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                   A Probabilistic Approach to some Additive and  

                         Multiplicative Problems of Number Theory  
 

         Gregory M.  Sobko 

 

Abstract. We suggest here a probabilistic approach that helps to address some classical 

questions and problems of Number Theory, like the Goldbach Conjecture [1], distributions of 

twin- and primes and primes among arithmetic sequences and many others.   

The problem mentioned above will be addressed in publications that follow later. 

In this paper we discuss the concepts of ‘randomness’ and ‘independence’ relevant to number-

theoretic problems and interpret the basic concepts of divisibility of natural number in terms of 

probability spaces and appropriate probability distributions on classes of congruence.  

We analyze and demonstrate the importance of Zeta probability distribution and prove theorems 

stating the equivalence of probabilistic independence of divisibility of random integers by 

coprime factors, and the fact that random variables with the property of independence of coprime 

factors must have Zeta probability distribution. The idea to use Zeta distribution is motivated by 

the fact that it provides the validity of the probabilistic Cramér’s model for asymptotic prime 

number distribution, in a full agreement with the Prime Number Theorem. Multiplicative and 

additive models with recurrent equations for generating sequences of prime numbers are derived 

based on the reduced Sieve of Eratosthenes Algorithm. This allows to interpret such sequences 

as realizations of random walks on set of natural numbers  and on multiplicative semigroups 

 generated by sets of prime numbers , representing paths of stochastic dynamical 

systems. The H. Cramér’s model for probability distribution of primes is modified as a 

generalized predictable non-stationary Bernoulli process with unequally distributed terms that 

are asymptotically pairwise independent. This model is applied then to analyze the sequences  

of primes generated by appropriate random walks. With an intense use of Zeta probability 

distribution it seems possible by using the modified Cramér’s model to approximate the 

probability distribution of various arithmetic function.  
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“…Mathematics is the art of giving the same name to different things…The only facts 

worthy of our attention are those which introduce order into this complexity and so make 

it accessible to us”. 

                     (Henry Poincaré, The Value of Science, Random House, Inc., 2001. 

 

1. Stochastic Predictable Sequences, Prime Numbers 

    and Zeta Probability Distribution 

 

Let  denote the set of natural numbers and  the set of all primes.  Our major assumption follows the 

amazing Cramér’s idea [9] to represent a deterministic sequence of prime numbers as realizations of 

binary random variables in the sequence  with an appropriate choice of their probability 

distributions.  

Pursuing this idea we address two problems:  

1) the choice of an adequate probability distributions  for each ;   

2) stochastic relationship among all in the sequence .  

We need several definitions [7]. 

Definition 1.1 

Let  be  random variables   defined on probablity space     

and   a  generated by all events created by random variables

.    We have:   ,  and for each  random variable 

  is  -measurable. Then,  the sequence  is called a stochastic sequence.  

A stochastic sequence is called predictable if for each  there exists 

 such that   is -measurable. A pedictable sequence we can write as .  

Predictability of a stochastic sequence = means that for each  the 

probability distribution  of given the entire prehistory  is compeletly determined by the 

condition , that is depends on values taken by some (or all) variables   ,  

! P

ξk ξk( )k∈!

Pk ξk

ξk ξk( )k∈!

νn | n∈!{ } νn :Ω→ N Ω,F ,P( )
Fn =σ ν k |1≤ k ≤ n{ } σ -algebra

ν k |1≤ k ≤ n{ } F1 ⊆!Fn ⊆ Fn+1 ⊆!⊆ F n∈!

νn Fn νn ,Fn( )n∈!
νn ,Fn( )n∈! n∈!

k = k(n) < n νn Fk (n) νn ,Fk (n)( )
n∈!

νn ,Fn( )n∈! νn ,Fk (n)( )
n∈!

n∈!

Pn νn Fn−1

Fk (n) ν1,ν2 ,…,ν k (n)
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where .  So, in terms of conditional probabilities,  

 for all  .     (1.1) 

Notice that general stochastic sequences include classes of sequences of independent  

as well as dependent random variables like martingales, Markov chains, etc. 

A sequence of mutually independent random variables is unpredictable since 

probability distribution of each is determined only by events from and does not  

depend on condition given by ‘previous’ events from . Markov chains and  

martingales are examples of predictable stochastic sequences. 

In Number Theory we are interested in recursively defined sequences of numbers,  

generated by certain recurrent relations, mostly nonlinear. From probabilistic point of view,  

such recurrent relations generate sequences of dependent random variables. The problem  

of dependence of events and random variables in the framework of  Number Theory had  

been dicussed in some detail in the monograph of Mark Kac [4]. As M. Kac underlined  

in [4],  the concept of independence “though  of central importance in probability theory,  

is not a purely mathematical notion”, and it appears quite naturally in Statistical Physics.  

He mentioned that “the rule of multiplication of probabilities of independent events is  

an attempt to formalize this notion and to build a calculus arount it”. By using informal  

language, the concept of independence is stated in [14] as follows: “Two events are said  

to be independent if they have ‘nothing to do’ with each other”. To decide whether a  

‘randomly choosen’ (odd) integer  is a prime number, we subject  to a divisibility  

test, by using the Eratosthenes algorithm. If  event  (‘  divides  ‘) does not  

tell us anything about  event  (‘  divides  ‘) for   , we can say that 

and do not depend on each either logically or statistically, and should be considered  

as independent events for a ‘reasonable’ choice of probability distribution of random  

variable .  Meantime, events are dependent events since they  

exclude each other for , because only one of them holds true at a time.  

More sofisticated example of dependent events represent ,  

which are both true for twin primes, and false otherwise. 

k(n) < n

Pn νn ∈A |Fn−1{ } = Pn νn ∈A |Fk (n){ } A∈Fn

νn ,Fn( )n∈!
νn Fn

Fk (k < n)

ν > 2 ν

A = pi \ν{ } pi ν

B = pj \ν{ } pj ν i ≠ j

A B

ν ν ∈P{ } and (ν +1)∈P{ }
ν > 2

ν ∈P{ } and (ν + 2)∈P{ }
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We demonstrate below that with an appropriate choice of probability distribution for random  

variable  events  and  are independent for any choice 

of prime numbers . Such a choice is provided by Zeta probability distribution 

,          (1.2) 

Both dependence and independence of ‘events’ in Number Theory are results of complicated  

recurrent nonlinear relations between terms of numeric sequences,  which can generate  

‘dynamical chaos’, imitating pseudo-randomness in a long run behavior of such deterministic  

sequences. The precise prediction of behavior of terms in the sequences demands for ‘big’  

numbers almost infeasible calculations caused by the expanding memory of prehistory of their 

evolution. To make a study feasible and overcome “the curse of dependence” researchers  

in this area typically suggest heuristic assumptions that terms in a  are independent,  

or asymptotically independent, or uncorrelated, or ‘weakly’ dependent, in a certain sense.   

                                                                                                                                                           

Proposition 

The basic fact is that the set of prime numbers  is a recursive set [17].  

Proof. 

We can prove this by using an indicator function  of set . We need to show  

that the function  is recursively defined.  

(1) Initial step: let .  

(2) Inductive step: if  is the smallest number such that  for each  

(symbol   means ‘does not divide’), then , otherwise .  

Notice that such number  exists since  is a well-ordered set so that any nonempty subset of  

has the least element (the smallest number). 

 (3) Closure step: Only numbers  obtained in steps (1)  

and (2) satisfy condition .   

It holds true that if a function is recursively defined then it is unique [17].   

We can explain the above statement concerning the recursive definition of prime numbers  

ν A = pi \ν{ } B = pj \ν{ }
pi ≠ pj

P νm = n{ } = n−s

ζ (s)
  (s >1) n∈!

νn( )n∈!

P

IP :!→ 0,1{ } P

IP

IP (2) = 1, IP (3) = 1

n > 3 k ! n k ≤ n

! IP (n) = 1 IP (n) = 0

n N N

n

IP (n) = 1
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as follows.  Occurrence of a prime number  in the sequence of consecutive natural  

numbers  depends on the values of reminders  for all primes  ,  

due to the Sieve of Eratosphenes Algorithm [5]. This requirement can be relaxed:          

we need to consider only divisibility of  by all primes .  

The proof of this statement (attributed to Fibonacci) follows below. 

Lemma 1.1 

A natural number  is prime if and only if  is not divisible by of any prime numbers ,   

оr, equivalently, if  for all primes . 

Proof. 

If we assume that  is a composite number with no primes  that divide , then  should  

be divided by primes  both greater than  , and therefore also divided by their product 

But this would imply that , which is impossible.  This means that if  is not 

divisible by any of prime numbers , then  itself must be a prime number. 

Q.E.D. 

The above discussion implies that sequence of consecutive primes can be considered as  

a realization of a predictable stochastic sequence , where  for all   

( stands for integer part of x). 

One of the most challenging problems of Number Theory is the distribution of primes in the set   

of natural numbers. The sequence of consecutive odd prime numbers  may look  

like a path of sporadic walks  given by a random sequence of natural numbers 

 where randomness of each term  is determined by the choice of elementary  

event  due to a probability distribution  defined by a probability space .   

Primes in   for each  can be represented by the indicator function  

as a sequence of binary-valued variables    

n = p∈P

n = 2,3,4,…{ } r = mod(n, p) p ≤ n

n p ≤ n

n ≥ 5 n p ≤ n

r = mod(n, p) ≠ 0 p ≤ n

n p ≤ n n n

′p1 and ′p2  n

′p1 ⋅  ′p2 . ′p1 ⋅  ′p2 > n n

p ≤ n n

νn ,Fk (n)( )
n∈!

k(n) = n⎡
⎣

⎤
⎦ n > 3

x⎡⎣ ⎤⎦

!

(3,5,7,11,…)

ω :!→ P

ω = ν k (ω ) | k ∈!( ) jn

wÎW P Ω,F ,P( )

( )1 2, , ,jw n n n= ! ! ν k = k IP (k) = ξk

ξk =
1, if  ν k (ω ) = k ∈P
0, otherwise

⎧
⎨
⎩⎪

,
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This can be directly observed in the sequence of prime numbers below :             

            

      

Table 1.1                  

    

 

In Number Theory we are interested in recursive sequences of numbers, generated by certain recurrent 

relations, mostly nonlinear.   Let  be a probability space, where  is a set of all  -valued 

sequences,  is a -algebra generated by the algebra of cylinder sets in  , and  is a probability 

measure on . Unsurmountable challenge is to describe probability distributions on a set  

 of all  -valued sequences that include all recursively generated sequences  

of positive integers with all possible dependences between their terms. A sequence of integers in  

their natural increasing order  is our main concern. 

In the framework of Probability Theory, we consider basic sequences   as realizations  

of -valued random variables traditionally called Bernoulli variables.  

To avoid pure heuristic justification of probabilistic conclusions, we try to conduct our discourse 

entirely in the framework of Probability Theory.  This means that,  prior to discussion of dependence 

issues related to sequences like , we  should introduce random variables 

 with the corresponding probability distribution  defined on -algebra of events 

 (generated in our context by all finite subsets ).  

100

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97( )

Ω,F ,P( ) Ω !

F σ Ω P

Ω,F( )
Ω = !! ! vk( )k∈!

vk = k k ∈!{ }
ξ(n) | n∈!( )

0,1( )

( )1 2, , ,jw n n n= ! !

ν j :Ω→ ! P σ F

ν j
−1(A) A⊆ !

 The sequence  of sequential primes among natural numbers from 1 to 100    

   represented by values of    such that  : 

0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0  

0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

    

ξ(n) |1≤ n ≤100( )
n ξk = 1 if k  is prime
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We assume that a binary-valued sequence , where    

representing primes, is a realization of   a non-stationary sequence of possibly dependent  

Bernoulli variables, by postulating probabilities  

   

                   .              (1.3) 

 

The major challenges in the study of such sequences are evaluation of in (1.3) and analysis  

of dependence of random variables  included in the sequence.  The problem  

of dependence of events and random variables in the framework of Number Theory had been  

discussed in some detail in the monograph of Mark Kac [4]. In number of works authors tried  

to avoid a standard probabilistic approach based on the concept of sigma-additive probability  

measures and the corresponding probability spaces, and considered instead so-called ‘density’  

measures, which are additive but not -additive. As M. Kac underlined in [4], the concept  

of independence “though of central importance in probability theory, is not a purely  

mathematical notion”, as it appears quite naturally in Statistical Physics.  

He mentioned that “the rule of multiplication of probabilities of independent events is an  

attempt to formalize this notion and to build a calculus around it”. Moreover, the notions  

of statistical (probabilistic) independence and dependence of events have been sometimes  

confused with mathematical (functional) or logical dependence.   

Both dependence and independence of “events” in Number Theory are results of complicated  

recursive nonlinear relations between terms of numeric sequences, which can generate  

a ‘dynamical chaos’, imitating pseudo-randomness in the long run behavior of purely  

‘deterministic’ sequences. The precise prediction of behavior on a ‘long run’ for terms in such  

sequences demanding tremendous calculations requires expanding memory of prehistory  

of their evolution. To make a study feasible and overcome ‘the curse of dependence’,  

a typically suggested heuristic assumption is that terms in are ‘asymptotically independent’,  

or ‘uncorrelated’, or ‘weakly’ dependent in a certain sense.  

