the 
exponential), since its argument again goes to infinity, but is now negative.  So, when the 
acceleration is directed AWAY FROM the home twin, the HF’s age goes to zero as the 
acceleration duration tau goes to zero.


Section 4. Instantaneous Velocity Changes in the Equivalence Principle Version of the 
LINEARIZED Gravitational Time Dilation Equation - (the LGTD Model)  

I repeated my previous analysis that found, when the acceleration is directed TOWARD the 
home twin, that the age of the HF, according to the AO, goes to infinity as the duration tau of 
the acceleration goes to zero, according to the Equivalence Principle Version of the 
Gravitational Time Dilation Equation, (the "EPVGTD" equation).  But this time, instead of using 
the EPVGTD equation, I used the new equation, which I'll call the "Linearized Gravitational 
Time Dilation Equation", (the "LGTD" equation). I simply replace the exponential exp(A d) with 
the quantity (1 + A d). This is the same approximation that Einstein used in his 1907 paper.  It is 
the first two terms of the power-series expansion of the exponential.  But it is only accurate for 
small (A d), which is NOT the case in this example (since we are using an infinite (A) that lasts 
for an infinitesimal time: a Dirac “delta function”).  But for SOME reason, it gives results that are 
more reasonable than the exponential. (Einstein used the approximation correctly, because its 
argument in his case was very small).


 In what follows below, I'll repeat each affected calculation that I made in the above section, 
and show the revised calculation:

 

[Previous]:


The "EPVGTD" equation says that the acceleration “A” will cause the HF to age faster than the 
AO by the factor exp(A d), where d is the constant separation between the AO and the HF.

 

[Revised]:

 

The "LGTD" equation says that the acceleration “A” will cause the HF to age faster than the AO 
by the factor (1 + A d), where d is the constant separation between the AO and the HF.

 

(Both of the above are for the case where the AO accelerates TOWARD the unaccelerated 
person (her).)

 

[…]

 
[Previous]:


 



 
The CHANGE in the age of the HF, caused by an acceleration "A" that lasts "tau" seconds, is 
just

 

  tau [exp(d)] sup A,

 

because [exp(d)] sup A is the constant RATE at which the HF is ageing, during the acceleration, 
and “tau" is how long that rate lasts.


[Revised]:

 
The CHANGE in the age of the HF, caused by an acceleration "A" that lasts "tau" seconds is 
just


  tau (1 + A d),

 

because (1 + A d) is the constant RATE at which the HF is ageing, during the acceleration, and 
“tau" is how long that rate lasts.

[…]

 

[Previous]:

 
But we earlier found that A = theta / tau, so we get

 

  tau [exp(d)] sup {theta / tau}

 
[Revised]:

 
But we earlier found that A = theta / tau, so we get


  tau (1 + [ ( theta d ) / tau ]  =  tau + (theta d)

 

[…]

 
It is still true that d = 7.52 lightseconds and theta = 1.317.

 
Therefore the REVISED result is that the change in HF's age during the acceleration is equal to

 

  tau + ( theta d )  =  tau + (1.317)(7.52)  =  tau + 9.904.

 

So, in the revised model, and when the acceleration is directed TOWARD the home twin, then   
as tau approaches zero (to give an instantaneous velocity change), the change in the HF's age 
during the speed change approaches 9.904 seconds from above. So the HF's age increased 
by a FINITE amount, unlike the INFINITE increase that the EPVGTD equation gave.

 

Before the instantaneous velocity change, the AO, the HF, and the home twin (she) were all the 
same age. She and the HF were co-located. So after the instantaneous speed change, the AO 
hasn't aged at all, but the HF is 9.904 seconds older than he was before the speed change, 
according to the AO. And since she and the HF have been colocated during the instantaneous 
speed change, they couldn't have ever differed in age during the speed change ... it would be 
absurd for either of them to see the other have an age different from their own age at any 
instant. So after the instantaneous speed change, the AO must conclude that she and the HF 
both instantaneously got 9.904 seconds older than they were immediately before the speed 
change.


 



 

By comparison, the CMIF simultaneity method says that the AO will conclude that her age 
instantaneously increases by 6.51 seconds, so the LGTD and CMIF don't agree quantitatively,

but are similar qualitatively.


 

Section 5. LGTD, When the Direction of the Velocity Change is AWAY FROM Her 

I just repeated my previous analysis of instantaneous velocity changes in the 
"linearized" (LGTD) version of the equivalence principle version of the gravitational time dilation 
equation, but for the case where the instantaneous velocity change is AWAY FROM the home 
twin (her). The result is exactly like the previous result, except that she instantaneously gets 
YOUNGER, not older. This contrasts with my previous possible proof (in Section 2) that 
negative ageing doesn't occur.  And it also contrasts with the result of the EPVGTD equation, 
where the instantaneous velocity change is AWAY FROM her, that said her age doesn’t change 
at all.

 

Below, I'll repeat the previous calculations, and show the changes.


[Previous]: (where the instantaneous velocity change is TOWARD her)

 
I simply replace the exponential exp(A d) with the quantity (1 + A d).


[New]: (where the instantaneous velocity change is AWAY FROM her)

 
I simply replace the exponential exp(-A d) with the quantity (1 - A d).


[Previous]: (where the instantaneous velocity change is TOWARD her)

 

The "LGTD" equation says that the acceleration “A” will cause the HF to age FASTER than the 
AO by the factor (1 + A d), where d is the constant separation between the AO and the HF.

 

(The above is for the case where the AO accelerates TOWARD the unaccelerated person (her).)


 [New]: (where the instantaneous velocity change is AWAY FROM her)

 

The "LGTD" equation says that the acceleration “A” will cause the HF to age SLOWER than the 
AO by the factor (1 - A d), where d is the constant separation between the AO and the HF.

 

(The above is for the case where the AO accelerates AWAY FROM the unaccelerated person 
(her).)

 

[…]

 

[Previous]: (where the instantaneous velocity change is TOWARD her)

 

The CHANGE in the age of the HF, caused by an acceleration "A" that lasts "tau" seconds is 
just

 

  tau (1 + A d),

 

because (1 + A d) is the constant rate at which the HF is ageing, during the acceleration, and 
tau is how long that rate lasts. 


 



[New]: (where the instantaneous velocity change is AWAY FROM her)

 

The CHANGE in the age of the HF, caused by an acceleration "A" that lasts "tau" seconds is 
just

 

  tau (1 - A d),

 

because (1 - A d) is the constant rate at which the HF is ageing, during the acceleration, and 
tau is how long that rate lasts.


