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Abstract There are two ways to unify gravitational field and gauge field. One is to represent gravitational field as
principal bundle connection, and the other is to represent gauge field as affine connection. Poincaré gauge theory
and metric-affine gauge theory adopt the first approach. This paper adopts the second. In this approach:

(i) Gauge field and gravitational field can both be represented by affine connection; they can be described by a
unified spatial frame.

(ii) Time can be regarded as the total metric with respect to all dimensions of internal coordinate space and
external coordinate space. On-shell can be regarded as gradient direction. Quantum theory can be regarded as a
geometric theory of distribution of gradient directions. Hence, gauge theory, gravitational theory, and quantum
theory all reflect intrinsic geometric properties of manifold.

(iii) Coupling constants, chiral asymmetry, PMNS mixing and CKM mixing arise spontaneously as geometric
properties in affine connection representation, so they are not necessary to be regarded as direct postulates in the
Lagrangian anymore.

(iv) The unification theory of gauge fields that are represented by affine connection can avoid the problem that
a proton decays into a lepton in theories such as SU(5).

(v) There exists a geometric interpretation to the color confinement of quarks.

In the affine connection representation, we can get better interpretations to the above physical properties,
therefore, to represent gauge fields by affine connection is probably a necessary step towards the ultimate theory of
physics.
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1 Introduction
1.1 Background and purpose

We know that in gauge theory, the field strength and the gauge-covariant derivative
a a a abc Ab gc . a pa
Fy, = 0uA7 —0,A) +gf* Al A, D, =0, —igT*Aj,

both contain a coupling constant g, which measures the strength of interaction. A problem is that why is there a
coupling constant g?

If representing gauge fields by affine connection, we can obtain a nice interpretation. For example, if we use
I'yrnp to represent gauge potentials, it is not hard to find some specific conditions to turn the curvature tensor
Ri/pg to

Rynpg = 0plung — 0ol vune + TuuplNg — Tiplvug

ey
=0pTvung — OgTunp + G (TyapTrNGg — TRnvpTMEQ)-
Thus, Ryrnpg can be used to represent field strength. In addition, for any p,s, we see that
pasp = Opprr — L pprr = Oppni — G Traippn. 2

Eq.(1) and Eq.(2) mean that the coupling constant g may have a geometric meaning, which originates from G

This implies that only when affine connection is adopted to represent gauge field can some physical properties
be better interpreted. On the other hand, in the general relativity theory, gravitational field is also described by
affine connection, so it is convenient to describe gravitational field and gauge field uniformly by affine connection.
Therefore, it is necessary to study the affine connection representation of gauge fields. This is the basic motivation
of this paper.

There are the following two ways to unify gravitational field and gauge field.

One way is to represent gravitational field as principal bundle connection. We can take the transformation
group Gravi(3,1) of gravitational field as the structure group of principal bundle to establish a gauge theory of
gravitational field, the local transformation group of which is in the form of Gravi(3, 1) ® Gauge(n), e.g. Poincaré
gauge theory [1-11] and metric-affine gauge theory [12-23]. This way can be interpreted intuitively as

be incorporated into
gravitation theory P the framework of gauge theory. ‘

The other way is to represent gauge field as affine connection. This is the approach adopted by this paper.
Gravitational field and gauge field can both be described by affine connection. Besides, we will also establish an
affine connection representation of elementary particles. This way can be interpreted intuitively as

be incorporated into
gauge theory P the framework of gravitation theory.
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1.2 Ideas and methods

We divide the problem of establishing affine connection representation of gauge fields into three parts as follows.

(I) Which affine connection is suitable for describing not only gravitational field, but also gauge field and
elementary particle field?

(II) How to describe the evolution of these fields in affine connection representation?

(IIT) What are the concrete forms of electromagnetic, weak, and strong interaction fields in affine connection
representation?

For the problem (I). On a Riemanian manifold (M, G), the metric tensor can be expressed as Gy =
SapB BE and GMN = §ABCYM O, where B3Y and C) are semi-metrics, or to say frame fields. It is evident
that semi-metric is more fundamental than metric, so we hope B3, or C4 is regarded as a unified frame field of
gravitational field and gauge field, and the frame transformation of B, or CA! is regarded as gauge transformation.
Hence, we need a more general manifold (M, B3)) rather than the Riemanian manifold (M, G).

Next, we put metric and semi-metric together to construct a new connection, which is not only an affine
connection, but also a connection on a fibre bundle. In this way, gravitational field and various gauge fields can be
unified on a manifold (M, B%),) that is defined by semi-metric.

In addition, we notice that in the theories based on principal bundle connection representation:

(1) Several complex-valued functions which satisfy the Dirac equation, are sometimes used to refer to a charged
lepton field I, and sometimes a neutrino field v. It is not clear how to distinguish these field functions [ and v by
inherent geometric constructions.

(2) Gauge potentials are abstract; they have no inherent geometric constructions. In other words, the Levi-Civita
connection I}, of gravity is constructed by the metric g,,,,, however it is not explicit what geometric quantity the
connection Ay, of gauge field is constructed by.

By contrast, in the affine connection representation of this paper, we are able to use the semi-metrics B4, and
C’IJX[ of internal coordinate space to endow particle fields / and v and gauge fields A7, with geometric constructions.
Thus, they are not only irreducible representations of group, but also possessed of concrete geometric entities.

For the problem (II). There is a fundamental difficulty that time is effected by gravitational field, but not
effected by gauge field. This leads to an essential difference between the description of evolution of gravitational
field and that of gauge field. In this case, it seems difficult to obtain a unified theory of evolution in affine
connection representation. Nevertheless, we find that, we can define time as the total metric with respect to all
dimensions of internal coordinate space and external coordinate space, and define evolution as one-parameter group
of diffeomorphism, to overcome the above difficulty.

Now that gauge field and gravitational field are both represented as affine connection, then the properties that
are related to gauge field, such as charge, current, mass, energy, momentum, and action, must have corresponding
affine representations. Thus, Yang-Mills equation, energy-momentum equation, and Dirac equation are turned into
geometric properties in gradient direction, in other words, on-shell evolution is characterized by gradient direction.
Correspondingly, quantum theory can be interpreted as a geometric theory of distribution of gradient directions.

For the problem (III). The basic idea is that on a ®-dimensional manifold, the components B, and C}* of
semi-metrics Bjéf and Cﬁ/[ with m,a € {4,5,--- ,©} are regarded as the frame field of electromagnetic, weak,
and strong interactions. The other components of B}, and C'}/ are regarded as the frame field of gravitation.

We take the affine connection as

1 1
I 2 5 (W] + {Me}) = 5 [CX (DrBR) + {¥p}] = 5 [CX (DB 8 + (X))
0B% 1 oG oG 0G
o (928 + (be) 3R ) 5 + e (e + Oina e

OBA 1 oG oG oG
MYPN M (A B L MQ NQ PQ NP
{(CA ozt +Ca (BP)BN>+2G ( 92F T oaN 0z@ )}’
3)

N = N = DN =

C y
where b$ £ gi—p is a local coordinate transformation, {1/, } is Christoffel symbol, Gy v = 645 B3y BR.

A
m 9By
A 9P
is said to be a gauge connection, and I'}%, is said to be a holonomic connection. (g P) £ (gc) b%.

1 oBf  0BY
A A A B c
(Bc) = 5C4 ( ace ek )

[¥p] = CX' (DpBy) = C +C (5r) BN

is said to be a torsion-free simple connection. Thus,
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1 1 OB 1 /0G aG oG
Fuwn = S O0NP) 4 000D = | (30050 (30 + 3r) ) 4 (S0 4 2000 200,

2

For the sake of simplicity, we firstly consider the affine connection representation of gauge fields without gravitation.
That is to say, let

Sviaj:15273; a‘amanvlaq:475a"'7®; A7B7M7N7P:1727"'7©;

and consider a ©-dimensional manifold (M, By;) that satisfies the following conditions:

(i) B} :557 B =0, B, =0;

(11) Gij = 5ij7 Gmn = COTlSt7 G"n‘ = O;

(iii) When m # n, G, = 0.
Thus, {M NP} = 0, [MNP] # 0 in general. The components [,,,p of I'nyyp = %[MNP] with m,n €
{4,5,--- ,©} describe gauge potentials of electromagnetic, weak, and strong interactions. We also use the
affine connection F[]\\fp to construct elementary particle fields pasn. The components p,,,, of pprny with m,n €
{4,5,--- ,©} describe field functions of leptons and quarks.

The components G™" of GMN with m,n € {4,5,---,D} describe coupling constants of particle fields
pmn and gauge potentials I, p. The other components of G™¥ are the metrics of gravitational field. The other
components of pprx and '3y p provide possible candidates for dark matters and their interactions.

1.3 Content and organization

In this paper, we are going to show how to construct the affine connection representation of gauge fields. Sections
are organized as follows.

Corresponding to the problem (I), in section 2 we make some necessary mathematical preparations, and discuss
the coordinate transformation and frame transformation of the above connection. Meanwhile, in order to make the
languages that are used to describe gauge field and gravitational field unified and harmonized, we generalize the
notion of reference system, and give it a strict mathematical definition. The reference system in conventional sense
is just only defined on a local coordinate neighborhood, and it has only (1 4+ 3) dimensions. But in this paper we
define the concept of reference-system over the entire manifold. It is possessed of more dimensions but diffenrent
from Kaluza-Klein theory [24-26] and string theories [27-39]. Thus, both of gravitational field and gauge field are
regarded as special cases of such a concept of reference-system.

Corresponding to the problem (II), in section 3 we establish the general theory of evolution in affine connection
representation of gauge fields, and in section 4 we discuss the application of this general theory of evolution to
(1 4 3)-dimensional classical spacetime.

Corresponding to the problem (III), in sections 5 to 7 we show concrete forms of affine connection representations
of electromagnetic, weak, and strong interaction fields.

Some important topics are organized as follows.

(1) Time is regarded as the total metric with respect to all spatial dimensions including external coordinate space
and internal coordinate space, see Definition 3.1.1 and Remark 4.2.1 for detail. The CPT inversion is interpreted
as the composition of full inversion of coordinates and full inversion of metrics, see section 3.7 for detail. The
conventional (1 + 3)-dimensional Minkowski coordinate * originates from the general ®-dimensional coordinate
2™ . The construction method of extra dimensions is different from those of Kaluza-Klein theory and string theory,
see section 4.2 for detail.

(2) On-shell evolution is characterized by gradient direction field. See sections 3.4, 3.5, 3.6 and 4.3 for detail.
Quantum theory is regarded as a geometric theory of distribution of gradient directions. We show two dual
descriptions of gradient direction. They just exactly correspond to the Schrodinger picture and the Heisenberg
picture. In these points of view, the gravitational theory and quantum theory become coordinated. They have a
unified description of evolution, and the definition of Feynman propagator is simplified to a stricter form. See
sections 3.8 and 3.9 for detail.

(3) Yang-Mills equation originates from a geometric property of gradient direction. We show the affine con-
nection representation of Yang-Mills equation. See section 3.5 and section 4.5 for detail.

(4) Energy-momentum equation originates from a geometric property of gradient direction. We show the affine
connection representation of mass, energy, momentum and action, see section 3.6, Definition 4.3.1 and Discussion
4.3.1 for detail. Furthermore, we also show the affine connection representation of Dirac equation, see section 4.4
for detail.
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(5) Why do not neutrinos participate in the electromagnetic interactions? And why do not right-handed neutrinos
participate in the weak interactions with W bosons? In the theory of this paper, they are natural and geometric
results of affine connection representation of gauge fields, therefore not necessary to be regarded as postulates
anymore. See Proposition 5.2 and Proposition 7.1 for detail.

(6) In section 7, we give new interpretations to PMNS mixing of leptons, CKM mixing of quarks, and color
confinement. That is to say, in affine connection representation of gauge fields, these physical properties can be
interpreted as geometric properties on manifold.

2 Mathematical preparations

2.1 Geometric manifold

In order to make the languages that are used to describe gauge field and gravitational field unified and harmonized,
we adopt the following definition.

Definition 2.1.1. Let M be a ®-dimensional connected smooth real manifold. Vp € M, take a coordinate chart
(Up, wup) on aneighborhood U, of p. They constitute a coordinate covering

® £ {(UpaSDUp)}pGMa

which is said to be a point-by-point covering. For the sake of simplicity, U, can be denoted by U, and ¢, by ¢p.
Let ¢ and 1) be two point-by-point coverings. For the two coordinate frames oy and ¥y on the neighborhood
U of point p, if
fo 2 v otg hu(U) = wu(U), €4
is a smooth homeomorphism, f,, is called a local reference-system.
If every p € M is endowed with a local reference-system f(p), and we require the semi-metrics B ]‘@ and C4!
in Eq.(6) to be smooth real functions on M, then

f:M — REF, p~ f(p) “4)

is said to be a reference-system on M, and (M, f) is said to be a geometric manifold.