ξk | k ∈!( ) ξk (ω ) =
1, if  ν k (ω ) = k ∈P
0, otherwise

⎧
⎨
⎩⎪

,

P ξk = 1{ } = Pk , P ξk = 0{ } = Qk = 1− Pk ,  where 0 ≤ Pk ≤1

Pn

ξk | k = 1,2,3,…( )

σ

ξk( )k∈!
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In the framework of modified H. Cramér’s model  we show that the sequence of dependent not 

identically distributed random variables  is asymptotically pairwise independent in a sense  

 that we are going to discuss below.   

Surprisingly, in many discussions of probabilistic interpretations of Number Theory problems,  

some authors use ‘by default’ an approach as in the following sentence: 

 “Assume that we choose number at random from .  Then  …”.    

The above sentence, due to its ambiguity, raises the following critical comments. 

When one chooses number  ”at random” in the sense of Probability Theory, it is presumed  

that the probability distribution of exists and is known (at least theoretically).  

The formula  cited above tells us that the probability distribution  

is assumed to be uniform on the sequence of integers .  

Here denotes a counting function of number of primes not exceeding . If the 

probability distribution of  is not uniform on the interval of integers  , then, in a 

statistical framework,  can be interpreted not as a probability but rather as an observed relative 

frequency of occurrences of prime numbers in the interval .  

One of goals in our study is to construct a probabilistic model for the “statistical” distribution  

of primes given by the observed frequencies . Notice here the obvious fact that a discrete 

 uniform probability distribution does not exist on an infinite support, that is on infinite subsets  

of  (including itself).   The following analysis is about divisibility of  by a prime  .  

Denote  a set of all multiples of number . As mentioned above, the probability   

does not exists if  is evenly distributed on . But the problem can be easily resolved if one assigns  

the probability  to the class   of integers in  congruent   

modulo .  There are exactly congruent classes modulo :  

                     ,  

ξk( )k∈!

X 1 to n Prob(X  is prime)=
π (n)
n

X

X

( )Prob(  is prime) = nX
n

p

{ }1,2,3, ,n!

{ }( ) # |n p p np = Î £P n

X [1,n]= 1,2,…,n{ }
( )n
n

p

[1, ]n

( )n
n

p

N N ν p n£

p ⋅N p P ν ∈ p ⋅!{ }
ν N

P ν ∈ p ⋅!{ } Cp,0 = n | n = k ⋅ p,  k ∈!{ } ! 0

p p p

Cp,r = n | n = k ⋅ p + r;0 ≤ r ≤ p −1;k ∈!∪ 0{ }{ }



 
 

 9 

which make a partition of  .  Then, we can define a probability distribution 

  on   such that .   

Then, . By assuming equal probabilities to randomly choose a class of 

congruence for a number  given by for all  , we have  ,  

where . Then, . Considering , we have nothing  

but to assume that random variable  can take any (‘unknown’) value within a congruence  

class .  The value of probability can be different from  if we impose some 

limitations on , say, if we assume that .  For arbitrary  and a given probability  

distribution of , an event  may not belong, in general, to the algebra of events created  

by the partition of  into  congruence classes , therefore, it would be 

impossible to assign probability to the event , where we denote 

.  Since  is a finite set, we can define a uniform probability  

distribution on this set, but the agreement of uniform distribution with the assumption  

 would depend on the choice of , specifically, on divisibility of . For 

example, if ,  we have .  

For  we have: 

                 , and  

Independence of divisibility of random number  by different primes is determined by  

choice of probability distribution of . As it had been noticed by Mark Kac in [4],  

“primes play a game of chance”. He pointed out to the obvious fact that  to be divisible   

by both different primes  and    is equivalent of being divisible by . This mean  

!

P Cp,r( ) = qp,r (r = 0,1,2,…, p −1) { },0 ,1 , 1, , ,p p p pC C C -! qp,r = 1
r=0

p−1

∑

P ν ∈ p ⋅!{ } = P Cp,0( ) = qp,0
ν P Cp,r( ) = qp r : 0 ≤ r ≤ p −1 P Cp,r( ) = 1p

Cp,0 = p ⋅! P ν ∈ p ⋅!{ } = P Cp,0( ) = 1p P ν ∈ p ⋅!{ }

ν

p ⋅N P ν ∈ p ⋅!{ } = 1p
ν ν ≤ n n∈!

ν ν ≤ n{ }
N p { }, | 0,1,2, , 1p rC r p= -!

ν ∈Cp,o∩[1,n]{ }
[1,n]= k | k = 1,2,…,n{ } [1, ]n

{ },0
1[1, ]pP C n
p

Ç = n byn p

3 and 20p n= = { }3,0
6 1[1,20] 0.3
20 3

P C Ç = = ¹

3 and 21p n= =

{ }3,0 [1,21] 3,6,9,12,15,18,21C Ç = P C3,0∩[1,21]{ } = 721 =
1
3
≈ 0.333…

ν

ν

ν
p q p q×
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that if  for any positive integer  , then, since  , we have       

              because  .                              (1.4) 

Mark Kac was not able to establish and use the independence of divisibility events in terms  

 of probability theory since he used a density set functions ,   

 where  , which is not a probability measure as it is additive  

 but not -additive.   

 

Definition. 1.1 

We call a probability distribution  of a random variable  

multiplicative or completely multiplicative if for all  we have: 

   , where ,                                (1.5) 

is a multiplicative, or respectively, completely multiplicative function, 

such that  is a convergent series. 

 

As we show below, independence of divisibility of random number  by different primes can be 

guaranteed if  has a multiplicative probability distribution defined above. 

Each prime number determines a partition of the set  into  classes of congruence  

modulo . We show below that a randomly chosen value    

with multiplicative distribution  is divisible by natural  with probability  .   

For  and  (where  is Zeta function), the probability   is Zeta 

probability distribution 

                                for any choice of    

and random  with Zeta distribution is divisible by a prime number  with probability 

{ },0 1
mP C

m
= m ,0 ,0 ,0p q p qC C C× = Ç

P Cpq,0{ } = P Cp,0{ } ⋅P Cq,0{ } 1 1 1
p q p q

= ×
×

d A( ) = lim
n→∞

A(n)
n

A(n) = A∩[0,n], A⊂ !

σ

Pf  on ! ν

A⊆ !

Pf ν ∈A{ } = 1Z f (n)
n∈A
∑ f :!→ (0,1]

Z = f (n)
n∈!
∑

ν
ν

p ! p

{ },:    ,  where 0,1,2, , 1p rp C r pÎ -! ν

Pf m f (m)

f (n) = 1
ns

 (s >1) Z = ζ (s) ζ (s) Pf  on !

Pζ (s) ν = n{ } = n−s

ζ (s)
, n∈!, 1s >

ν p
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  , so that for each , 

                                                 (1.6) 

Each natural , due to the Fundamental Theorem of Arithmetic, can be represented  

in the unique form 

                                                                                 (1.7) 

where .   

The formula (1.7) is called a canonical representation of , where   

are called multiplicities of prime factors of .    

If is a realization of a random variable , that is  , then (1.7) can be written  

in the form 

                              (1.8) 

as a canonical presentation of a random variable  . Here  . 

 Thus, (1.8) implies that the probability that does not divide equals   .  

In general, the event  in (1.8) means that  divides  but   does not  

divide .  From independence of these events, it follows: 

 ,                       (1.9) 

This shows that each    has a geometric distribution with parameter  

and we have    .             

 

Sum  counts the total number of prime factors (with their multiplicities)  

1
ps

pÎP

{ } { },0 ,0
1 1 , 1s p s ps sP C P C
p p

n nÎ = Ï = -

n

n = p1
a1 ⋅ p2

a2! pk
ak = pi

ai

i=1

k

∏

p1, p2 ,…, pk  are distinct primes, and a1,a2 ,…,ak are natural numbers

n a1,a2 ,…,ak
n

n n ν(ω ) = n

ν = pα (ν ,p) =
p∈P
∏ pk

α k (ν )

k=1

κ (ν )

∏

ν α (ν , pk ) =α k (ν )

p n Ps α (ν , p) = 0{ } = 1− 1
ps

α (ν , p) = k{ } pk n pk+1

ν

{ } 1 1( , ) 1 , 0,1,2,3,
k

s s sP p k k
p p

a n
æ ö æ ö

= = × - =ç ÷ ç ÷
è ø è ø

!

α ( pj ,ν )
1

jp

( )
( )2

1 1( , ) ; ( , )
1 1 1 11

s s s

s s s ss

p p pE p Var p
p p p pp

a n a n
- -

- -

æ ö æ ö
= = = = ×ç ÷ ç ÷- - - -è øè ø-

ϕ(ν ) = α (ν , p)
p∈P
∑
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in the prime factorization of  . Here are parameters of : 

                 . 

Assume now that there is a vector , which components are  different  

consecutive prime numbers, and we consider a multiplicative semigroup  with unity,  

generated by components of vector   and number .  

For any  we have where . 

Notice that by using computer simulation, we can generate  pseudo-random variables 

 , where each    has a geometric distribution with parameter   

and then, simulate a ‘pseudo-random’ number with .   

Further we consider a multiplicative semigroup  generated by all primes not exceeding  

  , that is . 

 

THEOREM 1.1.  

If  is a multiplicative probability distribution on  and  is a random variable such that 

   where ,  , 

 then  

1)  For any natural  random event  of occurrence of a random number  divisible  

by   has probability . 

2)  for any two mutually prime numbers  and , random events  and  of occurrence  

of  divisible by both  and by , respectively,  

are -independent events: .  

( , )p

p

pa nn
Î

=Õ
P

ϕ(ν )

Es ϕ(ν )⎡⎣ ⎤⎦ =
1
ps −1p∈!

∑ ,Vars ϕ(ν )⎡⎣ ⎤⎦ =
ps

ps −1
⎛
⎝⎜

⎞
⎠⎟
⋅ 1
ps −1

⎛
⎝⎜

⎞
⎠⎟p∈!

∑

( )1 2, , , Np p p p=
!

" N

( )S p!

!p 1

n∈S( !p) n = pi
ai

i=1

k

∏ ai > 0 for all i (1≤ i ≤ k), k ≤ N

N

α j =α ( pj ,ν ), 1≤ j ≤ N α ( pj ,ν )
1

jp

1

j
k

j
j

pan
=

=Õ k = k(ν ) ≤ N

S(PN ) PN

N ∈N PN = p ≤ N | p∈P{ }

Pf ! ν

Pf ν ∈A{ } = 1Z ⋅ f (n)
n∈A
∑ A⊆ ! f :!→ (0,1]

2m ³ E ν

m Pf (E) = Pf (Cm,0 ) = f (m)

m1 m2 E1 E2

ν 1m m2

Pf Pf (E1∩ E2 ) = Pf (E1) ⋅Pf (E2 )
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     Since  we have, equivalently, 

   

Proof. 

For we have:   

   since ,        

and .    Then,  implies  

 

Q.E.D.               

The following theorem states that the assumption that the probability distribution   is ‘complete 

multiplicative’ (with an appropriate choice of function ) is  a necessary and sufficient condition for 

such distribution  to be Zeta probability distribution. 

 

THEOREM 1.2. 

Let  be a random variable with values in  with probability distribution      

                                       ,                            (1.10) 

where ,    and  is a convergent series. 

The series  takes a form of the ‘Euler product of the series’ [12, p.230]:  

1)   if  in (1.5) is multiplicative, then   ; 

2)   if  in (1.5) is a completely multiplicative function such that , then 

                                ; 

 3)    the probability distribution  is a Riemann Zeta distribution    

1 2 1 21 ,0 2 ,0 1 2 ,0, andm m m mE C E C E E C ×= = Ç =

Pf (Cm1,0∩Cm2 ,0 ) = Pf (Cm1,0 ) ⋅Pf (Cm2 ,0 )

m = m1 ⋅m2

Pf Cm,0( ) = 1Z f (m ⋅ k) =
k∈!
∑ 1

Z
f (m) ⋅ f (k) =

k∈!
∑ f (m) = f (m1) ⋅ f (m2 )

1
Z k∈N
∑ f (k) = 1

Pf Cmi ,0( ) = 1
Z k∈N
∑ f (mi ⋅ k) = f (mi ) (i = 1,2) Cm1⋅m2 = Cm1 ∩Cm2

Pf (Cm1,0∩Cm2 ,0 ) = Pf (Cm1⋅m2 ,0 ) = Pf (Cm1,0 ) ⋅Pf (Cm2 ,0 )

Pf  on !

f

Pf

ν !

Pf ν ∈A{ } = 1Z f (n)
n∈A
∑

f :!→ 0,1⎡⎣ ⎤⎦ A⊆ ! Z = f (n)
n=1

∞

∑

Z = f (n)
n=1

∞

∑

f Z = f (n)
n=1

∞

∑ = 1+ f ( p)+ f ( p2 )+!⎡⎣ ⎤⎦
p∈P
∏

f 0 < f ( p) <1 for all p∈P

Z = f (n)
n=1

∞

∑ = 1
1− f ( p)p∈P

∏

Pf
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       for any choice of .   Further we denote   .                         