[…]

 

[Previous]: (where the instantaneous velocity change is TOWARD her)


But we earlier found that A = theta / tau, so we get


  tau (1 + [ ( theta d ) / tau ] )  =  tau + (theta d)


[New]: (where the instantaneous velocity change is AWAY FROM her)

 
But we earlier found that A = theta / tau, so we get


  tau (1 - [ ( theta d ) / tau ] )  =  tau - (theta d)

 

[both Previous and New]:

 
It is still true that d = 7.52 lightseconds and theta = 1.317.

 
[Previous]: (where the instantaneous velocity change is TOWARD her)

 
Therefore the revised result is that the change in HF's age during the acceleration is equal to


 tau + ( theta d )  =  tau + (1.317)(7.52)  =  tau + 9.904.

 
[New]: (where the instantaneous velocity change is AWAY FROM her)

 
Therefore the revised result is that the change in HF's age during the acceleration is equal to


  tau - ( theta d )  =  tau - (1.317)(7.52)  =  tau - 9.904.


[…] 

[Previous]: (where the instantaneous velocity change is TOWARD her)

 

So, in the revised model, as tau approaches zero (to give an instantaneous velocity change), 
the change in the HF's age during the speed change approaches 9.904 seconds from above. 
So with an instantaneous velocity change, the HF's age INCREASED instantaneously by a finite 
amount.

 

[New]: (where the instantaneous velocity change is AWAY FROM her) 

 

So, in the revised model, as tau approaches zero (to give an instantaneous velocity change), 
the change in the HF's age during the speed change approaches -9.904 seconds from above. 

 



So with an instantaneous velocity change, the HF's age DECREASED instantaneously by a 
finite amount.


[…]

 

[Previous]: (where the instantaneous velocity change is TOWARD her) 

 

Before the instantaneous velocity change, the AO, the HF, and the home twin (she) were all the 
same age. She and the HF were co-located. So after the instantaneous speed change, the AO 
hasn't aged at all, but the HF is 9.904 seconds OLDER than he was before the speed change, 
according to the AO. And since she and the HF have been colocated during the instantaneous 
speed change, they couldn't have ever differed in age during the speed change ... it would be 
absurd for either of them to see the other have an age different from their own age at any 
instant. So after the instantaneous speed change, the AO must conclude that she and the HF 
both instantaneously got 9.904 seconds OLDER than they were immediately before the speed 
change. 


By comparison, the CMIF simultaneity method says that the AO will conclude that her age 
instantaneously increases by 6.51 seconds, so the LGTD and CMIF don't agree. 


[New]: (where the instantaneous velocity change is AWAY FROM her)  


Before the instantaneous velocity change, the AO, the HF, and the home twin (she) were all the 
same age. She and the HF were co-located. So after the instantaneous speed change, the AO 
hasn't aged at all, but the HF is 9.904 seconds YOUNGER than he was before the speed 
change, according to the AO. And since she and the HF have been colocated during the 
instantaneous speed change, they couldn't have ever differed in age during the speed 
change ... it would be absurd for either of them to see the other have an age different from their 
own age at any instant. So after the instantaneous speed change, the AO must conclude that 
she and the HF both instantaneously got 9.904 seconds YOUNGER than they were 
immediately before the speed change. 


By comparison, the CMIF simultaneity method says that the AO will conclude that her age 
instantaneously decreases by 6.51 seconds, so again the LGTD and CMIF don't agree 
quantitatively, but are similar qualitatively.


Section 6. What to Make of All These Different and Contradictory Results? 


The "EPVGTD Equation" (the one with the exponential), says that, if the AO (he) instantaneously 
changes his velocity in the direction TOWARD the home time (her), she instantaneously gets 
INFINITELY older, according to him. That's nonsense, because it gives incorrect ages for the 
twins when they are reunited in the twin ‘paradox’.  The twin ‘paradox’ outcome at the reunion 
is based ONLY on the time dilation equation (TDE) for perpetually-inertial observers, which is 
one of the most trusted equations in special relativity.  The TDE is sacrosanct.  So the EPVGTD 
equation must be rejected.

 

What about the LGTD equation? The linearized equation (the LGTD equation) gives results that 
are qualitatively similar to the CMIF simultaneity method: her age instantaneously changes, 
according to him, during his instantaneous velocity change (instantaneously INCREASING 
when his momentarily infinite acceleration is TOWARD her, and instantaneously DECREASING 
when his momentarily infinite acceleration is AWAY FROM her).  But the AMOUNT of her 

 



instantaneous age change is greater than CMIF says it should be, and that amount (given by 
the LGTD equation) is inconsistent with the required ages of the twins at the reunion, which are 
based on the sacrosanct time dilation equation (TDE) for perpetually-inertial observers.  So the 
LGTD equation is incorrect and must be rejected.


It is interesting that the amount of the instantaneous age changes would be exactly the same 
for CMIF and LGTD if the linearized equation multiplied the distance "d" by the velocity "v", 
rather than by the rapidity "theta". But, in determining the velocity effect obtained by 
integrating the acceleration "A", it IS necessary to use the rapidity "theta", not the velocity "v", 
as the variable of integration. (Taylor and Wheeler go over this in detail in their book 
“Spacetime Physics”). 


WHY does the EPVGTD equation fail so miserably in this example? Isn't the GTD equation a 
well-established result in general relativity? And the equivalence principle is certainly well- 
established. Is the GTD equation WRONG?  Or have I made a mistake somewhere?


And WHY goes the LGTD equation work better than the EPVGTD equation, at least 
qualitatively? The LGTD equation should be a justified approximation of the EPVGTD equation 
ONLY when the argument (A d) is small, and an infinite "A" (even though it lasts only an 
infinitesimal time) certainly isn't small! The LGTD equation shouldn't give results that are even 
qualitatively correct, but it does. Why?


Section 7.  Modifying the LGTD Equation So That It Agrees with CMIF 

The LGTD equation can be modified so that it agrees with the CMIF simultaneity method.  I’ll 
show the case where the AO accelerates TOWARD the unaccelerated person (her).


[Original LGTD Equation]:

 

The "LGTD" equation says that the acceleration “A” will cause the HF to age faster than the AO 
by the factor (1 + A d), where d is the constant separation between the AO and the HF.

 

[Modified LGTD Equation]


The “Modified LGTD" equation says that the acceleration “A” will cause the HF to age faster 
than the AO by the factor (1 + alpha A d), where d is the constant separation between the AO 
and the HF, and alpha  =  v / theta  =  [ tanh( theta ) ]  /  theta. So the HF ages faster than the 
AO by the factor


  1  +  [ d A tanh( theta ) / theta ].


