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Abstract

Quite deterministic nature of prime numbers, due to the complexity of the recurrent generating
algorithms, is mimicking ‘randomness’ and stimulates to apply some of probabilistic instruments
to analyze number-theoretic problems. The key issue in the probabilistic analysis in a number-
theoretic framework remains an enigmatic connection between deterministic nature of integer
sequences related to prime numbers and their apparent complicated (‘unpredictable’ or ‘chaotic’)
behavior interpreted as ‘randomness’. We derive multiplicative and additive models with
recurrent equations for generating sequences of prime numbers based on the reduced Sieve of
Eratosthenes Algorithm and analyze their asymptotic behavior with the help of Riemann Zeta
probability distribution. This allows to interpret such sequences as realizations of random walks
on set Nof natural numbers and on multiplicative semigroups S(IP) generated by set of prime
numbers P, representing paths of stochastic dynamical systems. We analyze in this work an
additive continuous-time probabilistic model of counting function of primes m(n) in terms of
diffusion approximation of non-Markov random walks. We assume that ‘updating’ terms 1 in the
recurrent equation (n(k+1)) - (n(k)) = n(n(k+1) follow Zeta probability distribution and
calculate infinitesimal characteristics of the random walk, which approximate coefficients of the
corresponding stochastic differential equation. Computer modeling illustrates graphically an
impressive fitting of trajectories for the original counting function, the calculated trend function,

and the Brownian approximation.



“Using randomness to study certainty may seem somewhat surprising
It is, however, one of the deepest contributions of our century to
mathematics in general and to the theory of numbers in particular.”
(Gérald Tenenbaum, Michel Mendes France, The Prime Numbers and

Their Distribution. AMS, 2000)

In this paper we consider the sequence {n(n)} asa realization of a random walks

{ﬂ(n,a))} ,generated by the recurrent equation

(n,,)-m(n)=n(n,,) where n(n)=h(min(#(n)), n,=v,(o) (1)

Here {v, ] areassumed to be random variables with Zeta probability distribution.

Recall that to define a stochastic process &(z,w) with a discrete( or a continuous set
X of values we need to have a measurable space (x,5), where often

XcN or XYcRY, aBorel g-algebra B of subsets on X', and a set T of

parameters /e 7 such that for each teT, &(+,):Q— X 1s arandom variable on a
probability space (Q,F,P). Then, the family {&(z,)}  of random variables is called
a stochastic process in the phase space (x,B). The parameter ¢ e T 1s usually

interpreted as ‘discrete time’ for a countable set 7c W=Nu {0} or as ‘continuous
time’ for the continuous interval 7= [to,t f,) cR"= [O,oo).

Then, a &(t,w)1s called a stochastic process with a discrete or a continuous time,
respectively. For any given elementary event @ € Q, a function x(-):7 — X such
that x(¢)= &(¢,w) 1s called a path (or a trajectory) of the random process.

Alternatively, a stochastic process can be defined as a collection of paths (random



elements) x(-)=§(,0)in a function space x” ={x(r)|re 7} Where o that identifies
cach path is an elementary event in probability space (¢, 7, p). Elements (or
points) xe X are called ‘states’ of the process, and &(r,w) itself 1s called a process
with a discrete or continuous phase space (X,B) .

Following the historical traditions of the classical Probability Theory (and the
development of Calculus, in general), we try to apply limit theorem approach to
analyze behavior of infinite discrete random sequences in terms of continuous-time

stochastic processes.