2.2 Metric and semi-metric

In the absence of a special declaration, the indices take valuesas A, B,C, D, EF =1,2,--- /®Dand M, N, P,Q,R =
1,2,---,®. The derivative functions

pA 2 o4 M A oz
M 8$M7 A agA

S

of f(p) on U, define the semi-metrics (or to say frame field) B 1‘3[ and C4! of f on the manifold M, that are
Biy: M =R, pr Byy(p) £ (bp)ir(p),  Ci' M =R, pe> CX(p) £ (cs)) X (). (©)

Let6ap = 648 = §4 = Kronecker(A, B) and ey = eMN = ¥ = Kronecker(M, N). The metric tensors
of f are
Gun = 6apBiBR, Hap =eunCh CY. (7

Similarly, it can also be defined that b}/ = gﬁ;‘j , e = %fgf and corresponding BY, C4}.

2.3 Gauge transformation in affine connection representation

Vp e M, f(p) = py o wgl induces local reference-system transformations
Ly : k(p) v owy' = puowy = f(p)ok(p),
Riy s hp) 2 puopy' = wuoty' =h(p)o f(p),
and reference-system transformations on the manifold M

Ly:p= Ly, Bp:prr Ry (®)
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We also speak of L and Ry as (affine) gauge transformations.
(i) Ly and Ry are identical transformations if and only if [B4}] of f is an identity matrix.
(ii) L and Ry are flat transformations if and only if Vpy, p2 € M, B3y (p1) = By (p2).
(iii) L ¢ and Ry are orthogonal transformations if and only if 6 4 BB]’GIBE, = E€MN.
The totality of all reference-system transformations on M is denoted by GL(M), which is a subgroup of
® GL(®,R),, where () represents external direct product.
pEM

2.4 Coordinate transformation of holonomic connection and frame transformation of gauge connection

Suppose there are reference-systems g and g on the manifold M, denote G = gog, and Vp € M, on the neighborhood

U of p, g(p) and g(p) satisfy

(U, zM) &2 @, ¢4y 22 (U, g4y,

On the geometric manifold (M, g) we define torsion-free simple connection D and its coefficients (4. )4 by

9 A 0 A o 0 1, [0By)g  ABHE\ o 0
Dagﬁ 2 (wg)p ® acA — (Bc)edC™ @ acA 5(09),4/ 820 + (“)QPB ¢~ @ BCA” 9
Then, we can compute the absolute derivative of the frame field &%N
0 0 0 0
DW =D ((Bg)ﬁacg> = d(By)§ ® a8 + (Bg)ﬁDaciB
d(By)% 0 0 d(B,)4A 0
= (3<gC)NdCC ® a8 + (Bg)m(50)gd¢” ® acA = ( (anC’)N + (Bg)ﬁl(gc)g> ¢ ® acA
Thus, it is obtained that
D~(B A 8(Bg)ﬁ B B (A
c(Bg)n = acC + (Bg)n(Bc)s -
Denote Dp £ (by(,))$Dc, thus we can define on (M, G) the required gauge connection, which is
M A M A 1 OBy M (A B
[Nplg = (Co)d Dp(By)y = (Cy)x oxP T (Co)x (Bp)y (By)wN - (10)

It is important that [AN4 P] is not only an affine connection on (M, G), but also a connection on frame bundle.

g
(M. [¥p], as an affine connection. Under the coordinate transformation L) : (U, oMy — (U, 2M), b}, &
M ’ Mm'! ’ ’
Qe 2 G, (By)ty = (B = b (By)ar, (Co)i — (Gl = ¢f (Cy)Yl. Consequently, the

gauge connection [1\1\/,[ P] is transformed according to

g
L Welg = [Mer] = cbf [¥plo b5 + el 200, (i
g I g OxF’
Due to Eq.(11), under the coordinate transformation, the holonomic connection

5 (Belg + {¥e),)

(2B 1yt (), 308 + Sicaye (AGopa  ACojra 0o

(1>

(I'g)Np

2 A 9xP oxP dxN 929
(12)
is transformed according to
M M’ MM N P ObN
L) (Ig)vp = (Ig)np = car (Ig)npbnibpr + ciy pRR (13)
(ID. [}/p] ; as a connection on frame bundle. Under the frame transformation Ly, : (M, G) — (M,G’), aiM >
T

9] 0 / /
507 = (B g7 (Bo)iy = (By)iy = (Bi)if (Bo)ays (Co)X = (Co) X = (C)if (Cy)}. Conse-

quently, the gauge connection [}/p] ; is tranformed according to

M M’ M’ P M' M N M’ 3(Bk)11\\//[' P
Ly : [NP]g = {N’P’}g, = {N’P} g,b o= (Cr)n [NP]g(Bk)N' + (Cr)nr T ozP bp (14)

Eq.(11) and Eq.(14) show that [% P] is not only an affine connection, but also a connection on frame bundle.

g
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Apply Eq.(11)~(14) to the curvature tensors

[M ]éa[%Q] _8[%[P] _i_[M][H ]_[HP] [M ],

NPQ 0P 92Q HP] [NQ HQ
8{M } oM
Mpgy 2 LNad OUNEE s imy ()

NPQ oxf 0z«

+ Iip NG — Iip G

then it is obtained that

/

Ly : [%PQ]Q = [%I’/P’Q/]g, = {%/PQL, bfi/b% = ((Ck)%/ []\N/[PQ]Q (Bk)%/> b?bg/ )
Li) : WPQ]Q = [%IP’Q/L =cif [%PQ}ng’bg'bg’ ’

L) : {%PQ}Q = {JZ\VTI’,P’Q’}Q =cif {%PQ}Q bN'bg'bS' ’

Lip) : (RQ)AN/[PQ = (RQ)II\VJI/IP/Q/ = C%/(Rg)%pr%/bebS/ .

We see from Eq.(15) that the B‘(f PQ] g without gravitation is both a curvature tensor of affine connection, and a

15)

curvature tensor on frame bundle, and that the (Rg )X pg With gravitation is a curvature tensor of affine connection,
but not a curvature tensor on frame bundle. In other words, under the gauge transformation Ly, [%f PQ] g and

{%/PQ] ; represent the same physical state, while (Rg)} pq and (Rg/)%,/PQ represent different physical states.

This shows that the gravitational field in (Rg)} p, makes the gauge frames By and C}' have physical effects.

3 The evolution in affine connection representation of gauge fields

Now that we have the required affine connection, next we have to solve the problem that how to describe the
evolution in affine connection representation.

In the existing theories, time is effected by gravitational field, but not effected by gauge field. This leads to an
essential difference between the description of evolution of gravitational field and that of gauge field. In this case,
it is difficult to obtain a unified theory of evolution in affine connection representation. We adopt the following way
to overcome this difficulty.

3.1 The relation between time and space

Definition 3.1.1. Suppose M = P x N and 7 £ dim P = 3. Let
A B MN=1,---,9; si=1,---,r; am=r+1---.9.
On a geometric manifold (M, f), the d¢° and da® which are defined by

)
(de”)? £ (de™)? = Sapde?de® = Gynda™Mdz?,
A=1
D (16)
(de)Q L Z (d!EM)2 — EMNd{,CMdQI;N — HABdeng
M=1

are said to be total space metrics or time metrics. We also suppose

T D
(dgPN)2 237 (dee)?, (de™)P & Y (dg)?,
s=1 a=r+1
r 3

(@) 23 (), @ ™M)Pe Y] (dam)

=1 m=r—+1

déN) and dz™) are regarded as proper-time metrics. For convenience, P is said to be external space and N is
said to be internal space.
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Remark 3.1.1. The above definition implies a new viewpoint about time and space. The relation between time
and space in this way is different from the Minkowski coordinates z* (1 = 0,1, 2, 3). Time and space are not the
components on an equal footing anymore, but have a relation of total to component. It can be seen later that time
reflects the total evolution in the full-dimensional space, while a specific spatial dimension reflects just a partial
evolution in a specific direction.

3.2 Evolution path as a submanifold

Definition 3.2.1. Let there be reference-systems f, g, f, g on a manifold M, such that Vp € M, on the neighborhood
U of p,

(W, 0™y T2 (1 ey L9, 2M) E2L (, ¢h) &2, g, (17

Denote F £ fo f and G £ go g, then we say F and G motion relatively and interact mutually, and also say that
F evolves in G, or F evolves on the geometric manifold (M, G). Meanwhile, G evolves in F, or to say G evolves
on (M, F).

From Eq.(10) we know that in F and G, gauge fields originate from f and g, and gravitational fields (G z) pr v
and (Gg)un are effected by f and g, respectively. We are going to describe their evolutions step by step in the
following sections.

Let there be a one-parameter group of diffeomorphisms

pox MxR—-M

acting on M, such that ¢ x (p, 0) = p. Thus, px determines a smooth tangent vector field X on M. If X is nonzero
everywhere, we say ¢ x is a set of evolution paths, and X is an evolution direction field. Let 7" C R be an interval,
then the regular imbedding

Ly 2 px,: T — M, t— ox(pt) (18)

is said to be an evolution path through p. The tangent vector % £ [L,] = X (p) is called an evolution direction
at p. For the sake of simplicity, we also denote L, = L,(T) C M, then

m:L, =M, qg—q (19)

is also a regular imbedding. If it is not necessary to emphasize the point p, L,, is denoted by L concisely.
In order to describe physical evolution, next we are going to strictly describe the mathematical properties of the
reference-systems f and g sending onto the evolution path L.

Definition 3.2.2. Let the time metrics of (U, £4), (U, M), (U, (4) be d¢°, dx°, d¢°, respectively. On Uy, £ UNL,
we have parameter equations

=), M=), =),

(20)
60 _ fO(ZL‘O), [L‘O _ xO(SO)’ CO _ CO(.%,O).
Take f for example, according to Eq.(20), on Uy, we define
ded el dz™
A 04 M A 0. M A M
by pal 0= 750 o _W_b =byca,
da™ dx® deA
2 04 A _ 01A _ MjzA
CO_T&‘)’ 60_7@5 50—750—0170— b
Define d¢y 2 927 dz° and dxg 2 d§0 which induce - and %, such that { =&, d&y ) =1, { 2, dzg ) = 1.
d§ dg d:r d&o dzg
So we can also define
7 d€a w0 a d&o dryr 7o
by = dzo’ by = dzy’ e = drg bochs = bacar,
é dl‘M 0 A dl‘o = é dgA

70 1\4
0ba = b
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They determine the following smooth functions on the entire L, similar to section 2.2, that

By :L—=R, p= Bi(p) £ (br))og (), Co' 1L =R, p=> Gl (p) £ (es)5” (),

By :L—R, p— By(p) = (0sp)alp),  Chr L =R, pr Chyp) = (€5) s (),

By: LR, p By(p) = (by)o(p),  C§ L =R, pr> Cop) = (cr)o(p),

Bj: LR, per By(p) £ (bs)o(p), Gy :L—R, p=s Co(p) 2 (E4)o(p)-
For convenience, we still use the notations ¢ and §, and have the following smooth functions.

ep! £ BICY = B'Cy!, 63 2 C9B = Cy'Bay,  Goo £ BiB) = Gunegy' -

B2 BICY — BRCH, 03 2CPBY —CUBY. G 2CRCH- MV,

It is easy to verify that dug = Goodz® and 72— = G 745 are both true on L by a simple calculation.

3.3 Evolution lemma

We have the following two evolution lemmas. The affine connection representations of Yang-Mills equation,
energy-momentum equation, and Dirac equation are dependent on them.

Definition 3.3.1. Vp € L, suppose T),(M) and T},(L) are tangent spaces, T,y (M ) and T}y (L) are cotangent spaces.
The regular imbedding 7 : L — M, q — g induces the tangent map and the cotangent map

7w : Ty(L) — Tp(M), [yr] = [7 oLl

Ty (M) — T, (L), df — d(f o). 1)

Evidently, r, is an injection, and 7* is a surjection. Vﬁ € T,(L), % € Tp(M), df € T, (M), dfy, € T,;(L), if
and only if

d d X
4_n (dtL) dfy = (df) 22)
are true, we denote
d.4d df ~ df (23)
dt — dty, O YE

Then, we have the following two propositions that are evidently true.

Proposition 3.3.1. If < =~ L and df ~ df;, then

dt — dtr,
d d

Proposition 3.3.2. The following conclusions are true.

Y M 0_M 0 L _d 0
SwW—— & W =wE W pn Z=Wo5— <& Wy = WoE)y,
oxM dxz0 0> ox pr dxzo (25)
M 0 M _ _ _ _
wydr™ ~ wodx” & wpEy = Wo, oMdry ~ @%dry, = oM, = a°.

3.4 On-shell evolution as a gradient

Let T be an smooth n-order tensor field. The restriction on (U, z™) is T £ t{a% ® dx}, where {8% ® dz}
represents the tensor basis generated by several B.LLM and dz™, and the tensor coefficients of T are concisely
denoted by t : U — R.

Let D be a holonomic connection. Consider DT £ t.odr% ® {% ® dx }. Denote

0
Dt 2 t.qdz®, Vt2to—o-:
dx g

Vp € M, the integral curve of V¢, thatis L,, = ©vi,p > is a gradient line of T'. It can be seen later that the above
gradient operator V characterizes the on-shell evolution.



10 Zhao-Hui Man

For any evolution path L, let Uz, £ U N L. Denote ¢, = t|y, and tro = t;ngg, as well as

d
DLtL étL.OdSCO7 VLtL étL.Oi
5 ; d:EO

Proposition 3.4.1. The following conclusions are evidently true.
(i) Dt ~ Dyty, if and only if L is an arbitrary evolution path.
(i) Vt =2 Vty, if and only if L is a gradient line of T.