Proof. 

1) Let be a semigroup of all integers generated by : . 

Due to the Fundamental Theorem of Arithmetic,  

    

Then, if  is a multiplicative function, we have   

     .             

     2)  In the proof above we have used the multiplicative property of function .  

If  is completely multiplicative, we have .  Then, we can write 

 and the above equality takes a form: 

  

Notice that the right-hand sides of the above equalities are convergent infinite products, since  

the left-hand side is given by the convergent series.   

3)  Notice that for any  we have ,  

where  . 

Since   , we have                       

Denote ,  .Then,    

For any natural   we write the event “  divides ”  as   and the opposite event           

Pζ (s) ν = n{ } = n−s

ζ (s)
, n∈!, 1s > Pζ (s) = Ps

S(PN ) PN ∪ 1{ } PN = p | p ≤ N , p∈P{ }

n = pα (n,p)

p∈P*
∏ ,  where α (n, p) ≥ 0,α (n, p) =

aj > 0 if  paj | n and paj+1
! n

0, otherwise

⎧
⎨
⎪

⎩⎪

f

Z = f (n)
n=1

∞

∑ = f ( pα (n,p) )
p∈P
∏⎡
⎣
⎢

⎤

⎦
⎥

n=1

∞

∑ = f ( pk )
k=0

∞

∑⎡
⎣
⎢

⎤

⎦
⎥

p∈P
∏ = 1+ f ( p)+ f ( p2 )+!⎡⎣ ⎤⎦

p∈P
∏

f

f f ( pk ) = f ( p)( )k

1+ f ( p)+ f ( p)( )2 + f ( p)( )3 +!= 1
1− f ( p)

Z =
n=1

∞

∑ f (n) ==
p∈P
∏

k=0

∞

∑ f ( p)( )k⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

p∈P
∏ 1
1− f ( p)

n∈S(PN ) ns = pa(n,p)⋅s
p∈P
∏ = pa( p)⋅s

p∈P
∏

a(n, p) = a( p)∈!∪ 0{ }

0

1 1
11

k

s
k

s
p

p

¥

=

æ ö
= ç ÷

è ø-
å

{ }

( )

0 ( ), ( )
( )

N
N

sk s a p s

k a p p N n Sp N p N

s p p nz
¥

- - × -

= £ Î£ £

é ù= = =ê úë û
å å åÕ ÕP

P

ξ p (ν ) = p
α (ν ,p) ξ = p P ξν ,p = p

α (ν ,p){ } = P ξ = p{ }⎡⎣ ⎤⎦
α (ν ,p)

m m ν E = m \ν{ }
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“ “ as . The probability that a prime number  divides  is 

 and the probability that  does not divide   is .  The 

probability that the number  divides  and does not divide is given by the formula  

    

Then, by virtue of Theorem 1.1 and the canonical factorization of , we have 

                                 (1.11)     

Summation of both sides of (1.11) results in the formula: 

, which implies: 

                    (1.12) 

provided that  is such that the infinite product and the infinite sum in the above formulas are both 

convergent.  Completely multiplicative function  satisfies the functional equation 

, known as one of ‘fundamental’ Cauchy functional equations.  Due to Theorem 3, 

p.41 in [19] for positive , it has the most general solution of the form . Obviously, 

in our context is a completely multiplicative arithmetic function and for this choice  

of    is Zeta function which generates Zeta probability distribution     

                                              . 

Q.E.D. 

 

Remark 1.1.               

The problem with the choice  for  is that it leads to the divergent harmonic series  

.  To avoid the situation with the series divergence, we follow the steps of Euler [3]  

m does not divide ν E = m ! ν{ } p ν

P{p \ν}= f ( p) p ν P{p !ν}= 1− f ( p)

ν kp 1kp +

P pk \ν( )  ∩  pk+1 ! ν( )  { } = f ( p)( )k ⋅ 1− f ( p)( )
n

P ν = n{ } = P pa(n,p) |ν( )  ∩  pa(n,p)+1 ! ν( )  { }
p∈P
∏

= f ( pa(n,p) )( ) ⋅ 1− f ( p)( )⎡
⎣

⎤
⎦

p∈P
∏ = f ( p)⎡⎣ ⎤⎦

a(ν ,p)
⋅ 1− f ( p)⎡⎣ ⎤⎦
p∈P
∏

p∈P
∏

{ } ( ) [ ] ( , )1 1 ( ) ( ) p

n vp p

P n f p f p a nn
Î ÎÎ Î

= = = - ×å åÕ Õ
• •P P

1
1− f ( p)ν∈!

∏ = f ( pα (n,p) ) =
p∈P
∏

ν∈!
∑ f pα (n,p)

p∈P
∏

⎛
⎝⎜

⎞
⎠⎟
=

ν∈!
∑ f (n) = Z

ν∈!
∑

f (n)

f :!→ (0,1]

f (x ⋅ y) = f (x) ⋅ f ( y)

x, y f (x) = ec⋅ln x = xc

f (n) = n−s(s >1)

,f Z( f ) = ζ (s)

Pζ (s) ν = n{ } = 1
ns ⋅ζ (s)

, n∈!

1( )f n
n

= 1s =

1

1(1)
n n

z
¥

=

=å
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by restricting values of . Zeta function   is well known to be directly  

related to the probability distribution of prime numbers.  This motivates the choice of Zeta  

distribution.  Due to the property of independence of divisibility for Zeta distribution, if   divides , 

then while the quotient   is again distributed  

over classes of congruence ,  and so on.  A number   is prime if and only if it  

does not divide all primes less than or equal to :  

                                    (1.13) 

For  we have  . 

In particular,  , and .  

Then, the probability of    is calculated as  

 

  =       

Probability of , due to the canonical presentation (1.8), can be expressed as 

                             

 In general, for any natural number  , we have 

 ,  

that is 

                                                                    (1.14) 

  to  1s s >
1

1( ) s
n

s
n

z
¥

=

=å

p n

pn n ¢= ×
p
nn ¢ =

p ,p rC ν = n

n

Ps ν ∈P |ν = n{ } = Ps α (ν , p) = 0⎡⎣ ⎤⎦ |ν = n
p≤ n
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

pÎP { } ( )( , ) 1 for all 0,1,2,sk s
sP p k p p ka n - -= = × - = !

{ } ( )( , ) 1 1s s
sP p p pa n - -= = × - { }( , ) 0 1 s

sP p pa n -= = -

ν = pj ∈P{ }
P ν = pj{ } = Ps α (ν , p1) = 0,…,α (ν , pj−1) = 0,α (ν , pj ) = 1,α (ν , pj+1) = 0,…{ }

1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ 1−

1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ Ps α (ν , pk ) = 0{ }

k≠ j
∏ = 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ 1− 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟

k=1

∞

∏ =
pj
−s

ζ (s)

ν = 1{ }

Ps ν = 1{ } = Ps α (1, p) = 0{ }
p∈P
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟
= 1
ζ (s)p∈P

∏
1 2

1 2
p mkk k

m
p

n p p p pxn
Î

= = = ×Õ ! !
P

{ }
( , ) ( , )

11 1 1 1 11 1 ( )
n p n p

s s s s s s
p p p

P n s
p p p p n

a a

n z -

Î Î Î

é ùæ ö æ ö æ ö æ ö
= = × - = × - = ×ê úç ÷ ç ÷ ç ÷ ç ÷

ê úè ø è ø è ø è øë û
Õ Õ Õ
P P P

Ps ν = n{ } = n−s

ζ (s)



 
 

 17 

Formula (1.14) may provide some probabilistic interpretations of Riemann Zeta function.   

If  has Zeta probability distribution, then the probability that  for certain  results  

in a prime number is evaluated as 

         (1.15) 

   

Notice that formula (1.13) does not provide ‘reasonable’ values of probabilities for specific 

realizations of  . For example, it is not equal to zero for any composite value of , say for 

even .  Actually, evaluates a relative frequency for  

occurrence of prime numbers  . As we show further, formula (1.13) gives satisfactory  

predictions of asymptotic values of probability  as .     

Since , we have     

              . 

We could compare the last probability with the frequency estimate  or with (1.13) and with the 

Cramér’s model prediction  ,  though, dependence of probability  on parameter  makes the 

above formulas harder to interpret. As we know, one can circumvent divergence of   

for   by using the analytic continuation of  on the complex plane ,  as suggested  

by B. Riemann.  Meanwhile, as we have mentioned above, the use of Incomplete Product  

Zeta function (IPZ)  defined as a partial product of ,   ,   

provides another opportunity to deal with the divergence of  for  . 

v v(ω ) ω

Ps ν ∈P{ } = 1
ζ (s)

p−s
p∈P
∑

ν ν

ν Ps ν is prime |ν = n{ } = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

p ≤ n

Ps ν is prime |ν = n{ } n→∞

ν ≤ n{ } = ν = i{ }
i=1

n

∪

Ps v ≤ n{ } =
k −s

k=1

n

∑
ζ (s)

  and  Ps ν ∈P( )  ∩  v ≤ n( )  { } =
p−s

p∈Pn
∑
ζ (s)

,where Pn = p∈P | p ≤ n{ }
( )n
n

p

1
lnn sP 1s >

1

1( ) s
n

s
n

z
¥

=

=å

1s £ ζ (z) !

ζP
N
(s) ( )sz

1( ) 11
N

p N
s

s

p

z
£

=
-

ÕP

1(1) 11p
sp

z
Î

=
-

Õ
P

s = 1



 
 

 18 

Lemma 1.2 

Let be a semigroup of all integers generated by ,  

. 

Then,  

             . 

Proof. 

Notice that for any  we have , where  . 

Since   , we have . 

Q.E.D.  

 

Lemma 1.2 

If   follows Zeta distribution , then  

.               (1.16) 

Proof. 

By using the recursive property of the sequence of prime numbers  with the  

memory size    and the property of independence of divisibility for Zeta distribution,  

we have   ,  

which means that     is prime if and only if any prime   

does not divide . Formally,   is prime if and only  .   

This implies that if follows Zeta probability distribution then 

                                 . 

Q.E.D. 

S(PN ) PN ∪ 1{ }
PN = p | p ≤ N , p∈P{ }

( )
( )

N
N

s

n S
s nz -

Î

= åP
P

n∈S(PN ) ns = pα ( p)⋅s
p∈P
∏ α ( p)∈!∪ 0{ }

0

1 1
11

k

s
k

s
p

p

¥

=

æ ö
= ç ÷

è ø-
å

{ }

( )

0 ( ), ( )
( )

N
N

sk s a p s

k a p p N n Sp N p N

s p p nz
¥

- - × -

= £ Î£ £

é ù= = =ê úë û
å å åÕ ÕP

P

ν Ps

Ps ν = n∈P{ } = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p< n

∏

p ≤ν

ν

P ν = n∈P{ } = P ∩
p≤ n

p ! ν{ }⎧
⎨
⎩

⎫
⎬
⎭
= Ps p ! ν{ }
p≤ n
∏ = 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

ν = n p ≤ n

n ν = n mod( , ) 0 for all primes r n p p n¢ ¢= ¹ £

ν > 5

Ps ν is prime { } = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ ν

∏
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Lemma 1.3 

Let be a semigroup of all integers generated by ,  

. 

Then,  

             . 

Proof. 

Notice that for any  we have , where  . 

Since   , we have . 

Q.E.D.  

 

2. Multiplicative and Additive Recurrent models for Primes 

 

The famous Harald Cramér’s model [2,3] describes the occurrence of prime numbers  

as a sequence of independent Bernoulli variables with probabilities  

.                (2.1) 

Notice that similar to (1.16), formula (2.1) is valuable only asymptotically for distribution  

of primes. In what follows, we provide rigorous arguments in support of Cramér’s  

model, related to the values of probabilities ,  and then analyze dependence  

of  in the sequence .  As we have discussed above, appearance of a prime  in 

the sequence    are dependent events determined by the prehistory 

. Obviously, if  , then  since       

is an even number. Even if we restrict values of  to odd numbers , still divisibility  

S(PN ) PN ∪ 1{ }
PN = p | p ≤ N , p∈P{ }

( )
( )

N
N

s

n S
s nz -

Î

= åP
P

n∈S(PN ) ns = pα ( p)⋅s
p∈P
∏ α ( p)∈!∪ 0{ }

0

1 1
11

k

s
k

s
p

p

¥

=

æ ö
= ç ÷

è ø-
å

{ }

( )

0 ( ), ( )
( )

N
N

sk s a p s

k a p p N n Sp N p N

s p p nz
¥

- - × -

= £ Î£ £

é ù= = =ê úë û
å å åÕ ÕP

P

P ξn = 1{ } = 1
lnn

,   P ξn = 0{ } = 1− 1
lnn

,   where n ≥ 2

Pn =
1
lnn

ξn ξn | n = 1,2,…( ) ν k = k

ν k = k | k ∈N{ }
F

n
=σ ν k |1≤ k ≤ n{ } ν k = p∈P ν k+1 = p +1∉P p +1

ν k 2k +1
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of   by the previously occurred primes would depend on the prehistory . 

