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Abstract

By using the Dirichlet characters for a finite abelian group G =7 =7%/(p-Z), peP,
and the corresponding characteristic functions, we discuss asymptotic distribution
for sums of residuals r=mod(v,p)=[v] . peP, where P is a set of prime numbers,
and vis a random variable with a certain probability distribution on set N of natural

numbers. We prove that for a sequence v,,v,,...,V, ... of independent random integers
(not necessarily equally distributed), the residuals of sums [v(")} = Z[vi]p
L

are asymptotically uniformly distributed on G, forevery pelP, (congruence

classes generated by primes). Then, we prove that components of the vector

of residuals 7(y) = (rl, Py T (V)) are asymptotically independent random variables.

1. Characteristic functions for residuals of sums [v(")} = Z[vl.]p.

Notice that the vector function r(n)= mod(n, ﬁ(n)) is periodic with a period 7 =T p

ps<n

since mod(7, p)=0 forany p<n.Due to the Chinese Remainder Theorem (CRT)
[22, p.101], asolution X to the system of equations mod(x, p,) =7, (1<i<m)
exists, and if x is a solution to the system, then y=x+7 is also a solution to the

same system. Considering the ring of all integers Z, we write Z =7/(m 7).



Here 7 consists of m congruence classes: 7, :{C

m,0°

C C } modulo m ,

s+ Gt
also called residue classes, denoted as [0] .[1] ....,[m—1] with the addition and
multiplication rules expressed as

[k] +[1] =[mod(k+I,m)] and [k] -[/] =[mod(k-I,m)] ,
respectively. For any prime number peP, set Zpof congruence classes modulo p
is a finite abelian group G =17 =7/(p-Z), of order p.
Consider a random sequence o= (771,772,...,77,1) where 77, €G, (i=1,2,...,n) such that

random variables 7,,7,,...,7, are mutually independent and we can always find the
minimal solution to mod(x, p,) =7, (1<i<m) among all solutions.

For example, given 5= (5,11,17,23,29) and 7 = (0,8,13,7,1) , the system

mod(x, p,) =r; (1<i <5) has the minimal solution x =30 . One of other possible

solutions, for instance, 1S x = 623675 .

We are interested in probability measures on the direct product ¢ = [1c, such that

pelP

each non-trivial probability distribution is supported by a finite number of

components in ¢ .

For a random sequence »=(7,,...,7,) of mutually independent random variables

n, (i=1,2,...,n) with distributions P{’L =r|re Gp,} =¢" on Gp[ , we have

p,'fl
P{nleBgGP,}:zq;(fl)’ Zqii):l(izl’z""ﬁn) ¢
r=0

reB

and

P{weﬁBi}:ﬁP{nieBi} forany B cG, 4.1)
i=1 1

i=



Further, we use the following notation: p—; = {s € Gp|s +reB,re Gp} and for every
probability distribution P on G, define the “shifted” measure 6 P(B)= P(B~r).
Obviously the shifted measure 6 P is a probability measure on subsets of a finite
set G,: 0 P(G,)=P(G, —r)=1because G, -r=G, forany r € G, since G,is a group.

Due to CRT, there exist one-to one correspondence between finite sequences of

k
residues (1;,1,...,7,) and positive integers n=] | p* such that

i=1
mod(n, p.)=r, (i=1,2,...,k). If mod(m, p,) =s, for some number m, then
mod(n+m, p,)=mod(r, +s,, p,)- Consider two independent random integers v and u

with probability measures P and P*, and their residuals [v] . [4] modulo p,
P P

[v+u]

respectively. We are interested in probability distribution p~ " of the sum

[V],, + [ﬂ]p = [V+ﬂ]p- For any set Bc G, we have

Pllveu] esl= 3 PlIv] =r}-P{{u], =s}- ;;P{[v]p =t=s}-P{[u], =}

(r+s)eB

[v+u]

and we denote P (B)= P{[Vﬂl]p € B} as

A gy= pl s pli (B), (4.2)

so that P"**(B)=P'*P"(B)= ZP{[v]p = t—s}'P{[[u]p = s}

teB

The measure P"**(B)=P"*P*(B) is called a convolution of measures P" and P" .

One of interesting questions is an asymptotic distribution of sums of independent

(n)

random integers v’ =v, +v, +---+v_and their corresponding residuals

[v(")]p =[v ]p +[v2]p +o+[v, ]p

which are also sums of independent random variables [v,] (i=1,2,...,n).
tdp



The answer to the question about the limit distribution of ) depends in general

on the distributions of the terms v/, in the sum. Meanwhile the limit behavior of
residuals [v(")] does not depend (under very simple and natural conditions) on the
P
distribution of each term [y, ] . In what follows we use the well-known general facts
tdp

from Probability Theory regarding characteristic functions of probability
distributions and their convolutions.

Let p¢ be a probability measure defined on all finite subsets of N. This means that

for every neN there exists P(n)=P{E=n} >0 such that ) Pé(n)=1.

neN

Characteristic function @< is defined by the formula

()= Ee"* =Y e"" -P*(n).

neN

For a finite abelian additive group G, =7, we consider a homomorphism yof G,
into multiplicative group C*of complex numbers :G, —C".

A homomorphism y:G, — C" is also called a character.

Since any element [k]p eG, (k=0,1,...,p—1) has order p, thatis p.[k] =[0] ,
P

P

we have |- Z([O],,)= Z( P‘[k]p)=( I([k]p))p' This means that any character value

Z([k]p) isa p-th root of unity.

2mi

We can define p such character values: y ([k]p) = eT“‘“ (r=012,...p-1).

