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Abstract 

 

     In the present paper we use the flat Friedmann-Lemaître-Robertson-Walker metric describing a spatially homogeneous 

and isotropic universe to derive the cosmological redshift distance in a way which differs from that which can be found in the 

general astrophysical literature. 

     Using the flat Friedmann-Lemaître-Robertson-Walker metric the radial physical distance is described by R(t) = a(t)r. In 

this equation the radial co-moving coordinate is named r and the time-depending scale parameter is named a(t). We use the 

co-moving coordinate re (the subscript e indicates emission) describing the place of a galaxy which is emitting photons and ra 

(the subscript a indicates absorption) describing the place of an observer within a different galaxy on which the photons - 

which were traveling thru the universe - are absorbed. Therefore the physical distance - the real way of light - is calculated by 

D = a(t0)ra - a(te)re ≡ R0a - Ree. Here means a(t0) the today’s (t0) scale parameter and a(te) the scale parameter at the time te of 

emission of the photons. The physical distance D is therefore a difference of two different physical distances from an origin  

of coordinates being on r = 0. 

     Nobody can doubt this real travel way of light: The photons are emitted on the co-moving coordinate place re and are than 

traveling to the co-moving coordinate place ra. During this traveling the time is moving from te to t0 (te ≤ t0) and therefore the 

scale parameter is changing in the meantime from a(te) to a(t0). 

     Using this right physical distance, we calculate the redshift distance and some relevant classical cosmological equations 

(effects) and compare these theoretical results with some measurements of astrophysics (quasars, SN Ia and black hole). 

     We get the today’s Hubble parameter H0a ≈ 65.66 km/(s Mpc) as a main result. This value is a little smaller than the 

Hubble parameter H0,Planck ≈ 67.66 km/(s Mpc) resulting from Planck 2018 data. 

     Furthermore, we find for the radius of the so-called Friedmann sphere R0a ≈ 3,096.92 Mpc. This radius corresponds to the 

maximum possible distance of seeing within an expanding universe. Photons, which were emitted at this distance, are infinite 

red shifted. 

     The today’s mass density of the Friedmann sphere results in ρ0m ≈ 7.82 x 10-29 g/cm3. For the mass of the Friedmann 

sphere we get MFs ≈ 2.86 x 1056 g. 

     The mass of black hole within the galaxy M87 has the value MBH,M87 ≈ 4.1161 x 1043 g. The redshift distance of this object 

is D ≈ 19.45 Mpc but its today’s distance is only D0 ≈ 6.27 Mpc. 
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1. Introduction 

 

The current cosmological standard model assumes the correctness of Einstein's field equations (EFE) containing 

the cosmological term Λ 
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and solves these equations with the help of the Friedmann-Lemaître-Robertson-Walker metric (FLRWM) 
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which is suitable for the description of a homogeneous and isotropic universe evolving over time. 

 

The solutions found by solving the EFE are the two Friedmann equations (FE) 
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(3) 

 

Gμν is the Einstein tensor, G the gravitational constant, c0 the light velocity in vacuum, Tμν the energy-

momentum tensor and gμν the metric tensor. The parameter Λ is the cosmological constant that Einstein added to 

his original field equations, but later discarded. With ε = 0, +1 or -1 the constant of curvature was introduced and 

r, ϑ and φ are spherical polar coordinates. The time-dependent cosmological scale parameter was designated with 

a(t) and its time derivatives with points above. P is the pressure of matter and ρ is mainly the sum of two 

different densities: relativistic radiation (index r) and not-relativistic matter (index m). 

 

 

1.1 Simplifying assumptions 

 

The application of the theoretical standard cosmology to the measured data of the observational cosmology 

shows that the universe is very probable flat. For this reason, the curvature constant ε is negligible. We agree 

with this finding, whereby the FLRWM and the first FE simplify to 
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respectively. 

Here we have introduces the two conservation laws 

 

4

2

04

2

0

1

8

3

3

8

aG

Kc
orconsta

c

G
K r

rrr





  

 

(4a,b) 

 

and 

 

.
1

8

3

3

8
3

2

03

2

0
aG

Kc
orconsta

c

G
K m

mmm





  

 

(5a,b) 

 

Eq. (4) describes the development in time of radiation density and Eq. (5) means the equivalent for non-

relativistic matter. 

 

We will neglect the mathematical possible cosmological constant Λ because the real physical meaning of it is not 

clear at this time. 