 […]


[Original LGTD Equation]:

 
The CHANGE in the age of the HF, caused by an acceleration "A" that lasts "tau" seconds is 
just


  tau (1 + A d),

 

because (1 + A d) is the constant rate at which the HF is ageing, during the acceleration, and 
“tau" is how long that rate lasts.


 



[Modified LGTD Equation]:


The CHANGE in the age of the HF, caused by an acceleration "A" that lasts "tau" seconds is 
just


  tau { 1  +  [ d A tanh( theta ) / theta ] },


because  1  +  [ d A tanh( theta ) / theta ]  is the constant rate at which the HF is ageing, during 
the acceleration, and “tau" is how long that rate lasts.


[…]

 

[Original LGTD Equation]:

 
But we earlier found that A = theta / tau, so we get


  tau (1 + [ ( theta d ) / tau ]  =  tau + (theta d)


for the CHANGE in the age of the HF.

 

  


[Modified LGTD Equation]:

 
But we earlier found that A = theta / tau, so we get


  tau { 1  +  [ d tanh( theta ) / tau ] }  =  tau + [ d tanh( theta ) ]


for the CHANGE in the age of the HF.


 

[…]

 
It is still true that d = 7.52 lightseconds and theta = 1.317.


[Original LGTD Equation]:

 
Therefore the original LGTD result is that the change in HF's age during the acceleration is 
equal to

 

  tau + ( theta d )  =  tau + (1.317)(7.52)  =  tau + 9.904.

 

So, according to the original LGTD equation, when the acceleration is directed TOWARD the 
home twin (her), then as tau approaches zero (to give an instantaneous velocity change), the 
change in the HF's age (and her age) during the speed change approaches 9.904 seconds 
from above.  The CMIF method says that her age changes by 6.51 seconds.


[Modified LGTD Equation]:


 Since tanh(theta) is just the velocity “v”, and since we chose v = 0.866 at the outset of this 
example because it gives the nice value of 2.0 for gamma, therefore the revised result is that 
the change in HF's age during the acceleration is equal to


 



  tau + [ d tanh( theta ) ]  =  tau  +  (7.52)(0.866)  =  tau + 6.51,


and as tau goes to zero, the change in HF's age (and her age) during the instantaneous velocity 
change is just 6.51 years, which is the same result that CMIF gets, as we intended.


If we hadn’t already known what “v” is in this example, but had started only by choosing theta, 
we could have computed “v” using the identity


   tanh(theta)  =  { [ exp( theta)  -  exp( -theta ) ]  /  [ exp( theta)  +  exp( -theta ) ] .

 


The derivation of the case where the AO accelerates AWAY FROM the unaccelerated person 
(her) is essentially the same.  Theta and “v” are just negative in that case, instead of positive, 
and so the HF and she instantaneously get 6.15 years YOUNGER rather than OLDER.


Section 8.  Some Miscellaneous Background Information 

Subsection 8.1  Disagreements About Simultaneity at a Distance 

Special Relativity is widely considered to be a completed discipline … a “done deal”.  It’s been 
more than a hundred years since Einstein presented it to us in 1905.  Simultaneity at a 
distance, for a perpetually-inertial observer, isn’t in dispute.  Specifically, the question “How old 
is that distant person, RIGHT NOW”, when asked by a perpetually-inertial observer, is never in 
dispute (even in the case where the distant person is NOT perpetually inertial).

We can call the perpetually-inertial observer “the home twin”, and refer to her as “she”.  We 
can refer to “the traveler” who may sometimes accelerate, as “he” or “him”.  At any instant, he 
has a velocity relative to her of “v” lightyears/year.  The quantity “gamma” depends only on “v”, 
and has the value


  gamma = 1 / sqrt { 1 - (v v) },


and according to her, at any instant in her life, he is aging slower than she is, by the factor 
gamma.  For example, if their relative velocity is v = 0.866 ly/y, gamma is equal to 2.0.  If he is 
continually changing his velocity (i.e., continually accelerating), gamma will be changing 
continually, and so she will conclude that his rate of aging is continually changing.  So she will 
have to integrate that changing rate to compute his current age.  But a much easier situation is 
when he just changes their relative velocity instantaneously, which keeps his rate of aging 
(compared to hers) constant between his instantaneous velocity changes.


For example, in the standard twin paradox, immediately after they are born, he changes his 
velocity with respect to her from zero to 0.866 ly/y, and maintains that velocity until he is ready 
to do his turnaround.  At the turnaround, he instantaneously changes his velocity to -0.866 ly/y, 
and is then heading back toward her.  The factor gamma doesn’t depend on the direction or 
the sign of the velocity, so gamma = 2.0 for the entire trip.  So she concludes that he is aging 
half as fast as she is, during the entire trip.  Therefore she knows that he will be half as old as 
she is when he returns at the reunion.  If she is 80 years old when they are reunited, he must be 
40 years old then.  She is just making use of the Time Dilation Equation (TDE) for a perpetually-
inertial observer, which is the “gold standard” in special relativity.


Since they are co-located at the reunion, they MUST agree about their respective ages at the 
reunion.  But what is HIS conclusion about how their ages compare during the parts of the trip 
when they are NOT co-located?  I.e., what is HIS answer to the general question, “How old is 

 



she (that distant person) right now”, at each instant of his life during the trip?  He can’t just use 
the time dilation equation (the TDE) during his entire trip (like SHE was able to do), because he 
is NOT perpetually inertial like she is.


There is disagreement among physicists about the answer to that question.  As far as I know, 
Einstein never addressed that question.  Some physicists believe that simultaneity at a 
distance, according to an accelerating observer, is a meaningless concept, and the question 
shouldn’t even be asked.  Some others think that any particular observer is free to choose from 
among an infinite number of possible answers to that question.  I.e., some think simultaneity at 
a distance should just be regarded as a convention that can be chosen on a whim.