Remark 3.4.1. More generally, suppose there is a tensor U £ ugdz? @ {2 ® dz}. In such a notation, all the

indices are concisely ignored except Q. uq dz® uniquely determines a characteristic direction UQ %
If the system of 1-order hnear partial differential equations ¢. = ug has a solution ¢, then it is true that
flfef ugdxg and Vt = ug - d . Thus, in the evolution direction [L] = UQ%, the following conclusions are
Dt ~ Dyty, Vt=Vitr, (26)

where DLtL £ UOdZ‘O, thL £ UO% and Uuo £ UQ€(?.

Now for any geometric property in the form of tensor U, we are able to express its on-shell evolution in the
form of Vt.

Next, two important on-shell evolutions are discussed in the following two sections. One is the on-shell evolution
of the potential field of a reference-system. The other is the one that a general charge of a reference-system evolves
in the potential field of another reference-system.

3.5 On-shell evolution of potential field and affine connection representation of Yang-Mills equation

The table I of the article[40] proposes a famous correspondence between gauge field terminologies and fibre bundle
terminologies. However, it does not find out the corresponding mathematical object to the source J, f . In this
section, we give an answer to this problem, and show the affine connection representation of Yang-Mills equation.

In order to obtain the general Yang-Mills equation with gravitation, we have to adopt holonomic connection to
construct it. Suppose F evolves in G according to Definition 3.2.1, that is, Vp € M,

(U,ozA/) f(p) @), fA) (U M) g(p) (U’CA) & (U,ﬁA’).

We always take the following notations in the coordinate frame (U, z).
(i) Let the holonomic connections, which are defined by Eq.(12) of geometric manifolds (M, F) and (M, G)
be (I'z) ¥ and (I'g) M, respectively. The colon ":" and semicolon ";" are used to express the covariant derivatives
on (M, F) and (M, G), respectively, e.g.:

"o

ou®
UQ;P = 7 + (F]:)?IP’U/H, UQ;P alUP + (FQ)%PuH

(ii) Let the coefficients of curvature tensor of (M, F) and (M, G) be K %PQ and RY pg- respectively, i.e.

s OTF)Ng  OIF)Np

KNPQ P 1@ + (FJ‘-)%Q(F-F)%P - (FJ-')%P(FJ’)]IYIIQv o
Ng)Ng TN
Ripq & —5 5% = =500 + (To)No(Io)ip — (I6)Np(I0)ig
Denote K]J\”,IPQ:P £ (G]:)PP/K%PQ _pr- On an arbitrary evolution path L, we define
o\ da® & (K%PQ:deQ) e T*(L).
P Q

Then, according to Definition 3.3.1 and the evolution lemma of Proposition 3.3.2, we obtain pi/, = K %PQ o
and
KNPQ P e ~ o da®.

Let Vi =K %PQ (% . Then, according to Proposition 3.4.1, if and only if Vp € M, [L,] = Vt|,, we have

P 0 m d

~

KNPQ 8x _PNodm



Affine connection representation of gauge fields 11

Applying the evolution lemma of Proposition 3.3.2 again, we obtain

P =0

M M
KNpq = pPNoEq:

Denote j%Q = pjj\\?oé%, then if and only if [L,] = V|, we have

M P
KNPQ

= iNg: (28)
which is said to be (affine) Yang-Mills equation of F. It contains effects of gravitation, which makes the gauge
frames (By)%; and (C)} have physical effects. According to Eq.(15), we know Eq.(28) is coordinate covariant,
and if gravitation is removed, it is also gauge covariant.

Thus, we have the following two results.

(i) The Yang-Mills equation originates from a geometric property in the direction Vt. In other words, the
on-shell evolution of gauge field is described by the direction field V¢.

(ii) We obtain the mathematical origination of charge and current. We know that the evolution path L is an
imbedding submanifold of M. Thus, the charge pX/; originates from the pull-back 7* from M to L, and the current
JNg originates from V1 that is associated to pjf,.

If we let (M, f) be completely flat, i.e. (By)4; = 047, (Cp) = 6%, then by calculation we find p}/; can still
be non-vanishing. This shows that p}/ originates from (M, f) ultimately.

Definition 3.5.1. We speak of the real-valued

prno = Garrpiy (29)

as the field function of a general charge, or speak of it as a charge of F for short.

3.6 On-shell evolution of general charge and affine connection representation of mass, energy, momentum,
and action

In order to be compatible with the affine connection representation of gauge fields, we also have to define mass,
energy, momentum and action in the form associated to affine connection. We are going to show them in this section
and section 4.3.

Let Fy £ parnvode™ @ da™. For the sake of simplicity, denote the charge pasno of F by pasn concisely. Let
D be the holonomic connection of (M, G), then

DFo £ Dpyn ® da™ @ dz?Y, VFo 2 Vpun @ deM @ da™,

where Dpyy £ paun.da® and Vo y £ p]WN;Q%. According to Proposition 3.4.1, if and only if Vp € L,
the evolution direction is taken as [L,] = Vparn|p, We have

Dpyn =~ Drpun, Voun EVipun,

that is
da® ~ da® 9 o & (30)
PMN;Q = PMN;0 s PMN;Q 8zQ = PMN;0 dxo'

Definition 3.6.1. For more convenience, the notation p,; is further abbreviated as p. In affine connection repre-
sentation, energy and momentum of p are defined as

dp dp
EOéP;OéP;QE(?a pQép,Qa Hoé@7 PQéaxiQa

dp ap (31)
Eoép;oép@%, pQép;Q, Hoéi, pe 2 )
dxg 0z
Proposition 3.6.1. At any point p on M, the equation
EoE" = pop? (32)

holds if and only if the evolution direction [L,| = Vp|,. Eq.(32) is the (affine) energy-momentum equation of p.
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Proof. According to the above discussion, Vp € M, [L,] = Vp|, is equivalent to
d

dz® ~ Eyda®, ¥ Fy—. 33
pQdx odx PQ o 0 o (33)
Then due to Proposition 3.3.1 we obtain the directional derivative in the gradient direction V p:

0 d

— dz™ ) = ( Ey—, Eyda®
<pQ8.’L'Q7p1\/I T > < de07 oaxr >7
ie. GRMpopar = GO EEy, or pop® = EyE°. O
Proposition 3.6.2. At any point p on M, the equations
dz® dx
Q= p0 = Ep—2 34
P g0 Pe 0 o (34)

hold if and only if the evolution direction [L,] = Vp|,,.
Proof. Due to the evolution lemma of Proposition 3.3.2, we immediately obtain Eq.(34) from Eq.(33). O
Remark. In the gradient direction Vp, Eq.(34) is consistent with the conventional

p = mu.

Thus, in affine connection representation, the energy-momentum equation and the conventional definition of
momentum both originate from a geometric property in gradient direction. In other words, the on-shell evolution
of the particle field p is described by the gradient direction field Vp.

Definition 3.6.2. Let P(b, a) be the totality of paths from a to b. And suppose L € P(b,a), and the evolution
parameter x° satisfies t, = 2°(a) < 2°(b) = t;. The elementary affine action of p is defined as

ty
o(L) 2 / Dp= / poda® = / Foda®. (35)
L L t

a

Thus, 0s(L) = 0 if and only if L is a gradient line of p.
In particular, in the case where G is orthogonal, we can also define action in the following way.
On (M, G) let there be Dirac algebras v and ~yy such that
AN 4 ANM =2GMN Yy + vy = 2GuN, ™ =1
In a gradient direction of p, from Eq.(32) we obtain that
pep? = EoE° & p.qp® = pop”
A GPQ/);PP;Q = GOOP;OP;O
& (V2 4 ) prra = 2p.000
& (For)(7%0:0) + (90:0) (v pip) = 2p:0P:0
& (vpp)? = (po)*.
Take v p;p = p;o without loss of generality, then, in the gradient direction of p we have
'ypp;pdxo = p;odxo = E(I):’p;pdl‘o = Dp. (36)
So we can take

ty ty
s(L) & /L (+"p.pdx® + Dp) = / (v pip + 2§ pip) da® = / (" p:p + Eo) da®. (37)
t t

a a

Remark 3.6.1 and Remark 4.4.1 explain the rationality of this definition. We have s(L) = 2s(L) in the gradient
direction of p, so s(L) and s(L) are consistent.

Remark 3.6.1. In the Minkowski coordinate frame of section 4.2, the evolution parameter 20 is replaced by 7,
then there still exists a concept of gradient direction V p. Correspondingly, Eq.(35) and Eq.(37) present as

~ Tb Tb
§(L)é/LDﬁ:/Lﬁud33”:/ i di” §(L):/ (Y pop + 1007 ) 7,

a

where m. is the rest-mass and z7 is the proper-time.
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Remark 3.6.2. Define the following notations.

aPMN
[pIc] £ “opG  PMNG = puulNG + panTite, [PRpq] = PMHR%PQ + pHNR]\H/[PQ-

Then, through some calculations, we can obtain that
fr=ppo=Eop —pgegp + [pRpQ]e(?,

which is the affine connection representation of general Lorentz force equation. See Discussion 4.3.1 for further
illustrations.

3.7 Inversion transformation in affine connection representation

In affine conection representation, C' PT inversion is interpreted as a full inversion of coordinates and metrics. Let
i,j =1,2,3and m,n =4,5,--- | ®. _ '

Let the local coordinate representation of reference-system k be 2/ = —d¢7/z', 2’ = 2™, then parity
inversion can be represented as

P2L,: 2" — —2' 2™ — ™.
Let the local coordinate representation of reference-system h be 2’/ = §72%, 2’ = —§" 2™, then charge conjugate
inversion can be represented as

CELy:at =zt a™— —a™.
Time coordinate inversion can be represented as

Tp : 2° — —20.

Full inversion of coordinates can be represented as
CPTy : 29 — —29,2°% — —20. (38)

The positive or negative sign of metric marks two opposite directions of evolution. Let NV be a closed submanifold
of M, and let its metric be dz("V). Denote the totality of closed submanifolds of M by 2B (M), then full inversion
of metrics can be expressed as

002 ] (dx(N)%fdz(N)) (39)
NeB(M)

Denote time inversion by

T2 7T,

then the joint transformation of the full inversion of coordinates C PTy and the full inversion of metrics 7™) is
(CPTL)(T™M)) = CPT. (40)
Summerize the above discussions, then we have

CPTy : 29 — —29, 2% - —2°, d2® — dz®, dz® — da®,
TM) . 2@ 29, 2% = 20, da® — —dz?, da® — —da?,
CPT : 29 — —29, 20 — —2°, da® - —dz®, d2® — —da®.
The C PT invariance in affine connection representation is very clear. Concretely, on (M, G) we consider the CPT
A

transformation acting on G. Denote s £ / Dpand Dpe®® 2 (a%’ — i[pr]) €', then through simple calculations
L

we obtain that
CPT : Dp — Dp, Dpe'® — —Dpe™ .

Remark 3.7.1. In quantum mechanics there is a complex conjugation in the time inversion of wave function
T :¢(x,t) — ¢*(z, —t). In affine connection representation, we know the complex conjugation can be interpreted
as a straightforward mathematical result of the full inversion of metrics 7M.
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3.8 Two dual descriptions of gradient direction field

Discussion 3.8.1. Let X and Y be non-vanishing smooth tangent vector fields on the manifold M. And let Ly
be the Lie derivative operator induced by the one-parameter group of diffeomorphism ¢y. Then, according to a
well-known theorem[41], we obtain the Lie derivative equation

[X,Y]=LyX. 41)

Suppose Vp € M, Y (p) is a unit-length vector, i.e. ||Y (p)|| = 1. Let the parameter of ¢y be x°. Then, on the
evolution path L £ ©y,p, we have

d
Y ~ 0 (42)
Thus, Eq.(41) can also be represented as
d
[X,Y] = —5X. 43)

On the other hand, Vdf € T'(M) and df, £ 7*(df ), due to (42) and Proposition 3.3.1 we have (Y, df) = (3%, df1.),
that is

d
Y= -5l (44)

dz0

Definition 3.8.1. Let H £ ||Vp||~'Vp = &} ;2 = -4 Tt is evident that Vp € M, ||H(p)|| = 1.If and only

if taking Y = H, we speak of (43) and (44) as real-valued (affine) Heisenberg equation and (affine) Schrodinger
equation, respectively, that is

d d

Discussion 3.8.2. The above two equations both describe the gradient direction field, and thereby reflect on-shell
evolution. Such two dual descriptions of gradient direction show the real-valued affine connection representation
of Heisenberg picture and Schrodinger picture.

It is not hard to find out several different kinds of complex-valued representations of gradient direction. For
examples, one is the affine Dirac equation in section 4.4, another is as follows.

