Using the Partial Sums of the Alternating Harmonic Series to prove the Harmonic Series is divergent

Robert Spoljaric

r.spoljaric08@gmail.com

Queensland, Australia

Abstract: Many proofs of the divergence of the harmonic series have been given since the first proof by Nicole Oresme (1323-1382). In this article we shall give a simple proof using the partial sums of the alternating harmonic series. A simple consequence of this is an approximation that follows as a corollary. We then show that every harmonic number is the sum of partial sums of the alternating harmonic series. Finally as a corollary we show that the sequence of subseries of the harmonic series is converging to $ln2$.

Keywords: Harmonic Series, Alternating Harmonic Series, Proof

The harmonic series is:

$$
1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots
$$

The first known person to show that this infinite series diverges was Nicole Oresme (1323-1382). His idea was to compare the harmonic series with another divergent series.

Proof:

$$
1 + \left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots
$$

\n
$$
\geq 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots
$$

\n
$$
= 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \cdots
$$

Therefore, since $1 + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2}$ + … diverges so must the harmonic series.

■

For our purposes we shall merely state that a convergent series related to the harmonic series is the alternating harmonic series:

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2 = 0.693147 \dots
$$

 \blacksquare

Now, the partial sums of the harmonic series are the harmonic numbers:

$$
H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}, \quad \text{for } n = 1, 2, 3, \dots.
$$

The partial sums of the alternating harmonic series are related to the harmonic numbers with the only difference being in the positive/negative signs. So we establish a connection between both partial sums.

Lemma:

$$
\sum_{k=1}^{2^n} \frac{1}{k} = \sum_{k=1}^{2^n} \frac{(-1)^{k-1}}{k} + \sum_{k=1}^{2^{n-1}} \frac{1}{k}, \quad \text{for } n = 1, 2, 3, \dots.
$$

Proof:

$$
1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n - 1} + \frac{1}{2^n} - \left(1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{1}{2^n - 1} - \frac{1}{2^n}\right)
$$

= $(1 - 1) + \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{3}\right) + \dots + \left(\frac{1}{2^n - 1} - \frac{1}{2^n - 1}\right) + \left(\frac{1}{2^n} + \frac{1}{2^n}\right)$
= $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{n-1}}$

Theorem 1: The sequence $\{H_n\}$ for $n = 1, 2, 3, ...$ is divergent.

Proof: As the identity holds for $n = 1, 2, 3, ...$ we construct the subsequence $\{H_{2^n}\}$ as follows:

$$
H_2 = 1 + \frac{1}{2} = \left(1 - \frac{1}{2}\right) + 1
$$
\n
$$
H_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}\right) + \left(1 + \frac{1}{2}\right)
$$
\n
$$
= \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}\right) + H_2
$$
\n
$$
= \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}\right) + \left(1 - \frac{1}{2}\right) + 1
$$
\n
$$
H_8 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8}\right) + \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right)
$$
\n
$$
= \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8}\right) + H_4
$$
\n
$$
= \left(1 - \frac{1}{2} + \dots + \frac{1}{7} - \frac{1}{8}\right) + \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}\right) + \left(1 - \frac{1}{2}\right) + 1
$$

And the pattern continues for H_{16} , H_{32} , H_{64} , ..., H_{2^n} , Therefore, as each consecutive harmonic number has an additional partial sum on the r.h.s. the subsequence $\{H_{2^n}\}$ is unbounded. Hence, the sequence $\{H_n\}$ is divergent.

■

Corollary: Theorem 1 gives the following approximation:

$$
H_{2^n} \approx (n+1)ln2
$$

■

 \blacksquare

п

For the next theorem we need to the following lemmas.

Lemma A:

$$
\sum_{k=1}^{2n} \frac{1}{k} = \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} + \sum_{k=1}^{n} \frac{1}{k}, \quad \text{for } n = 1, 2, 3, \dots. \tag{A}
$$

Proof:

$$
1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n - 1} + \frac{1}{2n} - \left(1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{1}{2n - 1} - \frac{1}{2n}\right)
$$

= $(1 - 1) + \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{3}\right) + \dots + \left(\frac{1}{2n - 1} - \frac{1}{2n - 1}\right) + \left(\frac{1}{2n} + \frac{1}{2n}\right)$
= $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$

Lemma B:

$$
\sum_{k=1}^{2n+1} \frac{1}{k} = \sum_{k=1}^{2n+1} \frac{(-1)^{k-1}}{k} + \sum_{k=1}^{n} \frac{1}{k}, \quad \text{for } n = 1, 2, 3, \dots \tag{B}
$$

Proof:

$$
1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n} + \frac{1}{2n+1} - \left(1 - \frac{1}{2} + \frac{1}{3} - \dots - \frac{1}{2n} + \frac{1}{2n+1}\right)
$$

= $(1 - 1) + \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{3}\right) + \dots + \left(\frac{1}{2n} + \frac{1}{2n}\right) + \left(\frac{1}{2n+1} - \frac{1}{2n+1}\right)$
= $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$

Theorem 2: Every harmonic number is the sum of partial sums of the alternating harmonic series.

Proof: Similar to the previous proof using A and B allows us to systematically construct the harmonic numbers as follows:

■

$$
H_1 = 1 = 1
$$
\n
$$
(A): n = 1 \qquad H_2 = 1 + \frac{1}{2} = \left(1 - \frac{1}{2}\right) + 1
$$
\n
$$
(B): n = 1 \qquad H_3 = 1 + \frac{1}{2} + \frac{1}{3} = \left(1 - \frac{1}{2} + \frac{1}{3}\right) + 1
$$
\n
$$
(A): n = 2 \qquad H_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}\right) + \left(1 + \frac{1}{2}\right)
$$
\n
$$
= \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}\right) + \left(1 - \frac{1}{2}\right) + 1
$$
\n
$$
(B): n = 2 \qquad H_5 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5}\right) + \left(1 + \frac{1}{2}\right)
$$
\n
$$
= \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5}\right) + \left(1 - \frac{1}{2}\right) + 1
$$
\n
$$
H_6 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}\right) + \left(1 + \frac{1}{2} + \frac{1}{3}\right)
$$
\n
$$
= \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}\right) + \left(1 - \frac{1}{2} + \frac{1}{3}\right) + 1
$$
\n
$$
H_7 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} +
$$

Corollary: The sequence of finite subseries of the infinite harmonic series is converging to $ln2$. *Proof:* Using Lemmas A and B we have:

$$
\frac{1}{2} = \left(1 - \frac{1}{2}\right)
$$

$$
\frac{1}{2} + \frac{1}{3} = \left(1 - \frac{1}{2} + \frac{1}{3}\right)
$$

$$
\frac{1}{3} + \frac{1}{4} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}\right)
$$

 \blacksquare

$$
\frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5}\right)
$$

$$
\frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}\right)
$$

$$
\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7}\right)
$$

$$
\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} = \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8}\right)
$$

 $\mathcal{L}^{\mathcal{L}}$ $\mathbb{Z}^{\mathbb{Z}^{\times}}$