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Abstract:  Many proofs of the divergence of the harmonic series have been given since 

the first proof by Nicole Oresme (1323-1382).  In this article we shall give a simple proof 

using the partial sums of the alternating harmonic series.  A simple consequence of this 

is an approximation that follows as a corollary.  We then show that every harmonic 

number is the sum of partial sums of the alternating harmonic series.  Finally as a 

corollary we show that the sequence of subseries of the harmonic series is converging to 

   . 
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 The harmonic series is: 

  
 

 
 

 

 
 

 

 
   

 

 
   

The first known person to show that this infinite series diverges was Nicole Oresme (1323-1382).  His 

idea was to compare the harmonic series with another divergent series. 

Proof: 

   
 

 
   

 

 
 

 

 
   

 

 
 

 

 
 

 

 
 

 

 
    

       
 

 
   

 

 
 

 

 
   

 

 
 

 

 
 

 

 
 

 

 
    

                                                         
 

 
   

 

 
   

 

 
    

Therefore, since   
 

 
 

 

 
 

 

 
   diverges so must the harmonic series. 

■ 

 For our purposes we shall merely state that a convergent series related to the harmonic 
series is the alternating harmonic series: 
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 Now, the partial sums of the harmonic series are the harmonic numbers: 
 

     
 

 
 

 

 
   

 

 
                     

The partial sums of the alternating harmonic series are related to the harmonic numbers with the 
only difference being in the positive/negative signs.  So we establish a connection between both 
partial sums. 
 
Lemma: 

    
 

 
  

       

 

  

   

  
 

 

    

   

                  

  

   

   

Proof: 

                       
 

 
 

 

 
   

 

    
 

 

  
    

 

 
 

 

 
   

 

    
 

 

  
  

                              
 

 
 

 

 
   

 

 
 

 

 
     

 

    
 

 

    
   

 

  
 

 

  
  

                         
 

 
 

 

 
   

 

    
 

  

Theorem 1:  The sequence      for           is divergent. 

Proof:  As the identity holds for           we construct the subsequence       as follows: 
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And the pattern continues for                          Therefore, as each consecutive harmonic 
number has an additional partial sum on the r.h.s. the subsequence       is unbounded.  Hence, the 
sequence      is divergent   

■ 
 
Corollary:  Theorem 1 gives the following approximation: 
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 For the next theorem we need to the following lemmas.    

Lemma A: 

 
 

 
  

       

 

  

   

  
 

 

 

   

                  

  

   

                                

Proof: 

                       
 

 
 

 

 
   

 

    
 

 

  
    

 

 
 

 

 
   

 

    
 

 

  
  

                              
 

 
 

 

 
   

 

 
 

 

 
     

 

    
 

 

    
   

 

  
 

 

  
  

                         
 

 
 

 

 
   

 

 
 

  

Lemma B: 

 
 

 
  

       

 
  

 

 
                   

 

   

    

   

    

   

                            

Proof: 

                        
 

 
 

 

 
   

 

  
 

 

    
    

 

 
 

 

 
   

 

  
 

 

    
  

                              
 

 
 

 

 
   

 

 
 

 

 
     

 

  
 

 

  
   

 

    
 

 

    
  

                         
 

 
 

 

 
   

 

 
 

  

Theorem 2:  Every harmonic number is the sum of partial sums of the alternating harmonic series. 
 
Proof:  Similar to the previous proof using A and B allows us to systematically construct the harmonic 

numbers as follows:    
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■ 
 
Corollary:  The sequence of finite subseries of the infinite harmonic series is converging to    . 
        
Proof:  Using Lemmas A and B we have: 
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