Therefore, the sequence of consecutive primes and the corresponding Bernoulli variables   

cannot be interpreted as occurrence of independent events in the sequence, or as a realization of   

a Markov chain with a constant size of ‘memory’, because for each   the size  

of the ‘memory’  increases in the sequence with .  

We analyze the sequence of prime numbers  by using multiplicative and additive 

models.   In any kind of a model, we will be using the equivalent canonical realizations    

                           so that  .  

The transformations , are   -measurable.  

We define  the transformations by . 

A multiplicative model is based on the canonical representation of primes  [5, p.18]: 

   where       (2.2) 

and is concerned with the questions of divisibility of  integer-valued random variables by integers,   

and with their connection to  Zeta probability distribution: 

   , for any subset .                (2.3) 

For the multiplicative model of the dynamical system representing (2.2),  where , we define     

,  

where .       (2.4) 

Additive models  are useful in problems related to counting of various types of integers in .   

In additive models dynamical systems are defined by the equations:  

 ; ,        (2.5) 

where definition of the ‘updating’ term determines the specifics of the model, as illustrated below.   

 

 

ν k = 2k +1 F
2k+1

ξk

ν k = k k⎡
⎣

⎤
⎦

F
k

k

ν k = p | p∈P,k ∈N{ }

Ω,F ,P( ) = X T ,BT ,PX( ) ν(ω ,t) = ν(t)

θt : X
T → X T , t ∈T BT / BT

θsν(t) = ν(t + s), for  s,t ∈T

n = pα (n,p)
p∈P
∏ α (n, p) =

α p > 0 if p divides n

0,  otherwise

⎧
⎨
⎪

⎩⎪

Ps ν ∈A{ } = 1
ζ (n)

⋅ 1
nsn∈A

∑ A⊆ N

v = n

θ iν = ν i; ν0 = 1,θ i+1ν = θ iν ⋅ηi+1

ηi+1 =  pi+1
α i+1(ν ) (i = 0,1,2,…,κ (ν )−1)

!

θ iν = ν(i) ν0 = 0,θ i+1ν = θ iν + ξi+1

ξi+1



 
 

 21 

First, we consider the function , counting the number of primes less than or equal to .  

Second, for all  we consider the number  of Goldbach -primes, or -primes, which 

are such primes  that a difference  is again a prime number.  

In the first situation we use  recurrent equations: 

            (2.6) 

It is well-known that the connections between additive and multiplicative properties of numbers  

are extraordinarily complicated, and this leads to various difficult problems in Number Theory.   

We start from the division algorithm [5, p.19].  Given integers  there exists a unique  

pair of integers . In this equation,  if and  

only if  divides .  We derive here a recursive formula generating a sequence of prime numbers: 

 For any prime number  and a natural number  , consider a function 

 of residuals (remainders) such that where  

and vector of consecutive prime numbers such that  .  

Index  determines here the value  for the number of primes less than or equal to , 

so that . For each coordinate  of vector the   we determine the 

residual value   and vector of residuals .  

Notice that, due to Sieve Algorithm and Lemma 1.1, for an integer  to be prime it is necessary  

and sufficient that all coordinates   of the ‘reduced’ vector of residuals  such that 

 be different from zero.  Thus, the events  

                                      

are equivalent.   See calculations below in the Table 2.1. 

 

 

 

 

π (x) x

m ≥ 3 G(2m) m Gm
p 2m− p

π (1) = 0
π (k +1) = π (k)+ ξk+1, k ∈!
⎧
⎨
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⎩⎪

and 0n m >
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( )1 2( ) , , , kp n p p p=

!
" 1and  k kp n p n+£ >

k ( )n kp = n

( )1 2 ( )( ) , , , np n p p pp=
!
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mod( , ), 1,2, , ( ),i ir n p i np= = ! ( )1 2 ( )( ) , , , nr n r r rp=
!

"

2n >

ir ( )r n!
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min
i≤π ( ν )

ri | ri = mod(ν , pi ){ } > 0{ }  and ν ∈P{ }
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Table 2.1.  The recursive sequence of primes driven by their residuals 

        

2  1      

3       

       

  

  

6  

  

7 4 
   

8 4 
   

9 4 
   

10 4 
   

11 5 
  

12 5 
   

13 6 
   

      

30 10 
   

31 11 
   

    

We evaluate   assuming that a random integer follows Zeta probability distribution. 

To assign a probability value to a set   (“all multiples of number  ”), we should refer it to the 

class  of integers in  congruent   modulo  so that  .    

There are exactly  congruent classes modulo :   , 

which make a finite partition of . Then, for each integer  we can define a probability distribution 

on  :   

n π (n) !p(n) = p1, p2 ,…, pπ (n)( ) !r (n) = mod n, !p(n)( ) = r1,r2 ,…,rπ (n)( )
( )2 ( )0

2 ( )2,3 ( )1,0

4 2 ( )2,3 ( )0,1

5 3 ( )2,3,5 ( )1,2,0
3 ( )2,3,5 ( )0,0,1

( )2,3,5,7 ( )1,1,2,0

( )2,3,5,7 ( )0,2,3,1

( )2,3,5,7 ( )1,0,4,2

( )2,3,5,7 ( )0,1,0,3

( )2,3,5,7,11 ( )1,2,1,4,0

( )2,3,5,7,11 ( )0,0,2,5,1

( )2,3,5,7,11,13 ( )1,1,3,6,2,0

!
! !

!

( )2,3,5,7,11,13,17,19,23,29 ( )0,0,0,2,8,4,13,11,7,1

( )2,3,5,7,11,13,17,19,23,29,31 ( )1,1,1,3,9,5,14,12,8,2,0

P ν ∈P |ν = n{ } n

m ⋅! m

Cm,0 = n | n = k ⋅m, k ∈!{ } ! 0 m Cm,0 = m ⋅!

m m Cm,r = n | n = r + k ⋅n, k ∈!∪ 0{ }{ }, 0 ≤ r ≤ m−1

! 1m >

{ },0 ,1 , 1, , ,m m m mC C C -!
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    and      

Theorem 2.1 

Let  be a random variable with Zeta probability distribution    and  

 

 its canonical rеpresentation.    

Variables    are independent  for all primes   as well as factors 

 for all  in the canonical factorization .  

Then, each  random variable  in (2.8) has geometric probability distribution with a parameter 

 :  

       ,      (2.9) 

Proof. 

Notice that (2.8) implies where . 

Denote  events  and , respectively. 

Event stands for  ( ). Then, for  we have    

                          , 

 .       

Similar,  

 . 

If   are co-prime numbers, then  , that is , 
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=
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s s
i

s m s s
k ki i

m k kP C i
s m s mz z z

- -

³ ³

×
= = = =å å

( ) ( )

( ) ( )
1 2

1 2

1 2
( ) ,0

11 1 1 2 1 2

( ) ,0 ( ) ,0

1 1
( ) ( )

s s

s m m s s s s
k k

s m s m

m m k kP C
s s m m m m

P C P C

z

z z

z z

- -

×
³ ³

× ×
= = × =

× ×

= ×

å å

m1 and m2 Cm1⋅m2 ,0 = Cm1 ∩Cm2 Em1⋅m2 = Em1 ∩ Em2
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and   , which holds true for any two different primes 

 . This proves independence of  for different primes , 

as well as independence of factors  for all  in the canonical  

factorization .   We have:     

   since . 

Notice that   

Since 

  , 

we have 

                  

Q.E.D. 

 

Theorem 2.2 

Random variables  with Zeta distribution 

 

represents a random walk  on a multiplicative semigroup 

  generated by the extended set of primes .  

The walk on is defined recursively as follows:   

   (2.10)  

The sequence  is a finite walk on  with independent  

Ps Em1 ∩ Em2( ) = Ps Em1( ) ⋅Ps Em2( )
m1 = p1 and m2 = p2 α ( p,ν ) p

pi
α (ν ,pi )   and   pj

α (ν ,pi )  i ≠ j

ν =
p∈P
∏pα ( p,ν )

Ps pk \ν( )∩ pk+1 ! ν( ){ } = Ps pk \ν{ }− Ps pk+1 \ν{ } pk+1 \ν{ }⊂ pk \ν{ }

Ps p
k \ν{ } = Ps ν ∈ pk ⋅N{ } = 1

ζ (s)
⋅ 1

pk ⋅m( )sm∈!
∑ = 1

ps
⎛
⎝⎜

⎞
⎠⎟

k

⋅ 1
ζ (s)

⋅ 1
msm∈!

∑ = 1
ps

⎛
⎝⎜

⎞
⎠⎟

k

.

pα (ν ,p) \ν( )∩ p ! ν
pα (ν ,p)

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
= P pα (ν ,p) \ν( )∩ pα (ν ,p)+1 ! ν( ){ } = 1

p
⎛
⎝⎜

⎞
⎠⎟

α (ν ,p)

⋅ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟

Ps α (ν , p) = a{ } = Ps pa \ν( )∩ p ! ν
pa

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
= 1
ps

⎛
⎝⎜

⎞
⎠⎟

a

⋅ 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟

ν k , k = 0,1,2,3,...

Ps ν k = n{ } = n−s

ζ (s)
,  s > 0,   n∈!

ν k | 0 ≤ k ≤κ (ν ){ }
S(P∗) P∗ = P∪ 1{ }

P∗

ν1 = ν0 ⋅η1,   where ν0 = 1,  η1 = p1
α1(ν )

ν i+1 = ν i ⋅ηi+1,   where  ηi+1 =  pi+1
α i+1(ν ) (i = 0,1,2,…,κ (ν )−1)

⎧
⎨
⎪

⎩⎪

ν i | 0 ≤ i ≤κ (ν ){ } S(P∗)



 
 

 25 

multiplicative increments  such that  ,  

and ,  where  is the least prime number that divides . 

Proof. 

Formulas (1.7) and (1.9) imply:   

Since and all , due to Theorem 1, are independent random variables each with 

geometric distribution, we have , 

and . 

Thus,  since  . 

Then, , where  for all ,  implies:  

Q.E.D. 

 

 

Theorem 2.3 

Let  be the Heaviside function    ,   

a vector of residuals   and  = .  

If a random variable  has Zeta probability distribution and ,  then for each   

  the following statements hold true: 

                                     (2.11) 

ηi = pi
α i (ν ) P ηi = pi

ai{ } = 1
pi
s

⎛

⎝⎜
⎞

⎠⎟

ai

⋅ 1− 1
pi
s

⎛

⎝⎜
⎞

⎠⎟

κ (ν ) ≤ log pmin ν = lnν
ln pmin

pmin ν

ν = pα (ν ,p) =
p∈P
∏ 1

p:α (ν ,p)=0
∏

⎛

⎝⎜
⎞

⎠⎟
⋅ pα (ν ,p)

p:α (ν ,p)>0
∏

⎛

⎝⎜
⎞

⎠⎟
= pi

α i

k=1

κ (ν )

∏

ξi = pi
α i α i =α (ν , pi )

Ps η(i) = pi
ai{ } = 1

pi
s

⎛

⎝⎜
⎞

⎠⎟

ai

⋅ 1− 1
pi
s

⎛

⎝⎜
⎞

⎠⎟

were i = 1,2,…,n,  so that  νn = ηi
i=1

n

∏  for all n :  1≤ n ≤κ (ν ) ν(n) = ν  if  n =κ (ν )

P ν = m{ } = 1
pi
s

⎛

⎝⎜
⎞

⎠⎟i=1

κ (m)

∏
α i

⋅ 1− 1
pi
s

⎛

⎝⎜
⎞

⎠⎟i=1

∞

∏ = 1
ms

⋅ 1
ζ (s)

m = pi
α i

i=1

κ (m)

∏

m = pi
α i

i=1

κ (m)

∏ ≥ pmin( )κ (m) pmin ≤ pi i :  1≤ i ≤κ (m) κ (m) ≤ log pmin m

h : R→ 0,1{ } h(x) =
1  if x > 0
0 if x ≤ 0
⎧
⎨
⎩

!r (ν ) = r(ν i ) |1≤ i ≤ π ν( )( )
r(ν i ) = mod(ν , pi ), ρ(ν ) = min !r (ν )( ) min

i
r(ν i ) |1≤ i ≤ π ν( )( )

ν ξ(n) = h ρ(n)( )
n∈!

(1) Ps ν = n∈P{ } = Ps h ρ(ν )( ) = 1{ } = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏
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Proof. 