Probably the most popular simultaneity method is to specify that the traveling twin (he) should, 
at each instant of his life, always agree with the answer given, about the home twin’s (her) 
current age, by the perpetually-inertial observer who is co-located and co-stationary with him 
at that instant.  That method is usually called “the co-moving inertial frames”, or “CMIF” 
method.  In the case of the twin paradox scenario, the CMIF method says that on the outbound 
and inbound legs, he says she ages slower than him by the factor gamma, but that at the 
turnaround, when he instantaneously changes his velocity in the direction TOWARD her, he 
says she instantaneously gets OLDER by an amount that is just large enough so that he will 
agree with her about their respective ages at the reunion.  The CMIF method also says that, if 
he instantaneously changes his velocity in the direction AWAY FROM her, he says she 
instantaneously gets YOUNGER.  The amount of that instantaneous ageing, either positive or 
negative, is fairly easy to determine.  One can draw a Minkowski diagram, with the two 
(straight) lines of simultaneity (LOS’s) of slope 1/v shown, corresponding to the two different 
perpetually-inertial observers, one immediately BEFORE and one immediately AFTER the 
velocity change.  Where each of those LOS’s cross her worldline gives her age at the 
turnaround, according to each of the two perpetually-inertial observers.  A line of simultaneity 
(LOS) is just the “RIGHT NOW” line for a perpetually-inertial observer (PIO).


Here is some more detail about how to draw that Minkowski diagram.  I prefer to draw her 
worldline as the horizontal axis, and the distance “X” of objects from her, according to her, on 
the vertical axis.  And so each point “T” on the horizontal axis corresponds to some instant in 
her life.  When both twins are born, they are each located at the origin of the diagram (where 
the two axes intersect on the left side of the diagram).  Immediately after they are born, he 
instantaneously changes his velocity, with respect to her, from zero to 0.866 ly/y.  His distance 
from her (according to her) then increases linearly according to the equation


  X  =  v T  =  0.866 T.


So, on the outbound leg, HIS worldine is a straight line starting from the origin and sloping 
upward to the right with a slope of 0.866.  That straight line continues until the turnaround point 
… let’s say she says she is 40 years old then.  So draw a vertical line that starts at the point T = 
40 on the horizontal axis, and extends upward until it intersects his worldline.  His distance 
from her at the turn point, according to her, is (0.866 40) = 34.64, so mark and write that 
distance on the vertical axis.  Using the time dilation equation (TDE) for a perpetually-inertial 
observer, she knows that he is 20 years old at the turnaround, so label that point on his 
worldline as 20.


Now, we want to determine the his line of simultaneity (LOS) that passes through his worldline 
immediately before he reverses his velocity. (That is the LOS of the perpetually-inertial observer 
(PIO) who is co-located and mutually stationary with him at that instant.  That line has a slope 
of 1/v, or 1/0.866, or 1.155, sloping downward to the left.  That LOS forms the hypotenuse of a 
right triangle, with a vertical side of length 34.64, and with a horizontal base side, extending to 
the LEFT of the vertical side, whose length we need to determine.  The height of the triangle 

 



(34.64), divided by the length “L” of the base of the triangle equals the slope 1.155 of the 
hypotenuse, so we have


  34.64 / L  =  1.155,


or


  L  =  34.64 / 1.155  =  30.


So he says her age immediately before he turns around is  40 - L  =  40 - 30  =  10 years old.


Note that, in this outbound case, we could have gotten that result immediately from the time 
dilation equation for a perpetually-inertial observer, because on the outbound leg, he can be 
considered to be an inertial observer (until he changes his velocity).  (If there is any doubt about 
that, we can say that he and she aren’t really twins.  Their respective mothers are perpetually 
inertial, and they just happened to be momentarily co-located when their babies were born. 
They have always had a relative velocity of 0.866.  So in that case he never has accelerated 
before, and he is certainly entitled to use the time delay equation.)  We already have 
determined that he is 20 years at the turnaround, and according to him, she has been ageing 
half as fast as he has on the outbound leg, so he says she must be 10 years old when he is 20 
years old, immediately before the turnaround.  But, nevertheless, it was important to show how 
he determines her age from his line of simultaneity (LOS).


Next, we need to use the same process to determine how old she is, according to him, 
immediately AFTER he changes his velocity to -0.866 ly/y.  His new line of simultaneity (which 
is the LOS of the PIO he is NOW co-located with and co-stationary with) forms the hypotenuse 
of a right triangle, with a vertical side of length 34.64, and with a horizontal base side, 
extending to the RIGHT of the vertical side, whose length we need to determine. That length is 
again equal to 30, so now he says that her age immediately after he turns around is  40 + L  =  
40 + 30  =  70 years old.  So he says she instantaneously got 60 years older when he 
instantaneously changed his velocity from +0.866 to -0.866 (from going AWAY FROM her to 
going TOWARD her).


Note that he COULD, if he wanted, immediately decide to switch his velocity back to +0.866 
from -0.866 (from going TOWARD her to going AWAY FROM her).  If he did that, he would 
conclude that she instantaneously gets 60 years YOUNGER, from 70 years old to 10 years old.  
Such ”back-to-back” equal velocity changes (with no finite time between them) are equivalent 
to no velocity change at all … the velocity changes cancel each other out.   For that reason, if 
she can instantaneously get older (according to him), it must also be possible that she can 
instantaneously get younger (according to him).  Otherwise, a long series of back-to-back 
instantaneous velocity changes could make her age (according to him) be arbitrarily large, 
which would be inconsistent with her certain knowledge of his and her ages at the reunion.  


The above back-to-back instantaneous velocity changes are of course not the only scenario 
where she gets younger, according to him.  Whenever there is a finite amount of time between 
the two opposite velocity changes, the effects don’t cancel out.  And it is generally true that 
anytime they are separated and he does a Dirac delta function acceleration (producing an 
instantaneous velocity change) in the direction TOWARD her, she will instantaneously get 
YOUNGER.


Besides the Minkowski diagram described above, there is another diagram (that I call the “Age 
Correspondence Diagram”) that is even more important.  It (the “ACD”) basically graphically 
shows what the answer is to the question: “For each instant in the life of the accelerating 
observer (him), what is the current age of the distant person (her)?”  For each instant in his life, 

 



it plots her corresponding current age, according to him.  For example, in the well-known twin 
paradox scenario where the twins are colocated when they are born, and he immediately 
instantaneously changes his velocity from zero to 0.866 ly/y (so that his outbound velocity is 
0.866 ly/y) and where he does an instantaneous turnaround when he is 20 years old, heading 
back to her at -0.866 ly/y, the ACD plot starts out at the origin (both twins aged zero), and then 
rises linearly to the right with a slope of 0.5.  That represents the fact that he says she ages 
gamma times slower than he does on the outbound leg, and gamma equals 2.0.  So it says she 
is 10 years when he is 20 years old, immediately before he changes his velocity to -0.866. 
Then, at his instantaneous velocity change, the plot goes straight up vertically by 60 years … 
indicating that she instantaneously gets 60 years older during his velocity change.  So at the 
end of that vertical increase in her age, she is 70 years old, according to him.  On the inbound 
leg, he again says that she is ageing half as fast as he is (because gamma is equal to 2.0).  He 
ages by 20 years on the inbound leg, so he says she ages by10 years. So at the reunion, he is 
40 and she is 80.  So the last segment of the ACD plot slopes upward to the right with slope 
0.5, and her age increases from 70 to 80 years old.