Let 1) = fe't, where it is fine to take either s;, £ s(L) or s;, £ s(L) from Definition 3.6.2. According to
Eq.(45), it is easy to obtain on L, that

d dy
[X,H] = don, Hy = 70
This is consistent with the conventional Heisenberg equation and Schrodinger equation (taking the natural units
that h=1, c=1)
oy

O ) _ o
X, —iH] = 2 X, —iH) =& 47)

(46)

and they have a coordinate correspondence

0 0 7] d

A(izk) T ok ot Ao

We know that % > d%ﬂ originates from the difference that the evolution parameter is ™ or 2. The imaginary

unit 7 originates from the difference between the regular coordinates 2', 2%, 23, 27 and the Minkowski coordinates

x', 22, 23, 20, That is to say, the regular coordinates satisfy

(d°)? = (da)? + (do?)? + (da)? + (da" ),
and the Minkowski coordinates satisfy
(da™)? = (da%)? - (d2")* — (da?)? — (da®)? = (da®)? + (d(ia"))* + (d(ia®))? + (d(iz®))?.
This causes the appearance of the imaginary unit ¢ in the correspondence
ik o 2P

So Eq.(46) and Eq.(47) have exactly the same essence, and their differences only come from different coordinate
representations.
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The differences between coordinate representations have nothing to do with the geometric essence and the
physical essence. We notice that the value of a gradient direction is dependent on geometry, but independent of that
the equations are real-valued or complex-valued. Therefore, it is unnecessary for us to confine to such algebraic
forms as real-valued or complex-valued forms, but we should focus on such geometric essence as gradient direction.

The advantage of complex-valued form is that it is applicable for describing the coherent superposition of
propagator. However, this is independent of the above discussions, and we are going to discuss it in section 3.9.

3.9 Quantum evolution as a distribution of gradient directions

From Proposition 3.6.1 we see that, in affine connection representation, the classical on-shell evolution is described
by gradient direction. Then, naturally, quantum evolution should be described by the distribution of gradient
directions.

The distribution of gradient directions on a geometric manifold (M, G) is effected by the bending shape of
(M, G), in other words, the distribution of gradient directions can be used to reflect the shape of (M, G). This is
the way that the quantum theory in affine connection representation describes physical reality.

In order to know the full picture of physical reality, it is necessary to fully describe the shape of the geometric
manifold. For a single observation:

(1) It is the reference-system, not a point, that is used to describe the physical reality, so the coordinate of an
individual point is not enough to fully describe the location information about the physical reality.

(2) Through a single observation of momentum, we can only obtain information about an individual gradient
direction, this cannot reflect the full picture of the shape of the geometric manifold.

Quantum evolution provides us with a guarantee that we can obtain the distribution of gradient directions
through multiple observations, so that we can describe the full picture of the shape of the geometric manifold.

Next, we are going to carry out strict mathematical descriptions for the quantum evolution in affine connetion
representation.

Definition 3.9.1. Let p be a geometric property on M, such as a charge of f. Then H £ Vp is a gradient direction
field of p on (M, G).

Let ¥ be the totality of all flat transformations L; defined in section 2.3. VI' € %, the flat transformation
T : f — Tf induces a transformation 7™ : p — T™p. Denote

lol & {pr £ T*p|T €T}, |H| = {Hr £ Vpr|T € T},

Va € M, the restriction of |H | at a are denoted by |H (a)| £ {Hr(a)|T € T}.
We say |H | is the total distribution of the gradient direction field H.

Remark 3.9.1. When T is fixed, Hy can reflect the shape of (M, G). When « is fixed, | H (a)| can reflect the shape
of (M, G).

However, when T" and a are both fixed, Hp(a) is a fixed individual gradient direction, which cannot reflect
the shape of (M, G). In other words, if the momentum pr and the position z, of p are both definitely observed,
the physical reality G would be unknowable, therefore this is unacceptable. This is the embodiment of quantum
uncertainty in affine connection representation.

Definition 3.9.2. Let o be the one-parameter group of diffeomorphisms corresponding to H. The parameter of
o is 2°. Va € M, according to Definition 3.2.1, let ¢ 7 , be the evolution path through a, such that ¢ 7 ,(0) = a.
Vt € R, denote

Qe = {ex.alX €H]},  @ua(t) = {oxat)|X € |H[}.
V2 C T, we also denote |Hp| £ {Hr|T € 2} C |H| and

Oitola = {ex.alX € Hol} S omiar Olaola(t) 2 {ox,a(t)|X € [Hol} C @pm)a(t).

Va € M, the restriction of | Hg| at a are denoted by |Hg(a)| = {Hr(a)|T € £2}.

Remark 3.9.2. At the beginning ¢ = 0, intuitively, the gradient directions | H (a)| of |p| start from a and point to all
directions around a uniformly. If (M, G) is not flat, when evolving to a certain time ¢ > 0, the distribution of gradient
directions on || 4(t) is no longer as uniform as beginning. The following definition precisely characterizes this
kind of ununiformity.

Definition 3.9.3. Let the transformation Lg-1 act on G, then we obtain the trivial e £ Lg-1(G). Now (M, G) is
sent to a flat (M, e), and the gradient direction field |H| of |p| on (M, G) is sent to a gradient direction field |O| of
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on ,€). Correspondingly, Vi € R, ¢ g ,(f) is sent to ¢|p|. (). In a word, Lg-1 induces the following two
p M,e).C pondingly, Vt € R, g, i @Yo, I d, Lg-1 ind he following
maps:

G.LH =10l Gl s oimie = ©10)a

VT € T, deonte N1 2 {N € T | det N = det T}. Due to T = GL(D,R), let & be a neighborhood of T', with
respect to the topology of GL(D, R).
Take 2 = 91 N 4, then

00l =G (|Hol),  ¢l001a =9 (1Hala) -

Let 1 be a Borel measure on the manifold M. V¢ € R, we know

OlHplsa (1) = Plog].a () = SR

Thus, V5,0 (1) € O|Hxa (t) and Yj0,).a () € ©|0y).q (t) are Borel sets, so they are measurable. Denote

ta (Prrola (1) 2 1 (G (Qrrpla (1)) = 1 (P1oa)a (1) -

When Y — T, we have 2 — T, |[Hg| = Hr, |Hg(a)| — Hr(a), and @jp,).o(t) = b £ 0y .a(t).
For the sake of simplicity, denote L = . .. Thus, we have a = L(0), b = L(t), and denote p, = [L,] =

HT(CL), Pb £ [Lb] = HT(b)
Because (i, is absolutely continuous with respect to i, Radon-Nikodym theorem[42] ensures the existence of
the following limit. The Radon-Nikodym derivative

Wyba) & Wa & i Fa @rala ) _ 1 (G (Prala B)) _ g (10010 (1)
’ dpy ST p(Plagla () 42T p(Pimg)a (1)) =T 1 (P Hga (1)

(48)

is said to be the distribution density of | /| along L in position representation.
On a neighborhood U of a, VT' € T, denote the normal section of Hr(a) by N, Hyp.a» that is

Nitra ={n €U | Hr(a) (n—a) =0},  Nupa(t) = {¢nra(t) |2 € Nupal-

Thus, Ngrpo = Niypo(0) and Nipp = Nppoo(t). If U — a, we have Ny, o — a and Ny, o(t) — b £
©Hz,q(t). The Radon-Nikodym derivative

Zr(b,a) 2 da) oy PWNara) o MNHpa) (49)

~dp(b)  U=a p(Nppp)  U=a 1(Nppa(t))

is said to be the distribution density of | H | along L in momentum representation.
In a word, Wp,(b,a) and Zj,(py, pa) describe the density of the gradient lines that are adjacent to b in two
different ways. They have the following property that is evidently true.

Proposition 3.9.1. Let L be a gradient line. Va,b,c € L such that L(20) = a, L(z)) = b, L(2?) = ¢ and
29 > 20 > 29, then

Wr(b,a) = Wr(b,e)Wr(c,a), Zrp(b,a) = Zr(b,c)Zr(c,a).

Definition 3.9.4. If L is a gradient line of some p’ € |p|, we also say L is a gradient line of |p|.

Remark 3.9.3. For any a and b, it anyway makes sense to discuss the gradient line of |p| from « to b. It is because
even if the gradient line of p starting from a does not pass through b, it just only needs to carry out a certain flat
transformation 7" defined in section 2.3 to obtain a p’ = T, p, thus the gradient line of p’ starting from a can just
exactly pass through b. Due to p, p’ € |p|, we do not distinguish them, it is just fine to uniformly use |p|. Intuitively
speaking, when |p| takes two different initial momentums, |p| presents as p and p’, respectively.

Discussion 3.9.1. With the above preparations, we obtain a new way to describe the construction of the propagator
strictly.

For any path L that starts at a and ends at b, we denote ||L|| £ / da® concisely. Let P(b, a) be the totality of
L

all the paths from a to b. Denote

P(b, xl?;a7x2) 2{L|LeP,a), |IL|]| = xg — xg}
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VL € P(b,xP;a,22), we can let L(z0) = a and L(x)) = b without loss of generality. Thus, P(b, z); a,z0) is the
totality of all the paths from L(z0) = a to L(z))) = b.

Abstractly, the propagator is defined as the Green function of the evolution equation. Concretely, the propagator
still needs a constructive definition. One method is the Feynman path integral

K(b,z);a,20) 2 / e*dL. (50)
’P(b,zg;a,za)

However, there are so many redundant paths in P (b, z; a, z2) that: (i) it is difficult to generally define a measure
dL on P(b, xg; a,xY), (ii) it may cause unnecessary infinities when carrying out some calculations.

In order to solve this problem, we try to reduce the scope of summation from P (b, z; a, 20) to H (b, z9; a, 22),
where H (b, z); a, z9) is the totality of all the gradient lines of |p| from L(29) = a to L(zY) = b. Thus, the (50) is
turned into

K(b,zd;a,2%) = / W(L)e"dL.
H(b,zg;a,rg)

We notice that as long as we take the probability amplitude ¥ (L) of the gradient line L such that [¥(L)]?> = W, (b, a)
in position representation, or take [¥(L)]? = Z1.(b,a) in momentum representation, it can exactly be consistent
with the Copenhagen interpretation. This provides the following new constructive definition for the propagator.

Definition 3.9.5. Suppose |p| is defined as Definition 3.9.1, and denote H £ V.
Let £(b, a) be the totality of all the gradient lines of |p| from a to b. Denote

H(b,afsa,20) £ {L | L € L(b,a), ||L|| = § — 20},

Let L(py, pa) be the totality of all the gradient lines of |p|, whose starting-direction is p, and ending-direction is
pp. Denote
H(py, 23;pa, 30) 2 {L| L € L(py, pa), ||L]| = 29 — 2°}.

Let dL be a Borel measure on H (b, zY; a,z0). In consideration of Remark 4.4.1, we let s be the affine action
s(L) in Definition 3.6.2. We say the geometric property

K(b,zd;a,2%) 2 / Wi (b,a)e**dL (51)
H(b,x9;a,29)

is the propagator of |p| from (a,z?) to (b, 2?) in position representation. If we let dL be a Borel measure on
H(pp, 25 pa, 2), then we say

K (po, 24; Pas 23) = / Z1(b,a)e”dL (52)
H(pp,2)ipasrl)

is the propagator of |p| from (p,, 22) to (py, }) in momentum representation.

Discussion 3.9.2. Now (51) and (52) are strictly defined, but the Feynman path integral (50) has not been possessed
of a strict mathematical definition until now. This makes it impossible at present to obtain (e.g. in position
representation) a strict mathematical proof of

/ Wi (b,a)edL = / e"dL.
H(b,zg;a,mg) ’P(b,zg;a,zg)

We notice that the distribution densities W, (b, a) and Z,(b,a) of gradient directions establish an association
between probability interpretation and geometric interpretation of quantum evolution. Therefore, we can base on
probability interpretation to intuitively consider both sides of "=" as the same thing.

Discussion 3.9.3. The quantization methods of QFT are successful, and they are also applicable in affine connection
representation, but in this paper we do not discuss them. We try to propose some more ideas to understand the
quantization of field in affine connection representation.

(1) If we take
sz/Dp:/dexQ:/Eodxo
L L L

according to Definition 3.6.2, where D is the holonomic connection of (M, G), then consider the distribution of
H £ Vp, we know that

K(b,xg;a,scg)é/ VWr(b,a)e®dL, K(pb,xg;pa,xg)é/ Zp(b,a)e™dL
Vp(b,ad;a,z9) Vo(po,2y;pa,zl)
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describe the quantization of energy-momentum. Every gradient line in Vp(b,z);a,z0) corresponds to a set of
eigenvalues of energy and momentum. This is consistent with conventional theories, and this inspires us to consider
the following new ideas to carry out the quantization of charge and current of gauge field.

(2) If we take
5:/th/K%PQ:deQ:/p%deo,
L L L

according to section 3.5, where D is the holonomic connection of (M, F), then consider the distribution of H £ Vi,
we know that

K(ba :rg;a,azg) = / Vv WL(bv a)eidea ’C(pbaxg;paaxg) £ / ZL(baa)eide
Vi(b,z);a,x9) Vit(py,x)ipa,zd)

describe the quantizations of charge and current. It should be emphasized that this is not the quantization of the
energy-momentum of the field, but the quantization of the field itself, which presents as quantized (e.g. discrete)
charges and currents.

4 Affine connection representation of gauge fields in classical spacetime

The new framework established in section 3 is discussed in the ©-dimensional general coordinate 2, which is
more general than the (1 + 3)-dimensional conventional Minkowski coordinate x*.

D D
(dz%)% = > (dz™)? is the total metric of internal space and external space, (dz7)2 = Y (dz™)? is the

M=1 m=4
metric of internal space.
(i) The evolution parameter of the ©-dimensional general coordinate ™ (M = 1,2,---,®) is 2°. The

parameter equation of an evolution path L is represented as 2™ = 2 ().