Let p(n)=(p,,p,...., p, ) be a vector of consecutive prime numbers such that
p,=2, p,<nand p,, >n. Index k determines here the value of function

7 (n) = k that is the number of primes less than or equal to » so that

P =(Py. Prs- s Py ) - FOX €ach coordinate p, of vector 5(n) we determine the
residual value ;. — mod(n, p,), i =1,2,...,z(n), and consider the corresponding

vector of residuals (,,

Tyrenns

Foon)- Notice that, due to the Sieve Algorithm, for an
integer »>2 to be prime it is necessary and sufficient that all coordinates

7 (1 <i< ,/ﬂ(n)) of the ‘reduced’ vector of residuals ?(n):(rl,rz,... be

FW)
different from zero. Meanwhile, if a random integer v follows Zeta distribution,
then, the events that v=» does not divide each of consecutive primes p,, p,,...,p_ o

are independent and can be expressed as a condition:

min{rl. [1<i< 72(«/;)} > 0 or, equivalently, H r.>0. (2)
1<i<z(\fn)
. . . ) 1 ifx>0 .
By using the Heaviside function #(x)= 0ifr< we can write the recurrent
1Ix s

equation for 7 (») in the form:



rn(n+1)=nm(n)+ h(lplziﬁ{mod(n,p) lpe 1@})
or, equivalently,
n(n+1)=m(n)+ h(irSnJi% {r. |1, =mod(n, pi)}) = m(n)+ h(min(7(n)) (3)
which controls the occurrence of prime numbers in the sequence of all integers
n>3: h(min(?(n)) =1if and only if » is a prime number and h(min(?(n)) =0

otherwise.

Consider a stochastic process approximation of non-Markov random walks
{z(n.w)}  suchthat z(n,w)=7(n) , With z:NxQ— NuU{o} restricted to the

interval of discrete ‘times’ N =n <n <---<n =N

{m*(t)=n(n.0)|N,, <n <N_ 1} (4)
Denote A=(0=¢,<t,<...<t,=1) a partition of an interval [0,1] into K

K

subintervals, such that
In ( N,

)—>Oastaxeoo.

We can map the closed interval of real numbers [ N_.,N__ ] c R to the interval
[0.1]c Rwith an increasing continuously differentiable function z(x) such that
7:(]\']min) = O’ T(Nmax) =1.

In the context of our study, a suitable choice of function 7 takes the form:

Pt

o) = N Int _ Li(x)-Li(N,,,) 5)
Mo LN )= LI(N )
v Int

where Li(x) stands for the Eulerian logarithmic integral Li(x)= in—t
> Int

Then, ¢ =1(n,) and for r' (the inverse of 7) we have n =77'(1)) (k=1,2,....K).



Denote At, =¢, -t . Assume that N — « and for each choice of N _ a positive

integer K can be taken such that |A| max Az, —» 0 . Here a sequence of random

1<k<K
variables z°(z,)=n(n,) is interpreted as a path of a walking point 7°(t,) that
belongs to a measurable space (X,,5,) at each ‘instant of registration” ¢,.

Probability distribution on the probability space (Q,7,P) generated by the path

space (X“,]—" “):(HX ® B j of random walks {z(k,)}  is determined by

k
KN keN

transition probabilities P{ﬂ:A(tkH) €E|n*(1/) =% } where 7' =(1,,1,.....t,)

=k

k
i =(xx,0x, )eXy =[x, xeX (i=01.), EeB,, .- Existence and

‘ i=0
uniqueness of the probability path space (Q,,P) follows from the theorem of
Ionescu Tulcea [41]. Notice that 7:N— W=Nu{o} and therefore, we set
X =W forall keN". To prove the weak convergence of transition probabilities for

the sequence of random walks to the diffusion process 7(r)on the time interval

[0,1], consider so called infinitesimal characteristics of the random walks:

. 1 - -
m’ (1, %) = EE{A”“M) 7 =5},

k

[0*a,m] =55 {[am) T 176 =x (6)

. 1 k=
g’ (tk’xlk;rkﬂ) - EE{IFM(AﬂA(tkH) (@)= xlk}

Here Arc(t,,,)= ”A(tk+l)_ ”A(tk) = nA(tk-H) =n(n,)—n(n)=1n(n,,)

Ar(t,,) =75 (t,) -t (1) = m(n, )~ () =" (1, ) = N(n,,)s 5 =(4.1,.8, )5



lif xel'

7A@ = (R )7 (1) (1) = (1,303, = 5 [F(x):{o otherwise

Fk+1 C Xk+1 \{xk} € Bk+1'
By setting n, =n +k forallk=0,1,...,K, we have:
Art(t,,)=nr(n,)—nr(n)=n(n +1)=n(,)