Some physicists object to that instantaneous ageing in CMIF simultaneity.  And the negative 
ageing in CMIF simultaneity is even MORE abhorrent to a lot of physicists.  (Some physicists 
even DISALLOW negative ageing, while allowing positive ageing, but that is inconsistent with 
the requirement that back-to-back velocity changes must cancel each other out.)  But other 
physicists have no problem with negative ageing.  A prime example of that latter group is Brian 
Greene, who in his NOVA show “The Fabric of the Cosmos” discusses it very clearly and 
enthusiastically:


  (https://www.pbs.org/wgbh/nova/video/the-fabric-of-the-cosmos-the-illusion-of-time/ 


(scan forward to the 23:15 point).


(Brian also gives the same example in his book of the same title.)


Besides the CMIF simultaneity method, there are at least three other simultaneity methods that 
have been proposed.  One is the Dolby and Gull “Radar” method (arXiv:gr-qc/0104077),  
another is the Minguizzi method (arXiv:physics/0411233v1), and a third is my method (http://
viXra.org/abs/2109.0076).  None of those three methods produce any discontinuities in her 
age, according to him.  So that means there are no vertical rises or vertical drops in the ACD 
for any of these three simultaneity methods.  But both the Dolby and Gull method, and 
Minguizzi’s method, are non-causal: they have an effect on her age (according to him) well 
BEFORE he decides to change his velocity!  In my opinion, that is a disqualifier for a 
simultaneity method.  So the only simultaneity methods that I know of that are causal are the 
CMIF method and my method.  Note: Even though my simultaneity method has no 
discontinuities in her age, I actually PREFER the CMIF method (because of its simplicity, and 
because I don’t have a problem with instantaneous negative or positive ageing).  But I don’t 
know which (if either) method is correct.


The ACD for MY simultaneity method, for the scenario I gave above when I described the ACD 
for the CMIF method, is similar to the CMIF ACD.  The plot for the outbound leg is the same for 
both methods.  But in my method, there is no vertical rise in the plot at the turnaround.  
Instead, in my method, the plot rises linearly from the turnaround point with a steep but finite 
slope, until it intersects the final section of the diagram where the slope is equal to 0.5 as in the 
CMIF method.  The slope of that steep section can be determined either with a fairly simple 
equation, or even easier by graphical means.  Those details can be found either in my Amazon 
monograph (“A New Simultaneity Method for Accelerated Observers in Special Relativity”, 
which you can search for on Amazon under my name, Michael Leon Fontenot), or else on viXra 
at https://vixra.org/abs/2106.0133 .


 

https://www.pbs.org/wgbh/nova/video/the-fabric-of-the-cosmos-the-illusion-of-time/
http://vixra.org/abs/2109.0076
http://vixra.org/abs/2109.0076
https://vixra.org/abs/2106.0133


Subsection 8.2  The CADO Equation 

Instead of plotting lines of simultaneity (LOS’s), an easier and quicker way to answer the 
question “How old is that distant person, right now, according to an observer who sometimes 
accelerates”, is to use the “CADO Equation”.  And even quicker is the “Delta CADO Equation”. 
(“CADO” is just an abbreviation for the “Current Age of a Distant Object”.)


For example, instead of using the LOS’s of the two perpetually-inertial observers (PIO’s) 
immediately before and immediately after the turnaround as we did above, we can just do this:


First, we need to know their separation “D”, according to her, when he instantaneously 
changes his velocity:  D = 34.64 ly.


Then, we need to know what the instantaneous CHANGE in his velocity is:


  delta_v  =  v2 - v1  = (-0.866) - (0.866)  =  -1.732 ly/y.


Then the instantaneous change in her age, denoted “delta_CADO” is

 

  delta_CADO  =  ( -D )  ( delta_v)  =  ( -34.64 )  ( -1.732 )  =  60.0,


so the delta_CADO equation says that she instantaneously gets 60 years older (according to 
him) when he instantaneously changes his velocity from 0.866 ly/y to -0.866 ly/y.  VERY EASY!


The CADO reference frame is the same as the CMIF reference frame.  It just uses some new 
terminology that is designed to reduce errors that are commonly made in working with special 
relativity.  And it also makes use of the very useful (and not well-known) CADO and 
delta_CADO equations.  I first derived the CADO equation in a paper I published more than 20 
years ago:


Fontenot, Michael L., “Accelerated Observers in Special Relativity”, Physics Essays, December 
1999, pp. 629-648.


Below, I’ve excerpted the first few sections of my webpage:


  https://sites.google.com/site/cadoequation/cado-reference-frame


which is a followup of my paper.  And it is also available on viXra at


  https://vixra.org/pdf/2106.0122v1.pdf


The CADO Reference Frame for an Accelerating Observer

 
The CADO reference frame[1] is defined for an observer who accelerates in any manner whatsoever. Specifically, the 
observer's acceleration a(t), where t is any instant in the observer's life, can be whatever the accelerating observer 
wants it to be, without restriction. 

 
The CADO Frame, for the Standard Twin Paradox Scenario

 

https://sites.google.com/site/cadoequation/cado-reference-frame
https://vixra.org/pdf/2106.0122v1.pdf


Although the CADO frame is applicable to any acceleration profile, the concepts and terminology needed to 
describe the CADO reference frame are most quickly and easily understood if they are initially couched in the 
context of the standard well-known twin "paradox" scenario.
First, consider the even simpler scenario where two perpetually-inertial observers are moving at some fixed velocity 
v relative to one another, and when they momentarily are co-located, they just happen to be exactly the same age 
then. For example, it could just happen that they are both born at that instant of their co-location, even though their 
mothers could have had a relative velocity of v at that instant. Since each of those newborns is a perpetually-inertial 
observer, they are each entitled to use the Lorentz equations to determine, at any instant of their own life, the current 
age of the other.[2] And each of them is entitled to use the well-known time-dilation result of special relativity[3] to 
determine how fast or how slowly the other is currently ageing, relative to their own ageing. 

In the standard twin paradox, the "home twin" is perpetually inertial by assumption, and thus is entitled to use either 
the Lorentz equations or the time-dilation result (or both) to determine the current age of the "traveling twin". To 
allow more brevity and less clutter in the writing which follows, the home-twin will always be referred to as a "she", 
and the traveling twin will always be referred to as a "he". 