(ii) The evolution parameter of the (1 4 3)-dimensional Minkowski coordinate «# (4 = 0, 1,2, 3) is 7. The
parameter equation of L is represented as z# = x#(z7).
The coordinate x* works on the (1 + 3)-dimensional classical spacetime submanifold defined as follows.

4.1 Classical spacetime submanifold

Let there be a smooth tangent vector field X on (M, f). If Vp € M, X (p) = b a% =cM % , satisfies that
P

b® are not all zero and ¢'™ are not all zero, where a, m = r + 1,--- , 9, then we say X is internal-directed. For
any evolution path L £ ¢x ,,, we also say L is internal-directed.

Suppose M = P x N,® £ dimM and r £ dimP = 3. X is a smooth tangent vector field on M. Fix
apoint o € M. If X is internal-directed, then there exist a unique (1 + 3)-dimensional imbedding submanifold
v: M — M, p— pand a unique smooth tangent vector field X on M such that:

(i) P x {o} is a closed submanifold of M.

(i) The tangent map 7, : T(M) — T(M) satisfies that Vg € M, v, : X(q) — X(q).

Such an M is said to be a classical spacetime submanifold.

Letox : M xR — Mandpy : M xR — M bethe one-parameter groups of diffeomorphisms corresponding

to X and X , respectively. Thus, we have

05z = ox|xixr-

So the evolution in classical spacetime can be described by ¢ 5. It should be noticed that:

(i) M inherits a part of geometric properties of M, but not all. The physical properties reflected by M are
incomplete.

(ii) The correspondence between X and the restriction of X to M is one-to-one. For convenience, next we are
not going to distinguish the notations X and X on M, but uniformly denote them by X .

(iii) An arbitrary path L:T — M,t— pon M uniquely corresponds to a path L £ ~ o L:T—M, t—p
on M. Evidently the image sets of L and L are the same, that is, L(T') = L(T). For convenience, later we are not
going to distinguish the notations L and L on M, but uniformly denote them by L.
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4.2 Classical spacetime reference-system

Let there be a geometric manifold (M, f) and its classical spacetime submanifold M. Andlet L £ ¢%., bean

evolution path on M. Suppose p € L and U is a coordinate neighborhood of p. According to Defnition 3.2.2,
suppose the f(p) on U and the f1.(p) on Uz, = U N L satisfy that

flp) : €2 =€) =¢2(2"), € =¢0"), AM=12 9. (53)

Thus, it is true that:
(1) There exists a unique local reference-system f(p) on U = U N M such that

flp) : V=€) =¢"@", €=¢601", UK=123r (54)

(2) If L is internal-directed, then the above coordinate frames (U, £€V) and (U, z) of f(p) uniquely determine
the coordinate frames (U, £*) and (U, #*) such that

flp) € =€(@) =€), & =¢@E), oap=0123 (55)
and the coordinates satisfy
gs _ 557 57' — 57'7 50 60 ~i _ i7 o ‘,L,T’ .’Z’O _ 370.

That is to say, f (p) is just exactly the reference system in conventional sense, which has two different coordinate
representations (54) and (55).
We speak of

f:M — REFy, p— f(p) € REF,

as a classical spacetime reference-system. Thus, inertial system can be strictly interpreted as follows. Suppose we
have a geometric manifold (M ,§). Fj is a transformation induced by g.

(HIf Sa 8 Eg B{f = €., then g is said to be (Lorentz) orthogonal. In this case, I is just exactly a local Lorentz
transformation.

) If ij and ég are constants on M, then g is said to be flat.

(3) If g is both orthogonal and flat, then § is said to be an inertial-system. In this case, Fj is just exactly a
Lorentz transformation.

Remark 4.2.1. Due to
3 ~ ~ ~ ~
(d7)? = (d€°)* = (d&*)? = Oapdf®de’ = G ditdi”, G, 2 asBS B,
s=1
3 ~ ~ ~ ~ ~ ~
(dz7)? = 2= (da')? = ,,di"dE” = HopdE®dEP,  Hep 2 £,,CHCY,

i=1

it is easy to know that g is orthogonal if and only if d€™ = dim,ie. Gpp & BTBT = 1. It is only in this case that

we can denote d€™ and dZ™ uniformly by dr, otherwise we should be aware of the difference between d¢™ and dz™

in non-trivial gravitational field. No matter whether g is an inertial-system or not, and whether there is a non-trivial
- 3 3 )

gravitation field or not, (d¢7)? = (d¢€°)? — 37 (d¢®)? and (d77)? = (da®)? — 3_ (dx?)? are always both true in

s=1 i=1
their respective coordinate frames.

Remark 4.2.2. The evolution lemmas in section 3.3 can be expressed in Minkowski coordinate as:

M1 4 = L and df ~ dfy, then (4, df) = (L. df1).

(ii) The following conclusions are true.

8 7‘ d TZX T 9 o~ 7 7 T =T

w* ~ — s wt=w 5¢, Wy g S Wr—=— & Wy = WrE,
ozr —  daT 0z, Zr

w,dT" ~w.di" < w,=w o*dz, ~ w7 dE STt = w”

w = wWr TWy s whdr, ~w'di; & g w =w'.
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4.3 Affine connection representation of classical spacetime evolution

Let D be the holonomic connection on (M .G ), and denote t1,., = t.,£7, then the absolute differential and gradient
of section 3.4 can be expressed on M in Minkowski coordinate as

Evidently, Di ~ D, if and only if L is an arbitrary path. Vi 22 V., if and only if L is the gradient line.

Definition 4.3.1. Similar to section 3.6, suppose a charge p of F evolves on (M , é) We have the following
definitions.

(1) ™ £ 57 and m, £ p., are said to be the rest mass of .

£ 5o are said to

(2) p* & —p# and p,, £ —p., are said to be the energy-momentum of j, and E° £ 50, Ej,
be the energy of p.

BYM™ £ dp and M, are said to be the canonical rest mass of p.

dz"
(4) P+ 2 6‘9? and P, £ —22 are said to be the canonical energy-momentum of j, and ° £ 885) ,
Hy, 2 % are said to be the canonical energy of p.
Discussion 4.3.1. Similar to Proposition 3.6.1, Vp € M, if and only if the evolution direction [L,] = V|, the

directional derivative is
. d . . 0 . .
<m7—d‘%‘r’m7dl‘7> = <pltaju7pﬂdx#>7

T _ 5 5h
m-m- = pup,

that is éTTThTThT = G“”ﬁuﬁy, or

which is the affine connection representation of energy-momentum equation.
Similar to Proposition 3.6.2, accordlng to the evolution lemma, Vp € M, if and only if the evolution direction

[~ p] = Vp|p, we have p,, = i, B d~ ,thatis Ey = m., g"f‘) =M d“ ¢ and p; = —m; ji,; =m, }‘fi =1, j;f; =
EO%. This can also be regarded as the origin of p = muw.
Similar to Remark 3.6.2, denote
S A v - I Ix R o] 2 Py RX RX
[p W] - — Puriw = le«X +pXV pw? [IO ] = Pux I/p0'+pXV npo*

Then for the same reason as Remark 3.6.2, based on Definition 4.3.1, we can strictly obtain

fp £ ﬁp;r = m‘r;p - ﬁaég;p + [ﬁRpo]ég' (56)

In the mass-point model, 7., and 5;’; o do not make sense, so Eq.(56) turns into

fo = [PRos]E7-

This is the affine connection representation of the force of interaction (e.g. the Lorentz force f = ¢ (E + v x B)
or f, = j°F,, of the electrodynamics).

Similar to Definition 3.6.2, let (b, ) be the totality of paths on M from point a to point b. And let . € P(b, a),
and parameter 3" satisfy 7, = #7(a) < #7(b) £ 7. The affine connection representation of action in Minkowski
coordinates can be defined as

~ b T
)é/LDﬁ:/Lﬁud:E“:/ m,di”, g(L)é/ (Y p.p + 1) dE7. (57)

a

There are more illustrations in Remark 4.4.1.
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4.4 Affine connection representation of Dirac equation

Discussion 4.4.1. Define Dirac algebras v* and v* such that
P =C8y A AP =269 R iyt = 2GM

Suppose ( G) is orthogonal. According to Remark 4.2.1, G, = 1. Due to Discussion 4.3.1, in a gradient
direction of p £ j,,,, we have

pnh™ = pirpT & G piupy, =
< (Vo) (VP )
< (Vhu)(V ) =
& (V) =M.
Without loss of generality, take v p,, = m, that is
VY Pwvip = Meovr - (58)

Next, denote R R
9l 2> G oy + Z G Ty, D2 208, — (gl

[ea

From Eq.(58), it is obtained that

Z ’7/Lﬁoﬂ/;}1« Z mUJl/T ~ Z '7“ ( pwu wa le/ o.zp,) Z mwur
w,v
= Z ’Y <8upwu pwu Z - ﬁwy Z f;:u) = Z Mevr
w,v W,

(59)
A Z ol ( nPwr — pwu ) Z Myvr
= Z’y (aﬂ # )Pwyfzmwu'rv
that is ~ ~ o
Z’Y”Dzuﬁwu = Z Mepr 5 DT:V £ 8,u - [gF,LJ . (60)

We speak of the real-valued Eq.(58) and (60) as affine Dirac equations.

Discussion 4.4.2. Next, we construct a kind of complex-valued representation of affine Dirac equation. The restric-
tion of the charge p,, to (U, #") is a function j,,, (##) with respect to the coordinates (7#) = (z°, &', 72, &3).

Let
P..(2°) £ / P (B
(#1,82,3°)

Suppose a function f.,, = f.., (") on (U, #*) satisfies that

Nu: wVQPu / y2d3~:1 n =0 —— =0.
Pw (for) P, (5.,52,5%) (fwr) d’z ) 2 OTH ) Y =

We define ,,, and M., in the following way.

dpwl/ d( 2 ) S 2 df) 2 df)w’/ AT A 2 f/
= = L4 P T = T = vy
ywu /dpwu / dx_r dx /L ( diﬁT wv + wr d~ d wV/I: di,»,— d.’E wr W

wwu £ fwueiywya mwy‘r £ ﬁwu;f = (ffm),f]-swu + fiypwy;‘r = ff;ylswu;r £ f}yMwl/T .

In the QFT propagator, we usually take S in the path integral / "Dy of a fermion in the form of

- [ (99D - i) @'
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where S and d*7 are both covariant. We believe that the external spatial integral / d7 is not an essential
(@t,22,3%)

part for evolution, so for the sake of simplicity, we do not take into account the external spatial part 3z,
( 1 R 72 R _i’i)

but only consider the evolution part / dz°. Meanwhile, in order to remain the covariance, / dz" has to be replaced
L L

by / dz". Thus, in affine connection representation of gauge fields, we shall consider an action in the form of
L

- /L (#9" Dup - BML-) di
Concretely speaking, denote
Do 2 oo =Tl IPE, 2 Y Pl + 3 Puls,
From Eq.(57), we have
5unlD) 2 [ (0 o+ ) 4

And from Eq.(59) we know Z Y P = Z o D;’” Puy- Then it is obtained that

w,V w,V

55(L) éZ%(L) = /L Z(v“ﬁw;ﬁmw)df = /L S (VD5 s + Ty ) di”

"U

(07
(07

/ Z 7 (axt You) = gL qu) + f2,M ww) dz”
(07

o =PI, ) £2 + 2 My ) di”

(T o P 0, T P T ) + Pt ) 57
/Z Yoo iy ( (fuve™ )—i[f’f“ﬂ}wz/;w)+1EWMWT¢W) &

G (O = iIPT,L,, ) Y + YWt ) di™

> (
- (
(
-
/ Z (fore™ Mt (e 0,V = Py €™ ) + fune™ T W funse™ ) di”
(=5
(-
> (-
> (-

U.)l/Z’Y WV/J.wUJV Jr /l/}wl/ qu/l;Z}wy d’:l: / Z ’l/)wu 7/’)/ wr - MUJ}/’T) wwudi‘r~

(61)
Thus, we have obtained a complex-valued representation of gradient direction of g, .

Remark 4.4.1. From the above discussion, we know in the gradient direction of p,,,, that

- Z iwuiV#Dwuuwwudi‘T = Z Dﬁww
w,v W,V

This shows that s(L) and (L) in Definition 3.6.2 and Remark 3.6.1 are indeed applicable for constructing propagator
by €**(%) and (%) in affine connection representation of gauge fields. Therefore, the idea in Discussion 3.9.3 is
reasonable.
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4.5 From classical spacetime back to full-dimensional space

Discussion 4.5.1. Now there is a problem. (M F ) and (M , Q~) cannot totally reflect the geometric properties of
internal space of (M, F) and (M, G). Concretely speaking:

In the previous section, we discuss the affine Dlrac equation *y“pw o = Meyr ON (M g) Similar to section
3.5, we have the affine Yang-Mills equation Kn = phv, on (M F ). Suppose there is no gravitational field,

vpo
then the remaining non-vanishing equations are just only

T _ 5 0 P __ ~0
Y P00 = 00T KO/)O' = PoYo -

There are multiple internal charges
Pmn (m,n =4,5,--- 79)

n (M, F). We intend to use these py,, to describe leptons and hadrons. However, via encapsulation of classical
spacetime, (M JF ) remains only one internal charge jo, it falls short. It is impossible for the only one real-valued
field function pgg to describe so many leptons and hadrons.