Aﬂ‘.A(tkH): ﬂ‘.(nkﬂ)_ﬂ(nk) = ﬂ'(”lk +1)—7T(l’lk) = n(nk+1)= nA(tkH)

AT (1, ) =r(n, ) —7(n)=m(n +1)=7(n)=n(n +1)=n"(_,), Where

1
Pl -1}, = 1 [1-1 )
re-o}-1,
We have then,
w5 =~ E{n(n, )} =~ T [1-+ (7)
7k Atk K+l Al‘k i »
Similar, since n(n,,,)= [n(nkﬂ)]z, we have
LR 1 2 1 1
o)) =g el =5 TL -] ®

By applying the first Merten’s theorem to (7) and (8), we have

mA(tk,x )=L- ¢ -{1+O( ! H
At In(n, +1) In(n, +1)

[a%m@f:i- ¢ |iro| —!
B At, In(n, +1) In(n, +1)

)

k
Lemma 1.
For any interval [q,5] With integer ¢ and b such that 0<a <5, we have

1 tar
2___

vy N < Int

todt b-a
S:!‘t'(lnt)2 = a-(Ina)’ (10)

Proof.



Due to the Euler’s summation formula, for positive integer numbers ¢ and » and a

function f with a continuous derivative f” on[a,b] , We have

> f(n)= _[ f (t)a’t+j t—[t f'(t)dt,where [¢] denotes an integer part of ¢ .

a<n<b

b

1

2 lnn lnt

a<n<b

Q.E.D.

M( f (Dydn < Ca- (lna)

a

X My

Consider the Eulerian logarithmic integral Li(x)= _[ld—t to evaluate > 7
nt

2 i:nk+1
Lemma 2.
g My dt ) . nk+1 nk | nk nk 1
Y = [ ——=Li(n,)- Li(n)+0| — =kl _ Tk 4o Sk
i=n+1 " Int In*(n,)) 1Inn, Inn In“n,_,
Proof.
We have

By using approximation [7]: /i(x)= -[1 —+0( ! j 5
nt

0 Inx In’x

we have:  Li(x)=li(x)-1li(2), where li(x) = J —+O( f j
o Inz - Inx In” x

This implies L,-(nk+l)_Li(nk):1nk+1 o +0( n. )
nn

Q.E.D.

Consider now a diffusion process 7(r) given by stochastic integral:

a(t)= jm(s) ds +j6(s) dw(s) (11)



where m(t)=

2
=—,0<t<LT()=x .

m o(n)= m(t) (1=m(t), e =~
with the transition probability u(z,x, 4)= P{#(t)e 4| #(1,)=0}.

Here y(7) 1s a process of Brownian motion on 0<¢<1.

The semigroup of linear operators U, is defined on the space of bounded

measurable functions by (U, 1) (x) = I Su(t,x,dy)-

We have the infinitesimal generator of the semigroup U, given by the formula:

( Uysf)0)=f )

At—)O t

(Lf)(x)=

On the set of twice continuously differentiable functions C*(R) the generator L

o 1, . 0f

takes a form of a differential operator (Lf )(x) m(x) +—07(x)
ox

The function V(¢,x)=(U,f)(x)=E[Y(1)| Y(t,) =x]= j £ (y)u(t,x,dy) satisfies the
equation

1, o oV
% - o° () 70— (12)

with the initial condition y(z,x) = f(x). Taking as an initial condition & -function,

we have p(s,x)=u(t,x,y) , called a fundamental solution to (12).

This means that the transition probability has a density y(,x, y), so that

P{Y(t)e A|Y,(t)=x}= [u(t.x.y)dy.

A

By applying the generalized limit theorem [22, 23] about convergence of random

walks 7° (7, ) as |A]=max At, 0, N, — o to diffusion processes (6.9), we obtain an

1<k<K

approximation of {ﬂ(n,a))} . in terms of diffusion processes, defined for

expanding intervals [N__ N _ ] of approximation on N.