The traveling twin must accelerate, in order to accomplish his turnaround, so he is not a perpetually-inertial 
observer, and his reference frame during his trip cannot be an inertial frame. Specifically, he is not allowed, during 
his entire trip, to use the time-dilation result to determine the current age of his twin. And, depending on exactly how 
his reference frame is defined, he might or might not be allowed to use the Lorentz equations at each instant of his 
life during his trip. 

So what is the reference frame of the traveling twin? There are five requirements that any such frame must have. 

1. It must be such that the traveler is perpetually located at its spatial origin. 
2. It must specify how the traveler, at each instant of his life, is to determine the current age and the current 

position of each and every object (or person) in the (assumed flat) universe. 
3. It must be internally consistent. 
4. It must not contradict special relativity. 
5. It must be such that the traveler and the home-twin agree with one another about the correspondence 

between their ages, when they are reunited. 
More than one reference frame for an accelerating observer have been defined, and there is not yet a consensus 
about which one is most appropriate. This article describes one such reference frame: the CADO frame. 

The CADO frame was originally inspired by an example (Example 49) in Taylor's and Wheeler's classic book.[4] The 
results of their example are consistent with those obtained from the common gravitational time dilation explanation, 
but do not depend on the use of any fictitious gravitational fields. Their basic approach is clearly applicable to 
scenarios with finite accelerations, although they didn't pursue that generalization. The CADO frame accomplishes 
that generalization. 

Even though the frame of the traveling twin, since he accelerates during some portion his trip, cannot be an inertial 
frame, there is, at each instant tof the traveler's life, a unique inertial frame which is momentarily stationary with 
respect to the traveler at that instant, with a spatial axis pointing in the same direction as the home-twin's spatial 
axis, and such that the traveler is located at the spatial origin of that frame at that instant. Furthermore, for 
uniqueness, we require that the time coordinate of that inertial frame be equal to the traveler's age, at that instant. 
That unique inertial frame is called the "momentarily stationary inertial reference frame, at the instant t in the 
traveler's life", abbreviated as the MSIRF(t). In general, MSIRF(t) will correspond to a different inertial frame from 
one instant in the traveler's life to the next. It is only during unaccelerated segments of the traveler's life that the 
MSIRF(t) will consist of the same inertial frame for the entire segment. 

 



Given this (generally infinite) collection of inertial frames, the CADO frame is defined to be the single unique frame 
having the property that its conclusions about the current age and location of all objects or persons in the (assumed 
flat) universe, at any instant t of the traveler's life, is the same as the corresponding conclusions of the MSIRF(t). 
I.e., at each instant of his life, the traveler adopts the viewpoint (about the simultaneity and location of distant 
objects) of the inertial frame with which he is momentarily stationary at that instant. The acronym "CADO" 
originates from the phrase "the current age of a distant object". 

The CADO Equation

Given the above definition of the CADO frame, it is possible to derive a very simple, and very useful equation, 
called "the CADO equation",[5] which allows the traveler to determine, at each instant t in his life, the current age of 
any given distant perpetually-inertial object or person (the "home-twin" in the twin paradox scenario). 

First, it is important to understand that, for any given instant t in the traveler's life, the home-twin and the traveler 
will generally disagree with one another about how old the home-twin is at that instant of the traveler's life. There 
are two quantities in the CADO equation which represent each of the twins' conclusions about the home-twin's age 
when the traveler's age is t. The quantity CADO_T denotes the traveler's conclusion about the home-twin's age, 
when the traveler's age is t, whereas the quantity CADO_H denotes the home-twin's conclusion about the home-
twin's age, when the traveler's age is t. 

The CADO equation can be written (most simply) as 

  CADO_T = CADO_H - v * L 

where 

  v is their current relative speed, according to the home-twin, at the given instant t in 
  the traveler's life, with v taken as positive when the twins are moving apart, 

  L is the distance from the home-twin to the traveler, at the given instant t in the 
  traveler's life, according to the home twin, 

and 

  the asterisk denotes multiplication. 

Strictly speaking, the quantity L(t) is the position of the traveler, relative to the home-twin, according to the home-
twin, when the traveler's age is t. The distinction will be clarified later (in Section 5), but for now, it's simplest to just 
think of it as a distance (a number either positive or zero). 

The above equation gives the relationship between those four quantities (CADO_T, CADO_H, v, and L), at the given 
instant t of the traveler's life. I.e., although it is not shown explicitly, each of the four quantities in the equation are 
functions of t.

What makes the CADO equation especially useful is that it allows the quantity CADO_T, which is a quantity which 
is otherwise relatively difficult to determine, to be easily calculated from the other three quantities (CADO_H, L, and 
v ), which are each very easy to determine. 

In order to make the equation strictly correct, a factor of c*c dividing the last term is required, where c is the 
constant speed of any light pulse, as determined by any perpetually-inertial observer. If the time and spatial units are 
chosen so that c has unity value, the factor in that case is required only for dimensional correctness. In this article, 

 



units of years and lightyears will be used exclusively (but often abbreviated as y and ly), and the factor of c*c will 
be suppressed entirely, purely for simplicity and brevity. 

It can be immediately seen from the CADO equation that if at any instant , either v or L is zero, then CADO_T is 
equal to CADO_H. I.e., if, at any instant in the traveler's life, he is stationary with respect to his twin, then he will 
agree with her about their respective ages, regardless of how far apart they are. Or, if at any instant they are co-
located, they will agree about their respective ages, regardless of whether or not they have any relative motion at that 
instant. And it is equally clear from the CADO equation that at any instant t when v and L are non-zero, the two 
twins will not agree about their respective ages. (This last statement is true for the one-dimensional motion we have 
been considering so far, but the statement must be modified for motion in two or three spatial dimensions. The 
higher-dimensional case will be addressed in a later section.)  

I originally derived the CADO equation, many years ago, using only the Minkowski diagram for the twin "paradox" 
scenario.  I show explicitly show how to do that derivation near the the end of Section 11, on "The Graphical 
Interpretation of the CADO Frame". 

Idealized Instantaneous Velocity Changes

In the idealized, limiting case of the instantaneous turnaround usually assumed in the twin paradox scenario, the 
quantities CADO_H and L that are needed in the CADO equation are very easy to obtain, and v is given in the 
statement of the scenario. 