On the premise of not abandoning the (1 + 3)-dimensional spacetime, if we want to describe gauge fields, there
is a method that to use some non-coordinate abstract degrees of freedom on the phase of e7=?" of a complex-
valued field function . This way is effective, but not natural. It is not satisfying for a theory to adopt a coordinate
representation for external space but a non-coordinate representation for internal space.

A logically more natural way is required to abandon the framework of (1 + 3)-dimensional spacetime (M JF )
and (M .G ). We should put internal space and external space together to describe their unified geometry with the
same spatial frame. On (M, F) and (M, G), there are enough real-valued field functions p,, to describe leptons
and hadrons, and enough internal components [mnP] of affine connection to describe gauge potentials.

Therefore, only on the full-dimensional (M, F) and (M, G) can total advantages of affine connection represen-
tation of gauge fields be brought into full play, and thereby show complete details of geometric properties of gauge
field. So we are going to stop the discussions about the classical spacetime M, but to focus on the full-dimensional
manifold M.

Discussion 4.5.2. On M, dueto I'ynp = & (MNP] + {MNP}),[MNP] = 64pBY, (aBN + (4p) BB) and

Guyn =04 BB;C] B ff, we know that gauge field and gravitational field can both be described by spatial frames Bj@
and CY in a reference-system. Reference-system is the common origination of gauge field and gravitational field.
The invariance under reference-system transformation is the common origination of gauge covariance and general
covariance.

We adopt the components [mnP] of [M N P] with m,n € {4,5,--- ,D} to describe the gauge potentials of
typical gauge fields such as electromagnetic, weak, and strong interaction fields, and adopt the components p,,,,
of pary withm,n € {4,5,--- D} to describe the charges of leptons and hadrons. The physical meanings of the
other components of pp;n and [M N P] are not clear at present, maybe they could be used to describe dark matters
and their interactions.

On orthogonal (M, G) and (M, F), there are full-dimensional field equations, i.e. affine Dirac equation and
affine Yang-Mills equation

P
’YPPMN;P = PMN;0; KNMPQ = PANLYQv (62)

which reflect the on-shell evolution directions V p and Vt, respectively. Their quantum evolutions are described by
the propagators in Definition 3.9.5 or Discussion 3.9.3.

Discussion 4.5.3. On an orthogonal (M, G), Eq.(61) presents as a full-dimensional action
/ Z Y prin.p + el punip)da’ = 72/ Z Yun (Y Dunp +ef Dunp) vundz®.  (63)
L m,N
If and only if Ly, : ¢ — ¢’ is an orthogonal transformation, Ly, sends s,(L) to
/ ’Y punip €D PN, P’)dx - 72/ Z YN (’YPlD/MNP/ + Eg;IDEWNP’) Virnda?,
L MmN M,N

where pjn is determined by the reference-system § o f but not g o g, so parn does not vary with the transformation
Ly : g — ¢'. We see that in affine connection representation of gauge fields, the gauge transformations v +— 1)’
and D — D’ essentially boil down to the reference-system transformation Ly.
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Remark 1. For a general (M, G), G is not necessarily orthogonal, so the corresponding action should be described
by

sun(L) = / (CONF prinip + €6 pran,p) da®.
L

In this general case, Definition 3.6.2 and the method in Discussion 3.9.3 are also available and effective, where we
take

SMN(L):/DPMN-
L

Remark 2. We see that the real-valued representation of action is more concise than the complex-valued represen-
tation of action. Hence, it is more convenient to adopt real-valued representations for field function, field equation,
and action.

In the following sections, we are going to use [M N P] to show the affine connection representations of
electromagnetic, weak, and strong interaction fields, and to adopt the real-valued representation ppsn,p to discuss
the interactions between gauge fields and elementary particles. They are based on the following definition.

Definition 4.5.1. Let M = P x N, r = dimP = 3 and ® = dimM = 5 or 6 or 8. Consider F = fo f and
G = g o g that are defined by Eq.(17), that is, Vp € M,

(U, o) 12 (0, ey L2 (1 oMy E2 (1, ch) &P (@, g7y

and furthermore let

’

flp): gr=¢4x™), € =6a";  f(p): a” =a(€Y), o =8¢

. ’ ’ N ’ (64)
gp): ¢*=¢"="), ¢ =06z"; g(p): B =p"(("), B® =d5(;
(s',8,i=1,2,3; a’,a,m,n=4,5,---,D) and both of F and G satisfy
(1) Gy = const, (i) when m # n, Gy, = 0. (65)

In the above extremely simplified case, we use F and G to show electromagnetic, weak, and strong interactions
without gravitation.

5 Affine connection representation of the gauge field of weak-electromagnetic interaction

Definition 5.1. Suppose (M, F) and (M, G) conform to Definition 4.5.1. Let © = r + 2 = 5 and both of 7 and G

satisfy
GE-D®-1) _ 709

Thus, F and G can describe weak and electromagnetic interactions.

Proposition 5.1. Let the holonomic connection of (M, F) be F]JV”P and Iy y p. And let the coefficients of curvature
tensor of (M, F) be K]]\‘,/[PQ and Ky pg. Denote

1 1
Bp £ 7 (I'oop + o-1)(2-1)P) » Bpg & 7 (Koopro + K@-1)0-1)PQ) »
1 1
A} & 7 (I'oop — No-1y(2-1)P) ; Fpo £ 7 (Koorg — K@-1)0-1)pr0) »
1 1
Ap NG (I'o-1opr + o@-1)p), Fpg = 7 (Ko-1oprg + Ko@-1)rq)
1 1
AL 2 — ([o_ —TI'yo— , F2,2 — (Kip_ — Koo .
P (I'o-1op — T'o@-1)p) PQ = /5 (Ko-10Pq 2(©-1)PQ)
And denote g = \/ (G@—l)@_l))2 + (G®2)?. Thus, the following equations hold spontaneously.
4. _0Bg _0Bp
PR™ 9P~ 92Q°
AL 9A3
3 _ Q P 1 42 2 41
Fro = 3.7 ~ gga T9(4pAg — 4pAg),
90AH  9A]
1 _ Q P 2 43 3 42
AL A2 ; f
2 94 P 143 3 41
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Proof. Due to Eq.(64) it is obtained that the semi-metric of (M, f) satisfies

(By): =0, (Cp% =0, (Bp? =0, (Cp3 =0, (By): =85, (Cy)3 =085

Al A’
Then, compute ($); = 3(Cj)4 (6(55%3 + a(fggc ) and we obtain

(SBc)f:O7 (?u)f:()7 (gc)ﬁéo; s, t,u=1,2,3; a,b=4,5,---,9; ABC=12,---,9.
It is obtained from Eq.(64) again that the semi-metric of (M, f) satisfies
B, =0, C"=0, B*=0, C. =0, B =65, C! =4
Lets' t' 4,5,k =1,2,3; a/,b/,;m,n,p=4,5,--- ;0. Compute the metric of (M, F) and we obtain

[ Ny =y .. ’0 . h sl . ..
Gij = s B] Bj + 0arp B B] = 05¢/6; 0; =i, (GY =61 CLC), =61 68.,5] =67,

Gip = 5s/t/BiS/Bf,: —+ (Sa/b/Bg/BZ/ =0, G = §S,tlci Cgf =0,
ij = 5s’t’Bfn/,B;'/ + (Sa/b/Bz,;B?/ = 0, GmJ = (55 ' C Cg, = 0
Gon = B271B2~1 + B2 B® = const, G =Cg_,C5_; + CHCZH = const.

Compute the holonomic connection of F according to 'Y, £ £ ([Mp] + {Xp}) = 3 (C’% %fN +CA (4p) Bﬁ),
and it is obtained that

Tip =0, Iinp = Gise Tilp = Gis Tiyp = 0,
k:O ijk:GmJ\/[’Fj]g/:Gmm’ ]k =Y,
m maBa m (a b 1 832 a
np = (Ca 9eP o (bP)an) ; Lonp = 2611ng1 (8:1:1’ + (bP)fBZ> , (66)
mo maBa m (a B 1 b a‘B?\/ a B
TNy =3 (C" gar  Co (BP)fBN)’ Ty = 500 B <8m1’ * (B”)fBN>'

Compute the coefficients of curvature of F, that is

nPQ — (9{BP (91‘ HP nQ nPt HQ» mnPQ — YUmM' BppQ — YUmm/HBnpQs

then we obtain

Mo-1n@-1Q¢ @-1@-1)P
Ko _1yo-1nprPo = 2P - 920 +G®® (Io-1yorlo@-1¢ — Io@-1rlo-10q) ;

My o1 M po-1)p
Kow-1po = (;xp 2 _ ng P goo (I'ooplo@-1)0 — I'o@-1)pl090)

+G@-HE®-1) (Is@-1plm-1ym-10 — Lo-1n@-1nrln@-1)0)

Moo Olo_1op
Ko _1norg = (8351’) 9 _ (8:1:(?) +G®® ([o-1yorloo0 — Ioorlo-10Q)

+GO VO Ny yo-1yplo-10¢ — [o-norlm-1n@-10)

dlong Oloop (-
Kovre = =57 = 5.0 + GOV (Do 0 1) pTo 100 — Lo-1)orlo0-1)0) -
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Hence,
A 1
Bpg = 7 (Koopro + K-1)0-1)rPq)
_ 10 (F'omg + No-1)(-1)Q) 10 (I'oor + Io-1)(2-1)P) _0Bqg _9Bp
V2 oxP V2 0z ozt 0zQ°
1
Fpg = 7 (Koorq — K@-1)(0-1)rPq)
1 or. or’ _ _
= ( ang - aigp + GOV (g5 1y pl o100 F(@—l)@PFiv(@—l)Q))
1 (0o 10— Ol o_1n@-1p
7 ( ( ax)fp be L 8229 P4 goo (IFo-norln@-10 — Io@-1)pl(9-1)9Q)
DAY 043
Q
= 2.P axg +9(Is@-nplo-190 — [o-norlom-1)0)
DA} 043
_ Q P 1 42 2 41
Then, Fp, and F3, can also be computed similarly. O

Remark 5.1. Comparing the above conclusion and U (1) x SU (2) principal bundle theory, we know this proposition
shows that the reference-system J indeed can describe weak and electromagnetic field.

The following proposition shows an advantage of affine connection representation, that is, affine connection
representation spontaneously implies the chiral asymmetry of neutrinos, but U(1) x SU(2) principal bundle
connection representation cannot imply it spontaneously.

Definition 5.2. According to Definition 3.5.1, let the charges of the above reference-system F be p,,,, where
m,n € {D — 1,9} = {4,5}. Then, I £ (po_1)d-1), poo)” is said to be an electric charged lepton,
= (pg(g_l), p(g_l)@)T is said to be a neutrino. [ and v are collectively denoted by L. Thus, i? (1,1) L is
said to be a left-handed lepton, % (1, —1) L is said to be a right-handed lepton, denoted by

1 1
L & — (P(©—1)(©—1) + P@@) ) v & — (P@(@—n + 0(9—1)9) )
V2 V2 67
ZRéi(P — poo) VRéi(P -P )
NG (@-1)(D-1) ; NG D(®-1) ~ P@-1)D) -
Denote (I'g)ynp by Invp concisely. Then, we define on (M, G) that
1 1
Zp & — (Lo-1yo-1p + Toopr), |WpE —= (L (o-1or+o@-1)r),
V2 V2 68)
1 1
Ap & — (Io_1yo_1yp — I . |wEEeE — (Ie_ —Iyo- ,
jo NG (Io-1y@-1)p — I'oop) P (Fo-nor — Ion@-1)p)

and say Ap is (affine) electromagnetic potential, while Zp, W}D and W3 are (affine) weak gauge potentials.

Proposition 5.2.1f (M, G) satisfies the symmetry condition I'\p_1)n p = I'n(p—1)p. then the geometric properties
[ and v of F satisfy the following conclusions on (M, G),

lr.p = 0plr, — gl Zp — glRAp — guL Wh |

lp;p = Oplr — glrZp — glL Ap , 69
vi.p = Opvyp — gvpZp — glLW}g ,
VR,p = OpVR — gVRZp -

Proof. Let H € {1,2,3,4,5}, h € {4,5}. It follows from Eq.(66) that
Pmn;P = 8Ppmn - pHnFnyIP - pmHngD
= aP,Dmn - phnFyIZLP - pmhFjZP~

Then, Eq.(67) and Eq.(68) lead to Eq.(69). a
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Remark 5.2. From the above proposition, we see that some constraint conditions make the general linear group
GL(2,R) broken to a smaller group S, i.e.

Go-1)®-1)=Goo, Io-nop=Iom-1)P

GL(2,R) S,

so that the chiral asymmetry of leptons arises in Eq.(69) spontaneously.

Remark 5.3. Proposition 5.2 shows that:

(1) In affine connection representation of gauge fields, the coupling constant g is possessed of a geometric
meaning, that is in fact the metric of internal space. But it does not have such a clear geometric meaning in
U(1) x SU(2) principal bundle connection representation.