 Theorem 1 implies 

        

Notice that the event   can be expressed in the form of conditions   

.      (2.12) 

By using the Heaviside function    , we can write the recursive equation  

for  in the form:               

or, equivalently,         

                              (2.13) 

which controls the occurrence of prime numbers in the sequence of all integers 

   For a random number  with Zeta probability distribution, vector  

of residuals  is a vector with independent random  

components   distributed within congruence classes   

for all  . For  to be prime is necessary and sufficient that   

should not be divisible by all of primes , which means that  

. Denoting ,  

we have: 

            

(2) Ps ξ(n+1) = π (n+1)−π (n) = 1{ } = Ps h(ρ(ν ) = 1ν = n+1{ } =
p≤ n+1
∏ 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟

Ps ν ∈P ν = n{ } = Ps {p ! ν}ν = n
p≤ n
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= Ps {p ! ν}|ν = n{ } = 1− 1

pi

⎛

⎝⎜
⎞

⎠⎟i=1

π ( n )

∏
p≤ n
∏

p≤ n
∩ {p ! ν}ν = n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

mod(ν , p) > 0 p∈P,ν = n⎡⎣ ⎤⎦{ }
p≤ n
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= {ri > 0}

1≤i≤ π (n)
∩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= min ri 1≤ i ≤ π (n)⎡

⎣⎢
⎤
⎦⎥ > 0{ }

h(x) =
1  if x > 0
0 if x ≤ 0
⎧
⎨
⎩

( )np π (n+1) = π (n)+ h min
p≤ n+1

mod(n+1, p) | p∈P{ }⎛
⎝

⎞
⎠

π (n+1) = π (n)+ h min
i≤ n

ri | ri = mod(n+1, pi ){ }( ) = π (n)+ h min(!r (n+1)( )

n = 3,4,5,6,… n

!r (ν ) = r1(ν ),r2(ν ),…,rκ (ν ) (ν )( )
rk (ν ) = mod(ν , pk ) Cpk ,rk (ν )

k :  1≤ k ≤ π (ν ) n ν

p n£

ρ(ν ) = min ri(ν ) |1≤ i ≤ π ν( ){ } > 0 ξ(n) = h ρ(n)( )  (n = 1,2,3,…)

Ps ξ(n+1) = π (n+1)−π (n) = 1{ } = P h(ρ(n+1) = 1{ }
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             ,                  (2.14)     

since .   Therefore, by letting  , we obtain 

                                    (2.15) 

Probability of random variable  with Zeta distribution to be a prime number in the interval    

for all   is given by the formulas:    

                      ,    

                            (2.16)  

Examples.  

       with . 

We have:   

  with  

We have: . 

In the above setting, the number  in example 1) represents the path: 

                              

The number  in example 2) represents the path:   

                            

By setting  for all  ,  we can calculate probability   of any given 

value .    

In example 1): 

= Ps min (r (n+1) > 0{ }{ } =
p≤ n+1
∏ 1− 1

ps
⎛
⎝⎜

⎞
⎠⎟

Ps π (1) = 0{ } = 1
ζ (s)

1s®

Ps ξ(n) = 1π (1) = 0{ }→ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

ν [2, ]n

n ≥ 5

P ν = n∈P{ } = P h ρ(ν )( ) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

P ξ(n) = 1min(ri |1≤ i ≤ π ( n) > 0{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

1)  ν = 108 = 1⋅22 ⋅33 ⋅50 ⋅70! α (108, p) = 0  for all  p > 3

α (108,2) = 2,α (108,3) = 3;κ (108) = 2

2)  ν=110=2 ⋅30 ⋅5⋅70 ⋅11⋅130 ⋅170! α (110, p) = 0  for p = 3, 7, and all  p >11

α (110,2) = 1,α (110,5) = 1,α (110,11) = 1; κ (110) = 3

0

108 ( )
i

ix
¥

=

=Õ

1→ 22 → 33→ 50 → 70 →!

110 = ξ(i)
i=0

∞

∏
0 0 0 01 2 3 5 7 11 13 17® ® ® ® ® ® ® ®!

P ξ( j) = pj
α j{ } = 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟

α j

pj ∈P { }P nn =

n∈!
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In example 2): 

  

 

Notice that, in general, in the formal expression        

the product involves a set of all prime numbers.  In the above expressions  

the ‘probability’  depends on a parameter   

,            (2.17) 

To cope with the divergence of the infinite product  ,                 

we consider    for ,  and define the probability  as a function of parameter .  

Meanwhile, there is another way to cope with divergence of   for .  We can do so by 

introducing a sequence of incomplete (or partial) Riemann Zeta functions. We define the incomplete 

product Zeta function as a partial product in the multiplicative presentation of  for   

                                                                        (2.18)                                    

Remark 2.1. 

Ps ν = 108{ } = 1
22s

⋅ 1− 1
2s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1
33s

⋅ 1− 1
3s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

7s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

11s
⎛
⎝⎜

⎞
⎠⎟
! 1− 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟!

= 1
22s ⋅33s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏ = 1
108s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏

Ps ν = 110{ } = 1
2s

⋅ 1− 1
2s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

3s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1
5s
⋅ 1− 1

5s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

7s
⎛
⎝⎜

⎞
⎠⎟
⋅ 1
11s

⋅ 1− 1
11s

⎛
⎝⎜

⎞
⎠⎟
⋅ 1− 1

13s
⎛
⎝⎜

⎞
⎠⎟
! 1− 1

pj
s

⎛

⎝
⎜

⎞

⎠
⎟!

= 1
2s ⋅5s ⋅11s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏ = 1
110s

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏

Ps ν = n{ } = 1
ns

⋅ 1− 1
pj
s

⎛

⎝
⎜

⎞

⎠
⎟

j=1

∞

∏

Ps ν = n{ } s :

{ }
1

1 1 11
( )s s s s

j j

P n
n p n s

n
z

¥

=

æ ö
= = × - =ç ÷ç ÷ ×è ø

Õ n∈!, s >1

1

1 11 1
j pjp p

¥

= Î

æ ö æ ö
- = -ç ÷ ç ÷ç ÷ è øè ø

Õ Õ
P

= ζ (1)

1

1( ) s
n

s
n

z
³

=å 1s > Ps s

1

1( ) s
n

s
n

z
¥

=

=å 1s £

ζPN (s) ζ (s) s ≥1:

1( ) 11
N

p N
s

s

p

z
£

=
-

ÕP
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Since  , we have a convergent additive partial presentation of : 

  .        (2.19) 

Here  is a multiplicative semigroup of all integers generated by ,  

where .   Notice that  is an infinite set generated by  

a finite set .  Then, we consider the corresponding probability distribution  , ,  

given by the formula: 

                                      (2.20) 

Since   , we have . 

The probability  of  to be a prime number in the set of numbers , 

generated by primes not exceeding ,   can be calculated by the formula: 

         (2.21) 

The convergence of the infinite series is guaranteed by  

(2.18) and (2.19).  In general, from the probabilistic point of view, every finite path on  

the monoid set. can be identified with a randomly chosen natural number    

by assuming that it has a probability distribution     such that 

  . 

 

 

1

1− 1
ps

= 1
ps

⎛
⎝⎜

⎞
⎠⎟k=0

∞

∑
k

ζ (s)

0 ( )
( )

N
N

sk s

k n Sp N

s p nz
¥

- -

= Î£

é ù= =ê úë û
å åÕP

P

( )NS P PN
∗ = { }1N ÈP

{ }| ,N p p N p= £ ÎP P ( )NS P

PN
∗

,s NP 1s >

Ps,N ν = n{ } = 1
ns ⋅ζPN (s)

, n∈S(PN ), s > 0, N ∈!

1

( )

1 1( ) 1
N

N

s s
n Sp N

s
p n

z
-

Î£

æ ö
= - =ç ÷

è ø
åÕP
P

{ },
( )

1
N

s N
n S

P nn
Î

= =å
P

Ps,N n S(PN )

N

{ },
1is prime| ( ) = 11( )

1

N

N

s s

p p N s
s N N s

p N p N
s

p N

p p
P S p

s p
p

n n
z

- -

Î £ -

£ £
-

£

æ ö æ ö
Î = = × -ç ÷ ç ÷

è øè ø
-

å å
å Õ

Õ
P

P

P

( )
( )

N
N

s

n S
z nz -

Î

= åP
P

S P*( ) = ! ν

P ν = n{ }, n∈!,

{ }
1

1
n
P nn

¥

=

= =å
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3. Asymptotics of generalized Bernoulli processes and  

          the Cramér’s model of prime numbers distribution 

 

Definition 3.1 

A sequence of -valued random variables  defined on probability space  

 which terms are not in general independent and identically distributed we call  

generalized Bernoulli process. We have: 

  . 

Probabilitstic approach to distribution of prime numbers in  is addresed in the Harald Cramér’s  

model [2,3].  The sequence of random variables  on the main probability space ,  

 such that , for some  has realizations resulted in prime numbers: .  

The assignments of probabilities  

                    (3.1) 

 in the Cramér’s model was originally motivated by the Prime Number Theorem [10, p.133],  

 

 where the counting function of primes on  is given by the asymptotic formula           

                                               ,   

  which leads to the heuristic assumption about the probability  

        

 The Cramér’s model describes the occurrence of prime numbers as a special case  

 of a Bernoulli process given by a sequence of independent Bernoulli variables    with 

probabilities defined in (3.1):    

         , .  

                                  

   

0,1{ } ξk( )k∈!
Ω,F ,P( )

P ξk (ω ) = 1{ } = Pk ,P ξk (ω ) = 0{ } = Qk , Pk +Qk = 1, k ∈!
!

ν k( )k∈! Ω,F ,P( )
νn :Ω→ N ω ∈Ω ν k (ω ) = n∈P

P ν k (ω ) = k ∈P{ } = P ξk = 1{ } = 1
ln k

, P ν k (ω ) = k ∉P{ } = P ξk = 0{ } = 1− 1
ln k

,

!

π (x) = 1
p∈P∩[2,x]
∑ ∼ Li(x) = dt

ln t2

x

∫

P p∈[x −1,x]{ } ∼ dt
ln tx−1

x

∫ ∼
1
ln x
.

ξk | k ∈!,( )

P ξk = 1{ } = 1
ln k

,   P ξk = 0{ } = 1− 1
ln k

where n ≥ 2
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The above formulas (2.1) and (2.16) , due to the Merten’s 1st and 2nd theorems [9, p.22],   

have the asymptotic expression: 

,              (3.2)   

where   .   In both models A and B we consider all values of   

in (3.1) by choosing an arbitrary large natural . As we pointed above, the Cramér’s assumption  

about independence of terms in the sequence   is not accurate for any finite  

subset of  . The more adequate approach would be to consider the sequence of consecutive primes 

represented by and , respectively, as  stochastic predictable sequences of 

dependent random variables.    

Actually the sequence of random variables in the updated Cramér’s model is asymptotically Bernoullian  

(and asymptotically pairwise independent) in a sense of Definition 3.1 given below.  Meanwhile,   

the demand  for idependence of terms in the sequence  and in could be  be relaxed  

for the Cramér’s model, due to the version of the Central Limit Theorem (CLT) for dependent   

random variables in sequences with a sort of  ‘asymptotically forgetful memory’ [ 7 ]. This version  

of  CLT tracks back to the S.N. Bernstein’s ideas [ 22 ].  One of the most general forms of the Central 

Limit Theoems for dependent variables has been proved for sequences of random walks on 

differentiable manifolds and Lie groups by the author [24,25]. 

Never the less, in what follows we use the assumption of independent terms in sequences of random 

variables  as the most adequate for the goals of this article and apply here the classical form  

of the CLT [23]. 

 

Let discuss now, following M. Loèv [18], asymptotic behavior of a generalized Bernoulli process.    

We have for  mathematical expectation  and variance  

P ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ≈ e−γ

1
2
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

c
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1.12292 18968c
eg

= » n > N

N

ξ(n) | n = 1,2,…( )
N

νn( )n∈! ξ(n) | n = 1,2,…( )

νn( )n∈! ξ(n)( )n∈!

ν k{ }k∈!

ξk E ξk{ } = Pk V ξk{ } = Pk ⋅Qk
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Let’s denote   Then .   Since  , we have      

.  Then,    

and .  

This implies:  

=  ,         (3.4) 

where  .   

 

If terms in  are pairwise independent, then   

and , which implies  . 

Thus,  can be viewed as a cummulative measure of pairwise independence of terms in  

a Bernoulli process .  Denote: 

 .   

 Notice that 

                               where  .       

We consider below a slightly different measure  that shows how close a Bernoulli process  

 is to a classical Bernoulli sequence of independent equally distributed random variables. 