For example, suppose that immediately after the twins are born, the traveling twin moves away from the home-twin 
at a constant relative velocity of 0.866 lightyears/year for 20 years of his life. That complicated-looking value of the 
velocity was chosen for this example because it produces the very nice value of 2 for the gamma factor (the time-
dilation factor): 

  gamma = 1 / sqrt( 1 - v * v) , 

where "sqrt( )" denotes the square-root operation, and where, again for simplicity, the factor c*c that should actually 
be dividing the v*v term has been omitted. 

The traveler then instantaneously reverses course, and spends the next 20 years of his life returning to his home-
twin. The magnitude of his velocity is still 0.866 ly/y, but since he is now moving toward his twin, by convention his 
velocity is now negative, -0.866 ly/y. Since gamma depends only on the magnitude of the velocity, gamma is still 
equal to 2. 

So, the traveler is 20 years old at his turnaround, and 40 years old when he is reunited with his twin. Since the home-
twin is perpetually inertial, she is entitled to use the time dilation result for his entire trip. Since gamma = 2 for the 
entire trip, she concludes that the traveler ages half as fast as she herself does, so she concludes that she is 40 years 
old when he turns around, and 80 years old when they are reunited. (Of course, when they are reunited, they will 
each know both of their ages). So, just from the time-dilation result, we've been able to quickly determine that 

  CADO_H(20) = 40 years old. 

Now, from the definition of the CADO frame, the MSIRF(t) for all t from 0 years up to, but not including, 20 years, 
is the same inertial frame ... it's the one which is moving at a velocity relative to the home-twin of 0.866 ly/y, and in 
which the traveler is located at the spatial origin. During that entire segment, 0 <= t < 20, the traveler (by definition) 
agrees with that single MSIRF about the age of any distant inertial object or person, and thus he also agrees with that 
MSIRF about how fast or how slowly any distant person is ageing, compared to his own ageing. So, during that 

 



outbound leg (but not including the instant at t = 20), the traveler is entitled to use the time-dilation result, and he 
concludes that the home-twin is ageing half as fast as he himself is. So he concludes that, right at the end of his 
constant-velocity outbound leg (but before he does his instantaneous turnaround), that the home-twin is 10 years old. 
Therefore we've been able to determine that 

  CADO_T(immediately before turnaround) = 10 years old. 

The fact that the traveler is entitled to use the time-dilation result, during his entire unaccelerated outbound segment, 
is also true of any unaccelerated segment, of finite duration, in his life. During any unaccelerated finite segment of 
his life, he is a full-fledged inertial observer during that entire segment, and he is entitled to use the Lorentz 
equations to determine simultaneity at a distance, and he is entitled to use the time-dilation and length-contraction 
results that follow from the Lorentz equations. 

So, for the entire outbound leg, we didn't need to use the CADO equation at all ... the time-dilation result was all that 
we needed. But we do need the CADO equation in order to determine what happens during the turnaround, right at 
the instant t = 20 years. How do we do that? 

To make use of the CADO equation during the turnaround, we need to know the values of the three quantities on the 
right-hand-side of the CADO equation (CADO_H, v, and L), immediately before and immediately after the 
instantaneous turnaround. CADO_H and L are quantities that are computed in the home-twin's inertial frame, and 
they are always continuous ... they never change discontinuously, even when v changes discontinuously. So 
CADO_H and L don't change during the turnaround, but v does change. 

We can denote the instant in the traveler's life, immediately before the turnaround, as t = 20-, and the instant 
immediately after the turnaround as t = 20+. So, we have 

  v(20-) = 0.866 ly/y, 

and 

  v(20+) = -0.866 ly/y. 

We also already know that 

  CADO_H(20-) = CADO_H(20+) = CADO_H(20) = 40 years. 

So all we still need to determine is L(20). How do we do that? We know that, in the home-twin's frame, the velocity 
of the traveler is 0.866 ly/y during the outbound frame, and we know that that outbound leg lasts for 40 years of the 
home-twin's life, so she will conclude that the traveler's distance from her at the turnaround is 

  L = 0.866 * 40 = 34.64 ly. 

Since, in the CADO equation, all of the quantities need to be specified as functions of the variable t (the traveler's 
age), we therefore have 

  L(20-) = L(20+) = L(20) = 34.64 ly. 

So, we've got all the quantities we need, to evaluate CADO_T(20-) and CADO_T(20+) using the CADO equation. 
We actually were already able to determine CADO_T(20-) using only the time-dilation result for the outbound leg ... 
we got the value 10 years. But it is instructive to use the CADO equation for the instants immediately before and 
immediately after the instantaneous turnaround, just to understand why the CADO frame concludes that the home-
twin's age abruptly changes during the instantaneous turnaround. Immediately before the turnaround, we get 

 



  CADO_T(20-) = CADO_H(20-) - v(20-) * L(20-) = 40 - 0.866 * 34.64, 

so 

  CADO_T(20-) = 40 - 30 = 10 years. 

And, immediately after the turnaround, we get 

  CADO_T(20+) = CADO_H(20+) - v(20+) * L(20+) = 40 + 0.866 * 34.64, 

so 

  CADO_T(20+) = 40 + 30 = 70 years. 

So, the CADO equation says that, according to the traveler, the home-twin instantaneously get 60 years older during 
his instantaneous turnaround. And the CADO equation makes it clear why the traveler's abrupt velocity change 
causes (according to the traveler) the abrupt change in the home-twin's age: by definition, at any instant t of the 
traveler's life, he adopts as his own the conclusions of his MSIRF, at that instant, about simultaneity. The MSIRF at 
the instant immediately before the turnaround, MSIRF(20-), and the MSIRF at the instant immediately after the 
turnaround, MSIRF(20+), have very different conclusions about the current age and current position of the home-
twin. 

The change in the home-twin's age, before and after the instantaneous velocity change, is 

  delta_CADO_T(20) = CADO_T(20+) - CADO_T(20-), 

and since nothing on the right-hand-side of the CADO equation changes during the instantaneous turnaround except 
the velocity, we get the very simple equation 

  delta_CADO_T(20) = - L(20) * ( v(20+) - v(20-) ) 

or 

  delta_CADO_T(20) = - L * delta_v(20).

So, getting the change in the home-twin's age during an instantaneous velocity change is very simple: you just 
multiply the negative of their separation by the change in the velocity. 

Note that in this case (for the turnaround that occurs in the standard twin paradox scenario), the change in the 
velocity is negative: 

  delta_v(20) = v(20+) - v(20-) = (-0.866) - (0.866) = -1.732, 

and so the change in the home-twin's age is 

  delta_CADO_T(20) = -34.64 * (-1.732) = 60 years. 