2mi

Denote y = eTW) (r,k=0,1,2,...,p—1). Character y, ([k]p) =1forallk=0,1,...,p—1,
and y, is called a principal character.

Consider a square matrix y=[y,](0<r,k<p-1) of size p. All characters are

orthogonal to each other in terms of scalar products of rows of matrix y :



27i ot 27[1( 0 -

-1 (r ) - 27i(r-s) , if r =
Z,alq ZZ;[ Zw Ze ’ Z %:{p l.r ’

Lo s 0, if r#s
e

Characteristic function o< for residual [£] is given by the formula
P

@(r =

b (r) = Ee” ZP“ =2 s PP =| 2P ()

Since the matrix y=[y, ] (0<rk<p-1) is orthogonal, the inverse matrix 7
" dp

[¢]

exists and the probability distribution P~ can be uniquely recovered as

Pm =y L] » given its characteristic function o,

There is one-to-one correspondence between finite probability distributions and the

corresponding characteristic functions.

2. Convergence of probability distributions of residuals mod(v"", p) as n— o

for sums " = Z"i (n=1,2,...)to uniform disributions on G, for every peP

A probability distribution P*(k) (k=1,2,...,n) defined on a finite set X ={x,,x,,...,x,}

can be identified with the #n-dimensional vector P~ =(p.,p,,....p,)Where

:P{afzk},lskSn

If we have a sequence of probability distributions P* (m=1,2,...)such that P> — p

in a sense of vector convergence in p-dimensional vector space to probability
measure Pon X , then we can expect the convergence for the sequences of
corresponding characteristic functions: ®* — @, where ® is a characteristic function

of some limit random variable £ on X , and vice versa.



One of the most important properties of characteristic functions is that for any two
independent random variables &, £, we have @%*% =% . 0% ,

Yo o .
so that @7 =]]®* for independent &,¢,,...,¢, -

i=1
Theorem 4.1

For any random integers v its residual [y] for a prime peP has a characteristic
P

function ¢J””suchthat<D“L(0)=1andkb“hoo

<L, if 0<r<p-1.
Proof.

If a random integer 2 is such that [1] has a uniform distribution on G, , that is
P

1, if =0

_ :—f k=0,1,...,p—1,then o"’
{[ﬂ.] } ora ,p—1,then @ (r)= {0, o

We prove this by the direct calculations:

S L, r=0
Zz,k ;z,k - zr,zo>—{0,r¢0
We have @" (r) Z X P :[ ;(-P[V"]J(r). This implies ‘cDVf(r)‘SI.

We have ®"(0)=1. Assume that there exist r# 0 mod p such that @’ (r)=1.

27,

-1 L .
Then, q)[v]p (r)= pz pll ( k)e 0 =1 and, equivalently,

g(l—cos(%(r-k)]j?[v]” (k)=0.

Since 1-cos(a) >0 for any a, and P (k) >0 forall k, we have 7.k =0(mod p)
for £=0,1,2,..., p—1, which is possible only if » = 0(mod p).
Q.E.D.



Now, we can answer the question about convergence of probability distributions of

residuals mod(v"", p) as n— e for sums v =Y v (n=1,2,...)of independent random

i=1

integers by the following statement.

Theorem 4.2
Let v,v,,...,v ... be a sequence of independent random integers (not necessarily

equally distributed) such that for every prime p e P the residuals [v] (i=1,2,...) have
p

probability distributions P (k)0 forall 0< k < p—1.

We assume that sup q)[v"]ﬂ(r) =M<1 for r#0. Then, the residuals of sums

1<i<n r#0

[v(’”lj =>v, ]p are asymptotically uniformly distributed on G,, forevery p € P.

i=

Proof.
S Oy . T _ X .
We need to prove that limpP" =P* , or simply that [v ],, _g[v"]p —[2] (in

n—o0

probability) as n — co , where | /1],, is uniformly distributed on G, .

We have " = HCDV" and ‘CI)V(”)(;’)’ = H|<D“f (r)| <M"—0asn— oo, for each r=0.
i=1 i=1

Lif r=0
0,if r=0

This implies that lim o (r) =0 () :{ ,so that [v] = i[vi]p - [ﬂp :
n— p i=1

Thus, random variables [ v | are asymptotically uniformly distributed on G, =7,
p

as n— oo.
Q.E.D.

For a random variable veN we are interested in the vector of residuals

F)=(r.%....1,,)» Where (1) stands for number of primes p <v.



Here [v] =r=mod(v,p) (i=12,....2(v)) forall p,<v.

The asymptotic independence of residuals [v] =7 =mod(v,p,) (i=12,...,7(v))
Pi !

1s addressed in the following statement.

Theorem 4.3.

All components of the vector of residuals F(V)=(7’1,7’2,---F,,(V))are asymptotically

independent random variables.

Proof.

Notice that the vector function mod(n, p(v)) =7 (v) = (rl, T (V)),

where p(v)= ( Dis Pasevr D, (V)) , 1s periodic with a period 7(y) = H p since

p=v

mod(7T(v), p)=0 for any p <v. This implies that if x is a solution to the system of
equations mod(x, p,)=r, (1<i<z(v)), then y = x+7'(v) is also a solution to the
same system. We set v=k(v)-T(v)+r, where » =mod(v,7(v)). Then,

mod(v, p,)=mod(r, p,)=r, and since the combination of residual values

F(v)= (rlrz 7 (V)) occurs k(v) times in v trials, then for the relative frequency

1 1 ‘

I
T(v)+ k()

M) -

- k(v .
f(v,r(v))z(T), we have: g |

Q.E.D.
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