Then,   and    

Since  = ,  we have     

Xn =
1
n

ξn.
k=1

n

∑ E Xn{ } = 1n Pk
k=1

n

∑ ξk( )2 = ξk

E ξk( )2{ } = E ξk{ }, E ξk ⋅ξl{ } = P ξk ⋅ξl = 1{ } = Pkl E Xn{ }( )2 = 1n2 Pk
2 + 2 Pk ⋅Pl

1≤k<l<]≤n
∑

k=1

n

∑
⎛

⎝⎜
⎞

⎠⎟

E Xn( )2{ } = 1n2 k=1

n

∑Pk + 2
k<l
∑Pkl

⎛

⎝⎜
⎞

⎠⎟

V Xn{ } = E (Xn )
2{ }− E Xn{ }( )2 1

n2
PkQk + 2

1≤k<l≤n
∑ (Pkl − Pk ⋅Pl )

k=1

n

∑⎛⎝⎜
⎞
⎠⎟
= 1
n2

V (ξk )+ Dn
k=1

n

∑

Dn =
2
n2 1≤k<l≤n

∑ (Pkl − Pk ⋅Pl ) =
n(n−1)
2n2

2
n(n−1)

Pkl −
2

n(n−1)
Pk ⋅Pl

1≤k<l≤n
∑

1≤k<l≤n
∑⎛

⎝⎜
⎞
⎠⎟

ξ(n)( )n∈! Pkl = E ξk ⋅ξl{ } = E ξk{ } ⋅E ξl{ } = Pk ⋅Pl
Dn = 0 V Xn{ } = 1

n2
V ξk{ }

k=1

n

∑

Dn

ξ(n)( )n∈!
P1(n)=

1
n

Pk
k=1

n

∑ and P2(n) =
2

n(n−1)
Pkl

1≤k<l≤n
∑

Dn =
n−1
2n

P2 − P1,2( ) P12 =
2

n(n−1)
Pk ⋅Pl

1≤k<l≤n
∑

dn

ξ(n)( )n∈!
E Xn( )2{ } = 1n2 Pk + 2 Pkl

k<l
∑

k=1

n

∑⎛⎝⎜
⎞
⎠⎟
=
P1 − P2
n

+ P2 E Xn{ }( )2 = P1( )2

V Xn{ } = E (Xn )
2{ }− E Xn{ }( )2 P1 − P2

n
+ P2 − P1( )2
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                                                       (3.5) 

where  .   

In the classical Bernoulli scheme witn independent identically distributed terms   

we have , due to independence  

and equal distribution of terms in the sequence ,  so that .   

This implies and .  This means that the value of  is a measure of a 

deviation of the sequence from a classical Bernoulli scheme.  

Definition 3.1 

We call a sequence of -valued random variables defined on probability space  

 asymptotically pairwise Bernoullian if  as . This means  

that for sufficiently large  variables  are asymptotically independent for all . 

Lemma 3.1 

For asymptotically Bernoullian sequence we have   so that    

                          as  . 

Proof. 

Due to (3.2),  .    

Since ,   and  ,    

we have .  

This implies . 

Q.E.D. 

V Xn( ) = P1 − P2n
+ P2 − P1( )2 = P1 − P2n

+ dn

dn = P2 − P1( )2

ξk( )k∈!
Pkl = E ξk ⋅ξl{ } = P ξk ⋅ξl = 1{ } = P ξk = 1{ } ⋅P ξl = 1{ } = Pk ⋅Pl = P2

ξk( )k∈! dn = P2 − P1( )2 = P2 − P2 = 0

dn = 0 V Xn{ } = 1
n2

V ξk{ }
k=1

n

∑ dn

ξk( )k∈!

ξn( )n∈! 0,1{ }
Ω,F ,P( ) max

N<k<l
Pkl − Pk ⋅Pl → 0 N→∞

N ξk ,ξl l > k > N

ξn( )n∈! Dn → 0

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ → 0 n→∞

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = Dn

Dn =
2
n2

Pkl − Pk ⋅Pl( )
k<l≤n
∑ Pkl − Pk ⋅Pl( )

k<l≤n
∑ ≤ n(n−1)

2
max
N<k<l

Pkl − Pk ⋅Pl

Dn ≤
2
n2

⋅ n(n−1)
2

⋅ max
N<k<l

Pkl − Pk ⋅Pl → 0

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ → 0
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Keeping in mind approximation (3.1),  we restrict the sequence by considering  its  ‘tail’ 

of the original seqience for sufficiently large .   

Theorem 3.1 

The sequence in the modified Cramér’s model is asymptotically pairwise Bernoullian, 

 that is  , where , ,  

 and      as  for all .               (3.6) 

Proof.   

 Indeed, , . Then, since   

for all  ,  we have  and   as  . 

This implies  for all .                    

Q.E.D.  

In the Cramér’s model represents the number of primes among  terrms  

in the interval  of the sequence and  is a relative freqiency  

of primes for these terms.  predicted by the improved model based on Zeta probability distribution.  

In the Table 4 below, we demonstrate how well       approximates relative frequencies  

of primes   in the Zeta distribution model for   as   increses from to . 

 

 

 

 

ξk( )k∈! ξk( )k>N
N

ξk( )k∈!

max
N<k<l

Pkl − Pk ⋅Pl = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

P ξk = 1{ } = Pk P ξk ⋅ξl = 1{ } = Pkl

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

Dn = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

n > N

P ξk = 1{ } = Pk P ξk ⋅ξl = 1{ } = Pkl Pkl − Pk ⋅Pl < Pk ≤
1
lnN

N < k < l ≤ n max
N<k<l

Pkl − Pk ⋅Pl ≤
c
lnN

→ 0 Dn = O
1
lnN

⎛
⎝⎜

⎞
⎠⎟

N→∞

V Xn{ }− 1
n2

V ξk{ }
k=1

n

∑ = O 1
lnN

⎛
⎝⎜

⎞
⎠⎟

n > N

π̂ N n( ) = ξ(k)
k=N

N+n

∑ n

(N ,N + n] π̂ N (n)
n

= 1
n

ξ(k) =
π̂ N (n)
nk=N

N+n

∑

E π̂ (n)
n

⎧
⎨
⎩

⎫
⎬
⎭

π (n)
n

ξk( )k≥3 n 101 109
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Table 3.1.  Comparison of probabilities  and 

                                frequencies   of primes in intervals   

 

 

 

 

 

  

  0.33333333 0.400000 00 

 0.22857143 0.25000000 

 0.15285215 0.16800000 

 0.12031729 0.12290000 

 0.09621491 0.09592000 

 0.08096526 0.07849800 

 0.06957939 0.06645790 

 0.06088469 0.05761455 

 0.05416682 0.05084753 

 

Consider now the Generalized Law of Large Numbers for a general Bernoulli 

process as it stated in [18] and apply it then to Zeta distribution model for . 

Theorem 3.2 

Let   and   be a relative freqiency of primes the interval 

.  Then, the Generalized Law of Large Numbers holds true: 

                .      (3.7) 

 If  ,   

then the Generalized Strong Law of Large Numbers holds true: 

P ν ∈P ν = n{ }
π (n)
n

[1, ]n

Natural n
P ν ∈P ν = n{ } = 1− 1

p
⎛
⎝⎜

⎞
⎠⎟p≤ n

∏
( )n
n

p

101

102

103

104

105

106

107

108

109

ξk( )k∈!

ξ(k) =
1 if  k ∈P
0 otherwise
⎧
⎨
⎩

π̂ N (n)
n

= 1
n

ξ(k)
k=N+1

N+n

∑

[N ,N + n]

P
π̂ N (n)
n

− E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
> ε

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
→ 0 as N ,n→∞

dn.N = 2
n(n−1)

P (k ∈P)∩ (l ∈P){ }− 1
n

P k ∈P{ }
k=N

N+n

∑⎛
⎝⎜

⎞
⎠⎟N≤k<l≤N+n

∑
2

= O 1
n

⎛
⎝⎜

⎞
⎠⎟
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                        (3.8) 

Proof.   

Due to [25], we apply the following Propositions: 

1. Generalized Bernoulli Theorem that for every :    

holds true for a Bernoulli process if and only if .  

2. Generalized Strong form of Bernoulli Theorem that   

holds true if   .    

We show here that these propositions asymptotically hold true for tails . 

 For tail in the framework of Cramér’s model we have: 

 

 

Then,                    

Notice that      implies  . 

This implies .  

Then,  and (9) holds true. 

In addition, if , , then (10) holds true. 

Q.E.D. 

 

 

P
π̂ N (n)
n

− E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
→ 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1 as  N ,n→∞

ε > 0 P Xn − E Xn{ } > ε{ }→ 0

ξk( )k∈! dn = P2 − P1( )2
→ 0 as n→∞

P Xn − E Xn{ } → 0{ }→1

dn = O
1
n

⎛
⎝⎜

⎞
⎠⎟

ξk( )k≥N
ξk( )k≥N

P1,N (n) = E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
= 1
n

E ξ(k){ } = 1n P k ∈P{ }
k=N+1

N+n

∑
k=N+1

N+n

∑ = 1
n

1
ln kk=N+1

N+n

∑ ∼
dt
ln tN

N+n

∫ = Li(N + n)− Li(N )

P2,N (n) =
2

n(n−1)
E ξ(k) ⋅ξ(l){ }

N≤k<l≤N+n
∑ = 2

n(n−1)
P (k ∈P)∩ (l ∈P){ } ⋅

N≤k<l≤N+n
∑

dn.N = 2
n(n−1)

P (k ∈P)∩ (l ∈P){ }− 1
n

P k ∈P{ }
k=N

N+n

∑⎛
⎝⎜

⎞
⎠⎟N≤k<l≤N+n

∑
2

dn.N ≤ max
N≤k<l≤N+n

P (k ∈P)∩ (l ∈P){ }( ) < 1
lnN

dn,N → 0 as n,N→∞

dn,N → 0  as  N ,n→∞

P
π̂ N (n)
n

− E
π̂ N (n)
n

⎧
⎨
⎩

⎫
⎬
⎭
> ε

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= O 1

lnN
⎛
⎝⎜

⎞
⎠⎟
as n,N→∞

dn,N = O 1
n

⎛
⎝⎜

⎞
⎠⎟
as n,N→∞
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4.  Probabilistic proof of the Strong Goldbach Conjecture 

 

According to the conjecture stated by Goldbach in his letter to Euler in 1742, “every even number 

 is the sum of two odd primes” [1]. Regardless numerous attempts to prove the statement, 

supported in our days by computer calculations up to  , it remains unproven till now.   

In this part we try to solve the ‘puzzle’ in the framework of Probability Theory, by using the modified 

Cramér’s probabilistic model for distribution of primes in the sequence of natural numbers .  

Strong Goldbach Conjecture (SGC), as one of the oldest notoriously known problems in Number 

Theory, raises a question, why it seems so difficult to decide whether the equation 

            (4.1) 

where and are prime numbers, has at least one solution for each even number . 

Indeed, occurrences of primes look very sporadic, so this is hard to oversee all possible   

partitions for even numbers, like , especially for ‘big’ values of .  

One of ideas to solve such a combinatorial problem is to apply methods of Probability Theory. 

The first obstacle in probabilistic approach is assumed ‘randomness’ of occurrences of prime  

numbers, the second – ‘independence’ of their occurrences. From probabilistic point of view,  

a sequence of natural numbers is considered as realization of a series of trials, each of which  

results either in a prime number or in a composite number, occurring with certain probabilities.  

Notice that every integer solution in primes to the equation (4.1) must satisfy the inequalities: 

. For each integer  we can populate interval of integers   

by randomly and independently chosen numbers  that belong to this interval, in a hope that  

a pair would satisfy the equation (4.1), if such a pair exists. 

 

A well-known serious objection to this approach in solving SGC problem, pointed out by Hardy  

and Littlewood [26], is that ‘randomly chosen’ primes in a pair  such that ,   

must be realizations of dependent random variables. This means that, given , the choice of a prime 

number  in the equation (1) completely determines the choice of , which should occur with the 

same probability as . Meanwhile, a useful probabilistic assumption is that each occurrence of  

a pair of primes  is a realization of a trial given by two independent random variables .  

2m ≥ 6

4×1018

!

p + ′p = 2m

p ′p 2m ≥ 6

( p, ′p ) p + ′p = 2m m

(n, ′n )

3≤ n ≤ ′n ≤ 2m− 3 m ≥ 3 Im =[3,2m− 3]

(n, ′n )

(n, ′n ) = ( p, ′p )∈P2

( p, ′p ) p + ′p = 2m

m

p ′p

p

(n, ′n ) (ν , ′ν )



 
 

 38 

In the Hardy-Littlewood objection, instead of simultaneously ‘rolling’ two dice at a time for a pair  

of integer outcome , Hardy and Littlewood were ‘rolling’ just one die.  

The correct resolution of this issue should be based on a reasonable definition of probability space 

(a set of all possible elementary outcomes) of the ‘game’, generating pairs of prime 

numbers. The key point is that  and are considered as independent random variables in a pair  

, and among their realizations we are interested in those with satisfy the equation (4.1).  

If there exists a pair with probability distribution that guarantees for every  occurrence  

of pairs satisfying (4.1), then we can say that SGC is confirmed. This is an objective of this 

part of the paper. 

 

Definition 4.1 

Prime numbers  we call - primes if there exist an even number   

such that . The set of all -primes for a given  we denote . 

For each natural   we define Goldbach function  as a number of primes solving  

the equation . Thus, , where  is a number of elements  

in a finite set . As we have pointed above, we have  for each . 

 

In the context of the Strong Goldbach conjecture (SGC) we are interested in evaluation   

of  for all even numbers  in the form , . 

Evaluation of  for each natural  is a difficult combinatorial problem.  

Calculations show that Goldbach function  asymptotically increases as  increases  

(rather not in a monotonic way) and becomes larger for the larger values of   

(see Figure 4.3), but so far there is no conclusive statements regarding behavior  

of  as . Examples of sets  for  with the corresponding  

values of  are given in the following table. 