Theorem 1.

Transition probabilities
P{7Z'A(l‘k+1) eE|n*t)=x,7"(t, ) =X ... 0" (t)) = xo}, where ¥ =(x,....x,)€ N,
of the defined above non-Markov random walks {z*(,)|N,,, <k<N,,, | converge

weakly to the transition probabilities of the diffusion process 7(r) given by the

stochastic integral
#(0)= [ in(s)ds + [ 6(s)dw(s), (13)
0 0

where (1) = ,0(t)= ~nA1(t)'(l—nA1(t)),c:%,OSz‘Sl,

e

N | —

¢
In(z (1))

t(f)=x, N <n<N__,7(N_)=0,7(N_ )=1, c=-2 1122918968

max ’ min max y

e

with the Euler's constant y = Zl— Inn+ O(l],y =0.577215664,
n

m<n

as |A‘:maxAtk+O,N4 —> oo,
I<k<K mimn

Proof.

K
Since ZAtk =1, to due to Lemma 3.1.1, we have:
k=1

K
y L K .[Ho[ 1
“Inn, In(N_ ) In(N

min

D%O’ while L—>0
N

max

Then, formulas (3.1.7), due to the second Merten’s theorem (the Merten’s formula)
[ 3, 19], imply:



i@ mA(tk,)?k)—m(tk)|+|(O'A(tk,)?k))2 ~(0(t,,%)) q.Azk

k=1

:2.2

K
k=1

1_1'At+1'0(1]
In(n,) In(n) * In(n) | lIn(n)

1 K
<2-max|l-At, + 0 > ———0,asN , oo
I<k<K In(n,) ) 1= Inn, m

For g(k)=n(k+1)-n(k)<1, we have P{nA (k) > 1} =0 for all &, so that all conditions

are satisfied to apply the limit theorems for random walks proved in [22 ,23, 24].
Q.E.D.

The figures below illustrate graphically the diffusion approximation of distribution

of primes in terms of ;(») on different intervals of the argument.
Legend for the graphs on the following figures:
datal: 7z(n)=exact number of primes <n
data2: Brownian approximation X = u(n)+¢ -o(n) of 7z (n)
data 3: Trend function s (n) of X,

Approximation of 7 (») for »:100<7<1000

datat: Pi(n) = number of primes <= n; data2: x(n) =brownian approximation of Pi(n); data3: mu(n) = trend function of x(n)

180 —

160 [

140]

number of primes <= n

[ [ L [ [ [
100 200 300 400 500 600 700 800 900 1000
natural n: 100<= n <= 1000

10



Approximation of z(;) for n:0<n< 10°

datat: Pi(n) = number of primes <= n; data2: x(n) =brownian approximation of Pi(n); data3: mu(n) = trend function of x(n)
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On figures below there are the graphs of paths described evolution of the ‘walk’

of a counts {z(n)|neN} of consecutive primes restricted to the intervals
N_.,N__ ] c N and approximating diffusion processes :

Y(t) = #"(¢) and their expectations EY(¢) for t €[0,1] < RR.

pi{n) on [1e+05, 101000 ], EY(t) on [0,1]

oo pi(n) on [ 1e+05, 101000 1. Y(t) on [0.1]
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The sequence of vectors (B(n),7(m)), (n=2,3,...) created by consecutive n

primes and the residual values 7 =mod(n, p), allows an interesting 3D

presentation. In each pair (5(n), #(n)) vector of primes pj(n) represents a

‘radial’ component, while the vector of residuals #(n), due to its natural

periodicity, represents a ‘circular’ component.

Spiral of primes below 10*4

4000 8000
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-6000
|

-5000 0 5000 10000
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"

Denote z, =p, -exp[zm‘- J, . =mod(n, p,) , (k=1,2,3,...) - a sequence of complex

Py

numbers and the vector Z(n)=(z,,...,z,) . Then for any n>2 vector z(,) takes a

shape of a spiral helix as in the pictures below.

Spiral helix of primes <= 10000
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