(2) At the most fundamental level, the coupling constant of Zp and that of Ap are equal, i.e.

9z =dAa =4g.

Suppose there is a kind of medium. Z boson and photon move in it. Suppose Z field has interaction with the
medium, but electromagnetic field A has no interaction with the medium. Thus, we have coupling constants

gz #9ga=4g

in the medium, and the Weinberg angle arises.

It is quite reasonable to consider a Higgs boson as a zero-spin pair of neutrinos, because in the Lagrangian,
Higgs boson only couples with Z field and W field, but does not couple with electromagnetic field and gluon field.
If so, Higgs boson would lose its fundamentality and it would not have enough importance in a theory at the most
fundamental level.

(3) The mixing of three generations of leptons does not appear in Proposition 5.2, but it can spontaneously arise
in Proposition 7.1 due to the affine connection representation of the gauge field that is given by Definition 7.1.

6 Affine connection representation of the gauge field of strong interaction

Definition 6.1. Suppose (M, F) and (M, G) conform to Definition 4.5.1. Let ® = r + 3 = 6 and both of F and G

satisfy
GP-2)(®-2) _ (@-1)(®-1) _ ;0D

Thus, F and G can describe strong interaction.

Definition 6.2. According to Definition 3.5.1, let the charges of F be p;,,,, where m,n = 4,5,--- ;2. Define

di £ (po—2y—-2); P(©—1)(®—1))T7 u1 £ (po—2)(0-1), p(©—1)(©—2))T7
dy & (P(@—l)(z)—n, P@@)T7 uy £ (p(®—1)©7 P@(@—l))T7
ds £ (poo, Po-2)(9-2)" us £ (po(-2), Po-2)9)" -

We say d; and u; are red color charges, d; and us are blue color charges, d; and w3 are green color charges.
Then d1, ds, ds are said to be down-type color charges, and u1, us, ug are said to be up-type color charges. Their
left-handed and right-handed charges are

1 1
dir & — o m—2) + Pro—1o_1)) s |dirE — o (D—2) — P(D—1)(D-1)) »
1L \/5 (P(@ 2)(®-2) T P(®-1)(D 1)) 1R \/i (/)(33 2)(D-2) — P(®-1)(D 1))
1 1
d é ] — 1+ I} d é — — - )
2L \/§ (P(@ 1)(D-1) P@@) 2R \/§ (P(@ 1)(D-1) P@z)
1 1
dar & — + _ ), dap & — _ _9),
3L NG (P@@ P(D—-2)(D 2)) 3R NG (P@@ P(®-2)(D 2))
uip = 1 (P(©—2)(©—1) + P(©—1)(:o_2)) ) uig = 1 (P(@-z)(:o—n - 0(9—1)(9—2)) )
V2 V2
1 1
usr, £ — (po-1o + pPo@-1) » uzr 2 —= (po-10 — Po(@-1)) »
V2 V2
1 1
uzp £ —= (P@(@—z) + P(@—z)@) ) usp £ —= (P@(@—Q) - P(@—z)@) .
V2 V2
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n (M, G) we denote

gs = \/(G(@*U(D*l))2 + (G©®)2
= \/(G(’sa)(zﬂ))? + (G(g,z)(@,g))z

=/ (Ge-20-2)? 4 (GooY2.
1
Up & 7 (Mo-2@-2p + Io-1)0-1)P) 5 X34 NG (Mo-2@-1p + Io-1)@-2)P) ;
1
Vp £ \7 (IFo—2y@-2p — [o-nyo-1)p), |YB*= 7 (Mo—2@-1p — I®-1)@-2)P) ;
Up £ *( o-n@-np +Ioop), |[XP L(F(z) yop+ Io@-1)p)
f V2
1
V2é—r - I Yl e — ([o_ —Tomo_1\p),
P \/i( @-1@-1)p — Ioor), p \/5( @-nopr — I'n@-1)p)
1 1
Utes — (Ioop+To_nyo_2p):, | X2 — Tomw_op+ o ,
P ﬂ( oop + (-2 9-2)pP) P \@( o@-2)p + L(2-20P)
. 1 1
vee — (I —Iip_ay(o— . | Y2 E — (Iooop — o .
P \@( oopr — (m-2)-2)pP) P ﬁ( o@-2p — L(2-2)0P)

We notice that there are just only three independent ones in U}, U3, U3, VA, VA, and V3. Without loss of generality,

let
Rp 2 arUp + brU% + crU3, Up 2 apRp + asSp + arTp,

Sp £ asUp + bsUp + csUp, U} £ BrRp + BsSp + BrTp,
Tp 2 apUp + bpUp + crUp, Up £ vrRp +vsSp + yrTp,
where the coeflicients matrix is non-singular. Thus, it is not hard to find the following proposition true.

Proposition 6.1. Let \, (a = 1,2,---,8) be the Gell-Mann matrices, and T, £ ), the generators of SU(3)
group. When (M, G) satisfies the symmetry condition INo_2ayo-2p t I'o—1y(@-1)p + I9op = 0, denote
11 412 413
N
A Sl S
AR AE A%

where

1 -
AP 2 Sp 4 —Tp, ARLXE v, AP L XP v,
V6
1 )
A21 A P Jrl-Ylgz7 A?f LA _Sp+ \/gTP’ A23 A 7Z-YI§37

2
AR 2 X3 L gYEl AR A XD YR, AV A - T Tp.

V6

Thus, Ap = T,A$% if and only if

AL =XF, AL =Yp?, AL =5Sp, AL=X}
A5 :Ygl, A6 :Xl%ga A7 :YlgB’ AS :TP~
Remark 6.1. On one hand, the above proposition shows that Definition 6.1 is an affine connection representation
of strong interaction field. It does not define the gauge potentials as abstractly as that in principal SU(3)-bundle
theory, but endows gauge potentials with concrete geometric constructions.

On the other hand, the above proposition implies that if we take appropriate symmetry conditions, the algebraic
properties of SU(3) group can be described by the transformation group G L(3,R) of internal space of G. In other

words, the exponential map
exp: GL(3,R) = U(3), [BY]+s ¢'Ta Bm

defines a covering homomorphism, and SU(3) is a subgroup of U (3). Therefore, Definition 6.1 is compatible with
SU (3) theory.
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7 Affine connection representation of the unified gauge field

Definition 7.1. Suppose (M, F) and (M, G) conform to Definition 4.5.1. Let © = r + 5 = 8 and both of F and G

satisfy

GO-(®-4) _ (0-3)(0-3)

GP-2)(®-2) _ G@-1)(®-1) _

GP?.

Thus, F and G can describe the unified field of electromagnetic, weak, and strong interactions.

Definition 7.2.

A T
L £ (po—1)(@-1)s PD-3)(D-3)) >

According to Definition 3.5.1, let the charges of F be p,,,,, where m,n = 4,5, - - -

,®. Define

A T
v= (0(9—3)(9_4), P(®—4)(©—3)) )

di £ (po-n0-2), PE-1n@-1))" » |t = (po-2)0-1) PO-1)@-2))" >
d2 £ (po-1y0-1), poo)" uz £ (po—1)ms Po@-1)"
ds £ (poo, P(D—-2)(D— 2)) ) us £ (P@(D 2)s P(D— 2)@)
And Denote
1
I & \7 (P(@ 1)(®-4) T P@-3)(D- 3)) vy & 7( (®-3)(®—4) T P(D—1)(D— 3))
lp & 1 N
R = E (p(974)(974) - p(ﬁfS)(Qf?»)) ) VR = \7 (P(@ 3)(D—4) — 0(974)(973)) )
1 L1
dip = 7 (P(@ 2)(@-2) T P@-1)(D- 1)) dir = E (0(9—2)(9—2) - P(@—l)(@—l)) )
1 1
dor £ —= (po—1)0-1) + Po2) d2r £ —= (po—1)(®-1) — Po9) ;
V2 V2
1 1
ds £ 7 (poo + Po-2)(2-2)) + d3r = 7 (poo — Po-2)(2-2)) »
N 1 2 1
UL = ﬁ (P(@ 2(®-1) T P@-1)(D- 2)) UIR = E (P(@—z)(@—n - 0(9—1)(9—2)) )
a 1 A 1
Uy, = ﬁ (P(@ Do +Po@- 1)) UgR = E (P(@—n@ - P@(@—n) )
A 1 N 1
usL = ﬁ (P@(@—z) + 0(9—2)9) ) U3R = \7@ (09(9—2) - P(®—2)©) .
On (M, G) we denote
g2/ (GE-D@-0)? | (GEO-3(©0-3)?,
gs 2/ (GE-D@-1)2 4 (G99)? = [(G-1(0-1)? 4 (GEO-D(@-2)’
_ \/(G(g—z)(g—z))Q + (Gma)?’
Zr2 (r T, wh & L T
P = \ﬁ( (®-a)(@-4)P + [(®-3)(0-3)P), P = 72( (@-4)@-3)p + L(®-3)2-2)P),
a1 2 a 1
Ap = E(F(©—4)(©—4)P - F(©—3)(©—3)P)7 Wp = *Q(F(D—ZL)(’D—?JP - F(®—3)(®—4>P)7
1 1
Up = NG (Lo-2@-2p + To-n@-1r), | XF 2 7= [o-2n@-np+ I o-10-2p)
1
Vi £ NG (Fo-2y0-2p — Lm-1y@-1)p) > |Y3* £ —= (Lo-2y0-1)p — L9-1)(9-2)P) »

Up £ % (Fo-1@-1p + Ioop),
V& % (Fo-1y-1p — I'oor)
Ui 2 % (F©©P+F(© 2)(®-2)P )

Vi e % (Do — Lo-20-2p) »

2
1
2
1
X3 £ f(F(Q yop + Io@-1)p)
1

Yl & — (Io—1opr — I'o@-1)p),

V2
1
Xp & 7 (I's@-2p + [o-2)0p)
1
V2

£ — (I'o@-2p — Io—-20p) -
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Discussion 7.1. We know from section 2.3 that the gauge frame matrix [B%] € GL(5,R), (a,m =4,5,---,8),

therefore when BZ, are without any constraints, we can obtain a GL(5, R) gauge theory. In consideration of that
the exponential map

exp: GL(5,R) = U(5), [BY] — e'T< Bn

is a covering homomorphism, and U(1) x SU(2) x SU(3) is a subgroup of U(5). So there must exist some
constraint conditions of B%, to make GL(5,R) reduced to U (1) x SU(2) x SU(3), i.e.

constraint conditions of BY,
GL(5,R) — U(1) x SU(2) x SU(3).

More generally, suppose we have no idea what the symmetry that can exactly describe "the real world" is, we just
denote it by S, then the map

constraint conditions of By,

GL(5,R) S

makes us be able to turn the problem of searching for S into the problem of searching for a set of constraint
conditions of BY,. "To describe S" and "to describe the constraint conditions of B% " are equivalent to each other.

Because gauge potentials I, p and particle fields p,,, are both constructed from the gauge frame field By,
clearly here it is more flexible and convenient "to describe the constraint conditions of B " than "to describe S".

m

Next, we have no idea what the best constraint conditions look like, but we can try to define a set of constraint
conditions to see what can be obtained.

Definition 7.3. Similar to Remark 5.2, we define the constraint conditions as follows.
(1) 1st basic conditions:

GER-H(@-1) _ (@-3)(9-3)
G(Q_Q)(@_Q) _ G(Q—l)(@—l) — G’D@7

(2) 2nd basic conditions:
I'o-3y@-0p = o-9@-3)P,
I''o 2yo-2p+o-1y@-1p + Lo0p =0,

(3) Ist conditions of PMNS mixing of leptons:

D2 D-2D-3 D-2 _ D-2p10-4 _ _
F(©—4)P = C®—3F(CD—4)P’ F(CD—S)P = C©—4F(©—3)P’ cg_ﬁ = cg_i,
D-1 _ D-179-3 D-1 _ D-1p1D—4 D-1 D1
F(©—4)P - C®—3F(©74)P’ F(©73)P - C©—4F(3373)P’ Co_3 = Cp_y»
D D D— D D D—4 D _ D
Io-np = %731}@31)13’ I'a-ap = -al(9 3 p -3 = D4
(4) 2nd conditions of PMNS mixing of leptons:
P(D-2)(D-3) = P(D-2)(D—4)> P(D-3)(D-2) = P(D—4)(D-2)>
P(®-1)(D-3) = P(D—-1)(D—4)> P(®-3)(D-1) = P(D—-4)(D—-1)>
PD(D-3) = PD(D—4)> P(D®-3)D = P(D-4)D>
(5) 1st conditions of CKM mixing of quarks:
D-3 _ D-47D-3 D—4 _ D-31D—4
F(@—Q)P = %—2F(3374)P7 F(©72)P = C®—2F(©73)P’ o4 D4 _ o4
[o-3  _ MD-4pD-3 [o-4  _ D304 Cp_2=Cp_1=Cp
(®-1)P — "D-1" (D-4)P’ (®-1)P — D-1" (D-3)P°’ 03373 . 63373 _ 03373
D-3 D—4 D3 D—4 D3 D4 -2 -1 " >
I'sp” =g F(’)D—4)P’ I'sp™ =g F(:D—S)P’

(6) 2nd conditions of CKM mixing of quarks:

P(®-2)(D-3) = P(D-1)(D-3) = PD(D-3)> P(D-3)(D-2) = P(®-3)(D-1) = P(D-3)D>
P(®-4)(D-2) = P(D-4)(D-1) = P(®-4)D>

P(®-2)(D-4) = P(D-1)(D—4) = PD(D—-4),

where ¢! are constants.
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Proposition 7.1. When (M, F) and (M, G) satisfy the symmetry conditions (1)(2)(3)(4) of Definition 7.3, denote

D2
Con

= <9(9—4)(©—4) + 2_4 (Po-2)(9-1) + Po-1)(0-2))

D—-1 C©74

B (p(ﬁfl)(©74) + P(®f4)(3371)) + 92 (P©(®74) + P(©74)9) )

05‘372

P(®-3)(D-3) T 2 (P(@—z)(©—3) + P(©—3)(©—2))

D—1 D
C CH_3

T
+ 92 (P(@—1)(®—3) +P(®—3)(©—1)) + 92 (pz)(@—s) +P(®—3)©)> )

D2
Co_
V2 (ﬂ(@—g)(@—4) + 92 (P(@—z)(©—4) + 0(9—4)(9—2))

2-1 6973

B (P(@A)(@%) + P(®f4)(9371)) + 92 (P©(3374) + /)(3374)33) ;

P@—-1)(D-3) T B (p(@,z)@,g) + P(safg)(safz))

21 09_4

T
+ 92 2 (P(@—1)(®—3) +P(®—3)(©—1)) + 92 (P@(@—s) +P(®—3)©)> .