   

       

 

(n, ′n )

Ω =Ων × Ω ′ν

ν ′ν

(ν , ′ν ) (n, ′n )

(ν , ′ν ) m ≥ 3

( p, ′p )

p∈P, ′p ∈P Gm 2m ≥ 6

2m = p + ′p Gm m GmP

m ≥ 3 G(2m)

2m = p + ′p G(2m) = GmP | A |

A GmP ⊆ Im =[3,2m− 3] m ≥ 3

G(2m) 2m 2m = p + ′p ,  where  (p, ′p )∈P2 m ≥ 3

G(2m) m ≥ 3

G(2m) m

m

G(2m) m→∞ GmP 2m = 10, 102, 103

G(2m)
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  Table 4.1.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The idea of probabilistic approach in this context is based on presentation of a naturally ordered 

sequence  of prime numbers as realizations  of independent random variables in the 

sequence  such that  .  

There are two requirements for adequate presentation of primes by a sequence of random  

variables  that we demand from a probabilistic model: 

1) the choice of probability values  should provide an accurate asymptotic approximation to   

the actual distribution of prime numbers in  for large values of   (that is as ) 

Meanwhile, a probabilistic model is not designed to guarantee ‘intuitively correct’ assignments  

of probabilities  to concrete values of each natural number .  

2) the joint probability distribution of random variables in the sequence should objectively 

reproduce dependence in occurrence of primes in if such probabilistic dependence exists, 

as . 

pi( )i∈! ν k (ω ) = k

ν k( )k∈! P ν k = k ∈P{ } = Pk ,   P ν k = k ∉P{ } = Qk = 1− Pk

ν k( )k∈!
Pk

N k k→∞

P ν k (ω ) = k ∈P{ } k ∈!

ν k( )k∈!
pi( )i∈!

ν k = k→∞

          

 

                                         

Gm - primes in sets GmP and  Goldbach function values
2m                              GmP    sets                               G(2m)
10          3  5  7                                                                  3
100        3  11  17  29  41  47  53  59  71  83  89  97      12
1000      3   17   23   29   47   53   59   71  89  113  
           137  173  179  191  227  239  257  281 317  
           347 353  359  383  401  431  443  479  491  
           509  521  557  569  599  617  641  647  653   
           683  719  743  761  773  809  821  827  863  
           887  911  929  941  947  953  971  977  983  
           997                                                                       56
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To address the conditions mentioned above, we consider two options for the sequence : 

A. The Cramér’s model for occurrences of prime numbers in the sequence of independent random 

variables . Recall that in the Cramér’s model we consider the sequence of prime numbers 

as realizations of independent random variables  on a probability space , 

such that  

                                                (4.1) 

Here   is an indicator function for primes in sequence   

of realizations of random variables .  

B. Zeta probability distribution model considers occurrences of prime numbers in the sequence of 

independent random variables , where each integer  is a realization   

           of random variable  on a probability space ,  following Zeta  

probability distribution     

                                 ,                    (4.2) 

Remark 4.1 

In both models A and B we consider sample spaces  for sequences of random variables  

as , respectively, and sample spaces for the corresponding  -valued sequences    

as  .  In both models, each -algebra  of events is generated by all finite subsets  

of the corresponding sample space . As stated in Theorem 2.3 (formula 2.11), if each  follows  

Zeta probability distribution (4.2), 

ν k( )k∈!

ν k( )k∈!
ν k , k ∈N, Ω,F ,P( )

P ξk = 1{ } = P ν k = k ∈P{ } = Pk = 1
ln k

,

P ξk = 0{ } = P ν k = k ∉P{ } = Qk = 1− 1
ln k

ξk =
1, if  ν k = k ∈P
0, otherwise

⎧
⎨
⎩⎪

,

ν k = k ν k , k ∈N

ν k( )k∈! k ν k = k

ν k Ω,F ,P( )

Ps ν k = k{ } = k
−s

ζ (s)
, s >1

Ω ν k( )k∈N
Ω = NN 1,0( ) ξk{ }k∈!
Ω = 1,0{ }N σ F

Ω ν k



 
 

 41 

                                   (4.3) 

This allows us to think of each pair with , taken from sequence  , as of  a pair  

of independent random variables with probabilities given in (4.3). Since the sequences  

in  both Cramér’s model and Zeta distribution model are assumed to consist of independent  

terms , pairs inherit the same property of independence for their components.  

Notice that both models asymptotically agree with each other as stated below in Lemma 4.3. 

 

Remark 4.2 

As we mentioned above, realization of sums   may cause certain confusion related to 

possible dependence of events . The problem of dependence for primes in the 

equation  allegedly undermines ‘heuristic justification’ of  “a very crude probabilistic 

argument” [see the article ‘Goldbach conjecture’, Wikipedia]  for evaluation of probability for  

realizations of a ‘random’ pair  based on a ‘product rule’:      

                    . 

This situation has been addressed in 1923 by Hardy and Littlewood in their Hardy – Littlewood  

prime tuple conjecture [26].  Meanwhile, the dependence of variables should be  

considered in the framework of an appropriate probability space. Our approach surmounts  

this obstacle:every pair of integers   is considered as a realization of independent random 

variables with , each of which follows  distributions specified in model A or in  

model B.  We assume that random variables in the sequence are independent. 

To evaluate , define indicator function: 

                                (4,4)                                  

Ps ξk = 1{ } = Ps ν k = n∈P{ } = Pk = 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

Ps ξk = 0{ } = Ps ν k = n∉P{ } = Qk = 1− 1− 1
ps

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

(ν k ,ν ′k ) k ≠ ′k ν k( )k∈!
ν k( )k∈N

ν k (ν k ,ν ′k )

ν k +ν ′k = 2m

{ν k ∈P} and {ν ′k ∈P}

ν k +ν ′k = 2m

(ν k ,ν ′k )

P ν k = k ∈P,ν ′k = 2m− k ∈P{ } = P ν k = k ∈P{ } ⋅P ν ′k = 2m− k ∈P{ }

ν k  and ν ′k  

(n, ′n )

(ν k ,ν ′k ) k ≠ ′k

ν k( )k∈N
G(2m)

γ m(k, ′k ) =
1 if  k ∈P and ′k ∈P
0, otherwise
⎧
⎨
⎩
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Then, . Consider integers  and in the given interval    

as realizations   and  of random variables and   

on probability space , which follow probability distribution according  

to Cramér’s model or Zeta probability distribution model. 

Realizations and  are determined by the choice of elementary events 

 from the set  of all elementary events. The choice of Zeta distribution is motivated,  

in particular, by the fact that, due to Theorems 2.1, 2.2, 2.3 and Lemmas 4.1 and 4.3, it provides 

 the validity of the probabilistic Cramér’s model for asymptotic prime number distribution,  

in a full agreement with the Prime Number Theorem. This is especially important for SGC since  

we are interested in the asymptotic behavior of  as .   

 By substituting  and into each deterministic indicator function ,  

we obtain ‘randomization’ of these functions.  Thus, each of the ‘randomized’ functions 

 takes values  with probabilities .                    

The combinations of   values of , occurred  for  all  in the interval ,  

determines the counts of  numbers in each set . We have then, , where  

. Consider set , where , and define random  

variable  as a sum of (2m-5) independent Bernoulli variables 

 .  We summarize this in the following Lemma 

Lemma 4.1 

The Goldbach function  , , represents a sum of   realizations of independent 

Bernoulian random variables: 

   ,            (4.3) 

G(2m) = γ m(k,2m− k)
k=3

2m−3

∑ k ′k [3,2m− 3]

n = ν k ′n = ν ′k ν k (ω ) ν ′k (ω )

Ω,F ,P( )

ν k (ω ) = k ν ′k (ω ) = ′k

ω ∈Ω Ω

G(2m) m→∞

n = νmk (ω ) ′n = ν ′k (ω ) γ m(n)

γ m(ν k ,ν ′k ) = γ m(k , ′k ) 1 or 0 P ν k ,ν ′k( ) = k, ′k( ){ }
1 or 0 γ (k, ′k ) k , ′k [3,2m− 3]

GmP 2m = ν k + v ′k

ν k ∈P,  ν ′k ∈P
!νm = ν k{ }k∈Im Im = [3,2m− 3]

G(2m,
!νm )

G(2m,
!νm ) = γ m(ν k ,ν2m−k )

k=3

2m−3

∑

G(2m) m ≥ 3 2m−5

G(2m,
!νm ) = γ m(ν k ,ν2m−k )

k=3

2m−3

∑
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where ,     is a subsequence of the sequence of independent 

variables  that follows Zeta probability distribution and , 

Then,    

                

                         

Proof. 

Due to (2.11) and (4.5), .  Independence of random variables  

 in the subsequence implies 

       

                                   

Q.E.D.  

Defining  as above, we write  ,  and  

                                                        (4.4) 

Denote  and   

Notice that the defined above  is a monotonically decreasing function  .  

The following Lemma adresses the behavior of  for  . 

 

Lemma 4.2  

Let  be a monotonically decreasing function  of  natural  where 

. Then  gets its minimum value on  at , 

that is  for . 

Proof. 

γ m(k, ′k ) =
1 if  (k, ′k )∈P2   
0 otherwise

⎧
⎨
⎩⎪

!νm = ν k{ }k∈Im
ν k( )k∈N P ν k = k ∈P{ } = P ξk = 1{ }

P γ m(ν k ,ν2m−k ) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ k

∏ ⋅ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ 2m−k

∏

P ξk = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ k

∏ ν k ,ν2m−k

!νm = ν k{ }k∈Im
P γ m(ν k ,ν2m−k ) = 1{ } = P ν k ∈P{ } ⋅P ν2m−kP{ }

= P ξk = 1{ } ⋅P ξ2m−k = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ k

∏ ⋅ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ 2m−k

∏

γ m(k, ′k ) P γ m(k,2m− k) = 1{ } = P ν k ∈P,ν2m−k ∈P{ }

G(2m,
!νm ) = γ m(k,2m− k)

k=3

2m−3

∑

g(n) = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ β(m,n) = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ⋅ 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ 2m−n

∏ = g(n) ⋅ g(2m− n)

g(n) g :!→ (0,1)

β(m,n) 3≤ n ≤ 2m

g :[a,2m− a]→ (0,1) n

a ≤ n ≤ 2m− a β(m,n) = g(n) ⋅ g(2m− n) [a,2m] n = m

min
a≤n≤2m−1

β(m,n) = β(m,m) = g 2(m) n < m
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For  we have  since   and 

. Notice that , as a function of , has a symmetry  

about .  This implies that for  we have . 

Thus, . 

Q.E.D. 

Lemma 4.2 implies the inequality  

                (4.5) 

for functions    and   

Lemma 4.3. 

Both models A and B asymptotically equivalent, that is   , 

where . 

Proof. 

Validity of the choice of probabilities in the Cramer’s model (A) and in Zeta probability model (B) 

 is supported by formula the (2.11) in Theorem 2.3, and by Merten’s 2nd theorem (‘Merten’s Formula’) 

[9, p.21-22].  Indeed, by using (2.11) and the Merten’s 2-nd theorem (30), we have:  

                      (4.6) 

where    and   is Euler’s constant. 

 
Then, we have  . This implies . 

Q.E.D. 

Due to (4.5, 4.6), we can evaluate 

                                        (4.7) 

n ≤ m β(m,n) = g(n) ⋅ g(2m− n) ≥ g(m) ⋅ g(m) g(n) > g(m)

g(2m− n)≥ g(m) β(m,n) = g(n) ⋅ g(2m− n) n

m n ≥ m β(m,n) ≥ β(m,m) = g 2(m)

min
a≤n≤2m−a

β(m,n) = β(m,m) = g 2(m)

β(m,n) ≥ β(m,m) for m,n such that 3≤ n ≤ 2m− n

g(n) = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ β(m,n) = g(n) ⋅ g(2m− n)

PA ξ(n){ } ∼ PB ξ(n){ } as n→∞

PA ξ(n) = 1{ } = 1
lnn

, PB ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏

    PB ξ(n) = 1{ } = 1− 1
p

⎛
⎝⎜

⎞
⎠⎟p≤ n

∏ ∼
e−γ

1
2
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

c
ln(n)

1+O 1
ln(n)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1.12292 18968c
eg

= » γ = lim 1
k
− lnn

k=1

n

∑⎛⎝⎜
⎞
⎠⎟

n→n

≈ 0.577215664

PA ξ(n) = 1{ } = E ξ(n){ } ∼ c
ln(n)

PA ξ(n){ } ∼ PB ξ(n){ } as n→∞

β(m,n) = c2 ⋅ 1
ln(n)

⋅ 1
ln(2m− n)

⋅ 1+ C
ln(n)

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ 1+

C
ln(2m− n)

⎡

⎣
⎢

⎤

⎦
⎥
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for  with an certain choice of a constant .   Then,  (4.7)  implies 

 for and an appropriate choise of constant  . 

Some authors assume the  constant  in (4.6) appears as a correcting coefficient for the Cramér’s 

model as a compensation for possible pairwise dependence of prime occurences ignored in the model. 