But note that, for other scenarios, the traveler could change his velocity from (say) -0.866 ly/y to +0.866 ly/y 
(corresponding to an acceleration away from the home twin), and in that case, his velocity change would be positive 
(+1.732), and so the home-twin's age change would be -60 years .... i.e., she would suddenly get 60 years younger 
(according to the traveler). 

The fact, that the traveler concludes that the home-twin's age changes abruptly whenever he abruptly changes his 
velocity, certainly has no impact on the home-twin's own perception of the progression of her own age. Lots of 

 



additional accelerating observers would generally come to very different conclusions about the way her age changes 
while they accelerate in various ways, and it is really of no consequence to her what they conclude. But no one's 
conclusions are any more correct than any one else's conclusions. They are all correct ... in special relativity, 
different observers generally just have to agree to disagree. 

To complete our application of the CADO frame to the standard twin paradox, we've still got to analyze the inbound 
leg. The analysis is essentially the same as for the outbound leg. Since the traveler is unaccelerated during the entire 
inbound leg, the CADO frame says that the traveler is a full-fledged inertial observer during that entire 20-year 
segment of his life. So he uses the time-dilation result, and concludes that the home-twin ages 10 years during the 
inbound leg. So, when they are reunited, she is 80 years old, and he is 40 years old. The home-twin and the traveler 
agree, about the correspondence between their two ages, when they are reunited (as of course they must), even 
though they generally disagreed about that correspondence, during the trip. 

Instead of using the time-dilation result to determine CADO_T when the twins are reunited (as we did above), we 
can also easily get the answer from the CADO equation: since L is obviously zero when they are reunited, the 
CADO equation says that CADO_T = CADO_H there (and so the twins agree about their ages there). 

Given the above results, it is easy (and very useful) to sketch an "age-correspondence graph" ... a plot of the home-
twin's age (according to the traveler) as a function of the traveler's age. I.e, we want a graph, with the home-twin's 
age plotted vertically, and the traveler's age plotted horizontally. (The following description is most easily 
understood if the reader roughly sketches the graph as the description proceeds). What does that graph look like? 

On the outbound leg, the traveler says that the home-twin's age increases half as fast as his own age. So the curve 
starts from the origin, and increases linearly along a straight line of slope 1/2, until his (the traveler's) age is 20, and 
her (the home-twin's) age is 10. At that point, the curve jumps vertically to 70 for her age (with no increase in his 
age). Finally, the curve increases linearly from there, along a straight line of slope 1/2, until she reaches 80 years old, 
and he reaches 40 years old. After that, as long as they remain together, they will age at the same rate, but she will 
always be 40 years older than he is. 

The home-twin can do her own age-correspondence graph, again with her age plotted vertically, and his age plotted 
horizontally. I.e., both graphs show her age as a function of his age; the only difference is that the two graphs show 
the conclusions of two different observers. 

Her graph will be quite different from his graph: hers will consist of a single, straight line of slope 2, because the 
time-dilation result tells her that, during his entire trip, he ages half as fast as she does, which means that she ages 
twice as fast as he does. But the two different graphs do start at the same point (the origin), and they do end at the 
same point (the point where she is 80, and he is 40). But in between those two points, the curves are very different. 

In the standard paradox scenario (with a single instantaneous velocity change, and a reunion at the end of the trip), it 
is actually possible to avoid having to use the CADO equation to determine how the home-twin's age changes during 
the turnaround. That change can simply be inferred by determining the sum of the amount of her ageing (according 
to him) during the two unaccelerated segments of his life (10 + 10 = 20 years), and then using the fact that her age at 
the end of the trip must be 80 years. So we have to come up with an additional 60 years somewhere, and the 
turnaround is the only place that extra time could have occurred. 

But for more complicated scenarios, where the traveler can instantaneously change his velocity multiple times 
during the trip (both positively and negatively), and in cases where there is never any reunion of the twins), then the 
CADO equation is indispensable in determining how much the distant perpetually-inertial person instantaneously 
ages (positively or negatively) during the traveler's instantaneous velocity changes. And even in the standard 
paradox scenario, the use of the CADO equation at the turnaround makes it clear why the home-twin's age 
(according to the traveler) instantaneously increases during the instantaneous turnaround. And the CADO equation 

 



also makes it clear why the traveler's initial instantaneous velocity change (when he begins his trip), and his final 
instantaneous velocity change (when they are reunited), does not cause any instantaneous change in her age (because 
L is zero then). 

Subsection 8.3  Philosophical Considerations 

I've never been able to adopt the "simultaneity at a distance is meaningless" view, mainly for

philosophical reasons (which are supposed to be off-limits in physics, but I think everyone is

influenced by philosophical thoughts to some extent).  I don't believe that my home twin 
ceases to exist whenever we are separated.  If she does still exist "right now", she must be 
doing something specific right now.  And if she is doing something specific right now, she must 
be a specific age right now (because at each instant of a person's life, their brain at that instant 
is in a state that is uniquely consistent with their actions at that instant).  So I believe she must 
have some specific current age.  Her current age is not just one of a set of equally good 
"conventions" of simultaneity, as some physicists believe.  Therefore there must be a single, 
correct simultaneity method.  Since I believe that Dolby and Gull simultaneity, and Minguizzi 
simultaneity are both disqualified because they are non-causal, that means that the correct 
simultaneity is either the CMIF simultaneity method, or my simultaneity method, or perhaps 
some currently unknown method.  I hope some day the correct simultaneity method will be 
known.


Subsection 8.4  A CADO Cartoon 

Shortly after I first came up with the CADO equation (several decades ago), and after I started to realize 
some of its bizarre implications, I created a cartoon (only in my mind) that captures (in only a slightly 
exaggerated way) the essence of what makes those implications so shocking. 


Imagine that a spaceship left Earth many years ago (maybe 20 years ago or so, in ship time), and that 
the spaceship (at some local date-and-time on the ship) is currently very far away from Earth (maybe 50 
lightyears or so, as measured in the Earth frame). The passengers on that ship still remember well their 
previous lives on Earth, and they still often think about the people they cared about then (and still very 
much care about). They naturally would wonder if their loved-ones are still alive, and if they are OK. The 
passengers would probably often try to imagine, if they can figure out their loved-ones' current ages, 
what they might be currently doing, "right now". 


In my imagined cartoon, the ship is having its annual New Year's Eve party. One of the passengers asks 
the captain, "What is the date right now, back on Earth?" The captain, with his hand on a HUGE throttle, 
answers, "What date would you LIKE it to be?". 

 