Then, the geometric properties [ and v of F satisfy the following conclusions on (M, G).

l,p = 0ply — gluZp — glrAp — gv W,
lp,p = Oplr — glrZp — glL/AP,l (70)
vp,p = 8PZ/L — gl/LZp — glLWP’

VR,p = OpVR — gVRZp.
Proof. First, we compute the covariant differential of p,,,, of F.
H H
Pmn;P = 8Ppmn - pHnFmP - PmHan

= 0pPmn — P-1ynlinp" — Po—3ylnp’ — Po—-2ymliop” — pPo-1ynlinp' — ponlimp

— pm@-0 Lyt = Pm@—3)Tip ° = Pmo—-2yTp > = pm@-1)Lap " — pmo Lip-

According to Definition 7.2 and Definition 7.3, by calculation we obtain that

lL;P = 8PZL —glLZp —glRAP —gVLW}1;

- % [571 (Pro-20-3) + Pro-5)9-2) + 273 (Pro-2(0-2) + Po-2)0-2))] %Wé
- % (371 (Po-1)0-3) + Pro—8)0-1) + B3 (Po-1)(@-2) + PO-20-1))] \%W},
- % (B4 (po(0—3) + Po—-3)9) + B _3 (Po(0—1) + Po-12)9)] \%W#

lr;p = Oplr — glrZp — gl Ap,

vip = Opvr, — g Zp — glLWp
- % [ a4 (Po—2)(0—1) + PO—-2)0-2)) + a3 (Po-3)(2-2) + PO—2)-3))] %W},
- % (274 (Po-1@-1) + Po-1)0-1)) + 25 (Po-5)0-1) + P0-1)(0-3))] \%W}D

1 g

-5 (B4 (Po(@-12) + P@-1)0) + B_3 (P®-3)0 + Po(0-3))] ﬁW}D,

VR,p = apl/R - gI/RZP.
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Then, according to definitions of I’ and 1/, we obtain that

l’L =1
Cgii Cgii c% 4
+ = _ —4) t+ _ _9y) + ——= _ _4) t+ _ )+ ——= _4) + _
2/2 (P(@ 2)(D—4) T P(D—-4)(D 2)) 272 (P(@ 1)(D—4) T P(D-4)(D 1)) 272 (P@(@ 4) T P(® 4)@)
Cg_g Cg_é Cg 3
+ = _ _3) + _ _9y) + ——= _ _3)+ _ _1y) + — _3)+ _ ,
2\@ (P(@ 2)(D-3) T P(D-3)(D 2)) Qﬂ (P(@ 1)(D-3) T P(®-3)(D 1)) 272 (P@(@ 3) T P(® 3)@)
V}liI/L
+ — _ _a) t+ _ _9y) + —= — _q) t+ _ )+ —= —q) t+ _
2\/5 (P(@ 2)(D—4) T P(D—-4)(D 2)) 2\/5 (P(@ 1)(D—4) T P(D-4)(D 1)) 2\/5 (P@(@ 4) T P(® 4)@)
D-2 D-1 D
C C C
+ D—4a

D—4 D—4
_ _3)+ _ _oy) + —— _ _3)+ _ )+ == _3)+ _ .
2\/§ (P(@ 2)(®-3) T P(D-3)(D 2)) 2\/5 (P(@ 1)(D=3) T P(D-3)(D 1)) 2\/5 (P@(@ 3) T P(® 3)@)

Substitute them into the previous equations, and we obtain that

loip = Oply — gluZp — glrAp — gvi,Wp,
lr,p = Oplr — glrZp — glL Ap,

vp,p = (9pl/L - gVLZP — gllLW}D,
VR,p = OpVR — gVRZp.
O

Remark 7.1. The above proposition shows the geometric origin of PMNS mixing of weak interaction. In affine
connection representation of gauge fields, PMNS mixing arises as a geometric property on manifold.

In conventional physics, e, 1t and 7 have just only ontological differences, but they have no difference in mathe-
matical connotation. By contrast, Proposition 7.1 tells us that leptons of three generations should be constructed by
different linear combinations of {pp,, Pgp tp=4.5; ¢=6,7,s- Thus, e, 1, and 7 may have concrete and distinguishable
mathematical connotations. For example, let a,, by, a,.", b“?, ar, by, a;, by be constants, then we might
suppose that

{6 21=(po-ny@-1 PO-3@-3)"
A T
Ve =V = (0(9—3)(9—4), P(©—4)(®—3)) .
pEaue+ (augiim@fzx@%) +aup 4P@-1)(0-4) T Qg _1PD(D-4)s
T
4 5P@—2)(0-3) T Gup 3P -1)(0-3) + au%gﬂ@(@—w) :
1 _ _
Vi & buve + 3 (bug_gp@,m,@ + b3 5P 1(@-1) + bug_sPo(0-1)s
T
bup_3P(-2)@-3) + bup_sP@-1)(@-3) + bug_wsa(@fm) :
1 _ _
T arp+ 5 (arp 3P(@—1)(9—2) + Grg_1P(@-1)(0—1) T Gr_4P(D-1)D;
_ _ T
arg,gp(zfs)(ﬁfz) + arg,;lgp(@f:a)(@q) + argfgp(safs)@) .

vr £ bryy, + 5 (brgigp(@—@(@—z) + b3 3p@—1) (1) + brn_sP(®—1)D,

T
ngiip@fg)(@fz) + ngiip@fs)(@fl) + 573—4/)(@—3)@) .

Proposition 7.2. When (M, F) and (M, G) satisfy the symmetry conditions (1)(2)(5)(6) of Definition 7.3, denote

L

1 1
/ 763373 B oy B B _’_70973 _ o+ B _
L= 5% o1 (P@—1)(D—2) + P(D—2)(D-1)) W) o2 (P@—1)@-1) + PD-1)(D-1))

+ ingll(P(zv—s)(za—z) + po—2)(0-3)) + i032421(10@)—3)(@—1) + po-1)(0-3))s
2v/2 2V2
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1 1
b2 —— 23 (P (o-1) + Po_1)(D-1)) + —=C2 3 (po_ayo + _
2L 2\/§ D (P(@ 4)(D-1) T P(D-1)(D 4)) 2\@ ;34([’(@ 4)D T PD(D 4))
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Then the geometric properties d1, ds, ds, u1, us, uz of F satisfy the following conclusions on (M, G).
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Proof. Substitute Definition 7.2 into p,,, and consider Definition 7.3, then compute them, and then substitute
dyp, dy, dsp, uhp, uhp, uf; into them, we finally obtain the results. O

Remark 7.2. The above proposition shows a geometric origin of CKM mixing. We see that, in affine connection
representation of gauge fields, d),, dy;, dy,, w), uby, uby arise as geometric properties on manifold. Detailed
equations of CKM mixing can be obtained on an additional condition such as

P(D-2)(D-2) = a23ﬂ(®—2)(©—3) + al3p(©—1)(©—3) + a24p(©—2)(®—4) + 014/’(@—1)(@—4)
+ a23p(®72)(©73) + aOSP’D(CDfS) + 0240(3372)(974) + 004/)@(@74),
P@-1)(D-1) = a32ﬂ(©—3)(©—2) + a3lp(©—3)(©—1) + a42p(©—4)(©—2) + a4lp(9—4)(9_1)
+ a13ﬂ(©—1)(@—3) + 60309(9—3) + al4p(©—1)(©—4) + a04p©(©—4),
POD =a*’po_s)0-2) + ¢’ po-39 + apo_sy0-2) + ¢’ po-1)9
+a* po_syo-1) + >’ po-30 + a* p_1y0-1) + a1,
P(@—2)(D-1) = a23p(®72)(©73) + algp(sq)(@fs) + a24p(972)(©74) + al4p(®71)(®74),

P(D-1)(D-2) = a32p(©—3)(©—2) + a31p(©—3)(©—1) + a42p(®—4)(©—2) + a41p(©—4)(©_1)7

P(®-2)D = a23p(©—2)(©—3) + a030®(©—3) + a24p(©—2)(©—4) + a04p©(®—4),
PO (®-2) = a32p(©,3)(@,2) + G3OP(973)© + a42,0(©f4)(5372) + a4op(©f4)©7
P(®-1)D = 013P(©—1)(®—3) + a03P©(®—3) + 014/7(@—1)(@—4) + a04p©(®—4),
poo-1) =0 po-s@0-1) + e p@_30 + o po-_1w@-1) +a po_10.

Definition 7.4. If the reference-system F satisfies

P(D-2)(D-2) = P(®-1)(D—-1) = PDD = P(®-2)(D—-1) = P(D-1)(D-2) = P(®-1)D = PD(D-1) = PD(D-2)
= p@-20 =0,
INo_syo-2p =T o-n@-1)p =Ioopr=Iw-2y0-np =L o-nw-2p = o—1yor = Io@-1)P
=In@-2p =IL(®-20pr =0,

we say F is a lepton field, otherwise F is a hadron field.
Suppose F is a hadron field. For dy, ds, ds3, u1, us, us, if F satisfies that five of them are zero and the other
one is non-zero, we say F is an individual quark.

Proposition 7.3. There does not exist an individual quark. In other words, if any five ones of d1, do, ds, u1, us, us
are zero, then dqy = do = d3 = u1 = ug = ug = 0.
For an individual down-type quark, the above proposition is evidently true. Without loss of generality let
up =uz = ug = 0and d; = dz = 0, thus pio_2)y(p—-2) = p(®-1)(®-1) = poo = 0, hence we must have d3 = 0.
For an individual up-type quark, this paper has not made progress on the proof yet. Nevertheless, Proposition
7.3 provides the color confinement with a new geometric interpretation, which is significant in itself. It involves a
natural geometric constraint of the curvatures among different dimensions.

8 Conclusions

1. An affine connection representation of gauge fields is established in this paper. It has the following main points
of view.

(i) The holonomic connection Eq.(3) contains more geometric information than Levi-Civita connection. It can
uniformly describe gauge field and gravitational field.

(ii) Time is the total spatial metric with respect to all dimensions of internal coordinate space and external
coordinate space.

(iii) Energy is the total momentum with respect to all dimensions of internal coordinate space and external
coordinate space.

(iv) On-shell evolution is described by gradient direction.

(v) Quantum theory is a geometric theory of distribution of gradient directions. It has a geometric meaning
discussed in section 3.9.

2. In the affine connection representation of gauge fields, some physical objects are incorporated into the same
geometric framework.
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(i) Gauge field and gravitational field can both be represented by affine connection. They have a unified coordinate
description. Some parts of 1'%, describe gauge fields such as electromagnetic, weak, and strong interaction fields.
The other parts of I'#, describe gravitational field.

(ii) Gauge field and elementary particle field are both geometric entities constructed from semi-metric. The
components py,, of pary withm,n € {4,5,--- D} describe leptons and quarks, the other components of ps
may describe particle fields of dark matters.

(iii) Physical evolutions of gauge field and elementary particle field have a unified geometric description. Their
on-shell evolution and quantum evolution both present as geometric properties about gradient direction.

(iv) CPT inversion can be geometrically interpreted as a joint transformation of full inversion of coordinates
and full inversion of metrics.

(v) Rest-mass is the total momentum with respect to internal space. It originates from geometric property of
internal space. Energy, momentum, and mass have no essential difference in geometric sense.

(vi) Quantum theory and gravitational theory have a unified geometric interpretation and the same view of time
and space. They both reflect intrinsic geometric properties of manifold.

(vii) The origination of coupling constants of interactions can be interpreted geometrically.

(viii) Chiral asymmetry, PMNS mixing, and CKM mixing arise as geometric properties on manifold.

(ix) There exists a geometric interpretation to the color confinement of quarks.

In the affine connection representation, we can get better interpretations to these physical properties. Therefore,
to represent gauge fields by affine connection is probably a necessary step towards the ultimate theory of physics.
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