Then, since   and  , we have the following  

expressions for mathematical expectation and variance, respectively: 

            ,        (4.8)     

Due to independence of  , we have         

                                                        (4.9) 

Notice that we use the approximations (4.6),  (4.7) to prove the following Theorem 4.1  

related to the Goldbach Conjecture.   Figure 4.1 below illustrate growth of function   

for .                 

                     Figure 4.1 

           
                                                          Figure 4.2 

 

3≤ n ≤ 2m− 3 C > 0

β(m,m) = ′C
ln2(m)

1+ ′C
ln(m)

⎡

⎣
⎢

⎤

⎦
⎥

2

n = m ′C > 0

c = 2
eγ

E γ (νmj ){ } = β(m,n) G(2m,
!νm ) = γ m(ν k ,ν ′k )

k=3

m−3

∑

E G(2m,
!νm ){ } =

n=3

m−3

∑E γ m(ν k ,ν ′k ){ } =
n=3

2⋅m−3

∑β(m,n) ∼
3

2m−3

∫ β(m,t)dt

ν k  in  
!νm = ν k( )3≤k≤m−3

Var G(2m,
!νm ){ } = Var γ m(ν k ,ν2m−k ){ }

k=3

m−3

∑

= β(m,n) ⋅(1− β(m,n)⎡⎣ ⎤⎦
n=3

2⋅m−3

∑ ∼ β(m,t) ⋅ 1− β(m,t)( )dt
3

2m−3

∫

 E G(2m,
!νm ){ }

m = 10,102,103,104,105,106,107



 
 

 46 

                             

 
      

The Goldbach Conjecture for large values of  can be stated in the form:  

probability that  } tends to 1 for all  as   .  

Assumption that  for some arbitrary large value of  is in contradiction with  

stochastic behavior of  when  increases, as we demonstrate below. 

 

Theorem 4.1 

Let  be a set of all -primes, that is prime numbers  such that 

.  Let each random variable  in the sequence of independent random  

variables  follow Zeta probability distribution:  and  

is a subsequence of the sequence of primes .   

Plot of Goldbach function G(2m) for the natural 
sequence of  m in the domain 3≤m≤5000

m

G(2m,
!νm ) = γ m(k,2m− k)

k=3

2m−3

∑ m ≥ M M→∞

G(2m,
!νm ) = 0 m

G(2m,
!νm ) m

GmP for  m ≥ 3 G p, ′p ∈P

p + ′p = 2m ν k

ν k( )k∈P P ν k = n{ } = n−s

ζ (s)
  (s >1)

!νm = (ν k{ }3≤k≤2m−3 ν k( )k∈P
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 ,  where  .  

Then  is a sequence of independent Bernoulli variables and the randomized  

Goldbach function  has the following properties: 

(1)    

(2)     . 

(3)        

 Proof. 

(1) Independence of the Bernoulli variables in the set  follows from 

assumed independence of  in the sequence .  This implies:    

         . 

Due to Lemmas 4.1 and formula (4.7),  for an appropriate choice  

of constant  .    From this follows  and 

 (2)     

This proves that .  

(3) A critical question for the Goldbach Conjecture can be stated as follows: 

is this true that for ‘sufficiently large’ values of   the probability   

that all sets  are not empty is equal to : 

γ m(k, ′k ) =
1 if k ∈P and ′k ∈P
0 otherwise
⎧
⎨
⎩

γ m ν k ,ν2m−k( ) = γ m k,2m− k( )

γ m(ν k ,ν2m−k{ }3≤k≤2m−3
G(2m,

!νm ) = γ m(ν k ,ν2m−k )
k=3

m−3

∑

P G(2m,
!νm ) = 0{ } = P γ m(ν k ,ν2m−k ) = 0{ }

k=3

2m−3

∩
⎧
⎨
⎩

⎫
⎬
⎭
→ 0 as  m→∞.

P G(2m,
!νm ) = 0{ } < e

−C⋅ 2m−6
ln2 (m)

m=3

∞

∑
m=3

∞

∑ < ∞ C>0( )

lim
M→∞

P G(2m,
!νm ) =|GmP |  > 0{ }

m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 

γ m(ν k ,ν2m−k , ) | 3≤ k ≤ 2m− 3{ }
ν k ν k{ }k∈!

P G(2m,
!νm ) = 0{ } = P γ m(ν k ,ν2m−k ) = 0{ }

k=3

2m−3

∩
⎧
⎨
⎩

⎫
⎬
⎭
= P γ m(ν k ,ν2m−k ) = 0{ } = 1− β(m,n)⎡⎣ ⎤⎦

n=3

2m−3

∏
i=3

2m−3

∏

β(m,n) ≥ β(m,m) ∼ C
(lnm)2

1+ C
lnm

⎡

⎣
⎢

⎤

⎦
⎥

2

C > 0 1− β(m,n) ≤1− β(m,m)

P G(2m,
!νm ) = 0{ } ≤ 1− C

(lnm)2 ⋅ 1+ C
lnm

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=3

2m−3

∏  = 1− C
(lnm)2 ⋅ 1+ C

lnm
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2m−5

∼ e
− 2m−5
D(m)

where  D(m) = C
(lnm)2 ⋅ 1+ C

lnm
⎛
⎝⎜

⎞
⎠⎟

2

and    e
− 2m−5
D(m) → 0  as  m→∞.

P G(2m,
!νm ) > 0{ }→1 as m→∞

m such that m > M ≥ 3

GmP 1
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   . 

Consider the probability of the opposite event:   and prove that 

. 

This is a probability that for sufficiently large value of  there exists at least one value  

of  such that the set is empty.  

We have: . 

Then,  

due to convergence of the series . 

Q.E.D. 

 

There is another way to evaluate the probability  as demonstrated below. 

Theorem 4.2 

 Let  be a set of all -primes, that is prime numbers  such that .   

Let each random variable  in the sequence follows Zeta probability distribution:  

. Consider  as a subsequence of . 

Let , where  . 

Denote  ,  

where ,    and  

P G(2m,
!νm ) =|GmP |  > 0{ }

m=M

∞

∩
⎧
⎨
⎩

⎫
⎬
⎭
→1 as M→∞

P G(2m,
!νm ){ } = 0

m=M

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭

P G(2m,
!νm ){ } = 0

m=M

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭
→ 0 as m→∞

M

m ≥ M GmP

P G(2m,
!νm ) = 0{ }

m=3

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭
≤ P G(2m,

"νm ) = 0{ } < e
− 2m−5
D(m)

m=3

∞

∑
m=3

∞

∑ < ∞

P G(2m,
!νm ){ } = 0

m=M

∞

∪
⎧
⎨
⎩

⎫
⎬
⎭
≤ P G(2m,

"νm ) = 0{ }
m=M

∞

∑ → 0  as M→∞

m=3

∞

∑P G(2m, !νm ) = 0{ }

P GmP <1{ }

GmP for  m ≥ 3 G p, ′p ∈P p + ′p = 2m

ν k ν k( )k∈!

P ν k = n{ } = n−s

ζ (s)
  (s >1) !νm = ν k( )3≤k≤2m−3 ν k( )k∈!

γ m ν k ,ν2m−k( ) = γ m k,2m− k( ) γ m(k, ′k ) =
1 if k ∈P and ′k ∈P
0 otherwise
⎧
⎨
⎩

Ymk = γ m(ν k ,ν2m−k )− E γ m(ν k ,ν2m−k ){ } = γ m(ν k ,ν2m−k )− β(m,n)

E γ m(ν k ,ν2m−k ){ } = β(m,n) Ym = Ym
k=3

2m−3

∑



 
 

 49 

Then, for  we have 

  

and  or, equivalently,  

Proof. 

We have: 

. 

since , due to Lemma 4.2. 

For  , we write . 

Then,    

,  

where    

Then,  ,  . 

Due to (4.7), we have  .    

This implies:           

so that .  

All terms in the sum are uniformly bounded ( ) 

and centered, because , so that . 

We have also  .   Since ,  

this implies the sufficient Liapunov condition           

Xm =
Ym − E Ym{ }
Var Ym{ }

=
G(2m,

!νm )− E G(2m,
!νm ){ }

Var G(2m,
!νm ){ }

P G(2m,
!νm ) <1{ } = P Xm < xcr (m){ } ≈ 1

2π
e
−1

2
t2

dt
−∞

xcr (m)

∫ ,   where  xcr (m) =
1− E G(2m,

!νm ){ }
Var G(2m,

!νm ){ }
→−∞

lim
m→∞

P G(2m, !vm ) <1{ } = 0 lim
m→∞

P GmP ≥1{ } = lim
m→∞

P G(2m, !vm ) ≥1{ } = 1

Var Ymk{ } =Var γ m(ν k ,ν2m−k{ } = β(m,k) ⋅ 1− β(m,k)( ) ≥ β(m,m) ⋅ 1− β(m,n)( ) ≥ β(m,m) ⋅ 1− β(m,3)( )
β(m,k) ≥ β(m,m) for all k: 3≤ k ≤ 2m− 3

Ym = Ymk
k=3

2m−3

∑ Var Ym{ } =Var G(2m, !νm ){ } = Var Ymk{ }
k=3

2m−k

∑

E Ymk{ } = E γ mk − β(m,k){ } ≤ 1+ β(m,n)( )≤ 2

β3,mk = E Ymk
3{ } = E γ mk − β(m,k)

3{ } = pmk ⋅qmk ⋅( pmk2 + qmk
2 ) ≤ pmk ⋅qmk =σ mk

2

pmk = E γ mk{ } = β(m,k), qmk = 1− pmk ,σ mk
2 =Var γ mk{ } = pmk ⋅qmk

E Ym{ } = 0 Var Ym{ } = Var Ymk{ }
k=3

2m−3

∑ = σ mk
2

k=3

2m−3

∑ = β(m,k) ⋅ 1− β(k,m)( )⎡⎣ ⎤⎦
k=3

2m−3

∑ =σ m
2

β(m,m) = ′C
ln2(m)

1+ ′C
ln(m)

⎡

⎣
⎢

⎤

⎦
⎥

2

σ m
2 =Var Ym{ } = σ mk

2

k=3

2m−3

∑ ≥ 2m−5( ) ⋅β(m,m) ⋅ 1− 1
ln2 3

⎛
⎝⎜

⎞
⎠⎟
→ ∞ as m→∞

σ m
2 =Var Ym{ }→∞ as m→∞

Ymk = γ mk − pmk Ym = Ymk
k=3

2m−3

∑ Ymk ≤1 for all m

Ymk = γ mk − E γ mk{ } = γ mk − pmk E Ym{ } = 0
β3,mk = E Ymk

3{ } ≤σ mk
2 σ m

2 =Var Ym{ }→∞ as m→∞
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for the Central Limit Theorem (called in this situation the Bounded Liapunov Theorem [ 18], [23]) 

for the sequence of normed and centered variables , such that .      

 This guarantees the uniform convergence of probability distribution function    

to the standard normal probability distribution . 

Recall that     

where  ,  .  

Then, we have  

.  

Since  ,  we have . 

This implies , which means that . 

Q.E.D. 

The values of    and  for  are given in the following table. 

Table 4.2 

1
σ m

3 E Ymk
3{ }

k=3

2m−3

∑ = 1
σ m

3 β3,mk
k=3

2m−3

∑ ≤ 1
σ m

3 σ mk
2 =

σ m
2

σ m
3

k=3

2m−3

∑ = 1
σ m

→ 0 as  m→∞

Xm =
Ym
σ m

E Xm{ } = 0,Var Xm{ } = 1

FXm (x) of Xm

1
2π

e
−1
2
t2

dt
−∞

x

∫

Xm =
Ym − E Ym{ }
Var Ym{ }

=
G(2m,

!νm )− E G(2m,
!νm ){ }

Var G(2m,
!νm ){ }

E G(2m,
!νm ){ } =

k=3

m−3

∑E γ m(ν k ,ν2m−k ){ } G(2m,
!νm ) = γ m(ν k ,ν2m−k )

i=3

2m−3

∑

P G(2m,
!νm ) <1{ } = P Xm < xcr (m){ } ≈ 1

2π
e
−1

2
t2

dt
−∞

xcr (m)

∫ ,   

where  xcr (m) =
1− E G(2m,

!νm ){ }
Var G(2m,

!νm ){ }
=

1− pmk
k=3

3m−3

∑
σ m

1
σ m

pmk
k=3

2m−3

∑ ≥ 1
σ m

pmk
k=3

2m−3

∑ qmk =
σ m

2

σ m

=σ m →∞  as  m→∞  xcr (m)→−∞ as  m→∞

lim
m→∞

P G(2m, !vm ) <1{ } = 0 lim
m→∞

P GmP ≥1{ } = lim
m→∞

P G(2m, !vm ) ≥1{ } = 1

P GmP <1{ } xcr (m) m = 103,104,…,108

       
  -6.866973 -16.130926 -40.343498 -105.469447 -284.348502 -783.836910 

   
      

   

m 103 104 105 106 107 108

x
cr
(m)

P G(2m) <1{ } 3.278916 ×10−12 7.734173× 10−59 0.0000000 0.0000000 0.0000000 0.0000000
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