 

Furthermore: The base of the ΛCDM standard cosmological model is the dealing with too few SN Ia for big 

redshifts, what means that these measurement values are statistical not sufficiently enough. Therefore, it is not a 

good idea to introduce a further arbitrary parameter - Λ - in the theory of cosmology. 

 

In addition: The so-called ΛCDM standard model of cosmology is not able to describe the magnitude-redshift 

relation of quasars and the angular size-redshift relation of cosmic objects for big redshifts z. 

The comparison of the redshift distance calculated by us without using Λ shows that the insertion of the constant 

Λ is not necessary, because the magnitude-redshift relation of quasars and the angular size-redshift relation can 

be interpreted very well with the theory developed by us within this paper. 

 

As a result, the EFE are returned to their historically original form and the FE takes on the simpler form 
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We will use later the resulting interval of time dt  
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for calculating the redshift distance. 
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1.2 Hubble parameter in the astrophysical literature 
 

 

Within the astrophysical literature, the following Eq. (6) defines the Hubble parameter that is of course in 

general depending on time because of containing the scale parameter a(t): 

 

.
2

0 aKK
a

c

a

a
H mrlit 


 

 

(6) 

 

If we refer to the today’s Hubble parameter, we get 

 

.0002

0

0

0

0
,0 aKK

a

c

a

a
H mrlit 


 

 

(7) 

 

If we use the two conservation laws 
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we can transform the Eq. (7) to 
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The index 0 - zero - means today (t0) and the index e means the time at that time (te), the time of emission of 

photons in the past. 

Both equations together yields 
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Eq. (8) describes the Hubble parameter at that time, which is depending from the two scale parameters a0 and ae, 

respectively. 

Using Eq. (4c) and Eq. (5c) again we get 
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Therefore, we find that the Hubble parameter is in general a function of the quotient a0/ae: 
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We have introduced the density parameter Ω0rm. 

 

With Eq. (18b) we can introduce the redshift z and obtain 
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Now we see clearly that the Hubble parameter is a non-linear function of redshift. The minimum value He,lit = 

H0,lit is found for z = 0. 

He,lit grows with z endless. Therefore, it makes no sense to use bigger redshifts for evaluation of the Hubble 

parameter near of us as observer. 

 

If we neglect the possible radiation, we find the simpler Eq. (8d) 
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The following Fig. 1 shows the found relation for neglected radiation. 
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Figure 1. Relation between of Hubble parameter at that time and today’s Hubble parameter setting the 

density of radiation to zero 

 

If we use the Eq. (4c), Eq. (5c) and the definition of the density parameter Ω0rm we can rewrite Eq. (7) as 
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Using the following two equations 
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we can change the Eq. (9) to 
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The introduced mass Ma0 is the mass, which is contained in a sphere with the radius a0. The radius RS,a0 is the 

belonging formal introduced Schwarzschild radius. 

In this form, a direct comparison with Eq. (44a) - the Hubble parameter that is derived by us in this article - is 

possible. 

 

The reciprocal of the Hubble parameter is the Hubble time 
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Within the astrophysical literature, the Hubble time corresponds with the age t0 of the universe but it is greater 

than t0. 

 

 

2 Derivation of cosmological relevant relations 

 

2.1 Previews 

 

From the requirement of homogeneity it follows that all extra-galactic objects remain at their co-moving 

coordinate location r in the course of the temporal development of the universe, i.e. the co-moving coordinate 

distance between randomly selected galaxies does not change over time, the galaxies rest in this co-moving 

coordinate system. For this reason, dr/dt = 0 applies to them. 

This does not apply to the freely moving photons inside the universe: They detach themselves from a galaxy at a 

certain point in time at a certain co-moving coordinate location, and are then later absorbed at a completely 

different co-moving coordinate location. 

 

Here we introduce the designation re (the subscript e indicates emission of light) for the co-moving coordinate 

location of the light-emitting galaxy and name the co-moving coordinate location of the galaxy in which the 

observer resides ra (the subscript a indicates absorption of light). In the Euclidean space ( = 0) considered here, 

both variables mark the co-moving coordinate distance from an origin of coordinates r = 0. The constant co-

moving coordinate distance between the two galaxies is therefore calculated to be ra - re if we assume that the 

galaxy of the observer is more depart from the origin of coordinates as the light-emitting galaxy. The light 

should therefore move from the inside to the outside within a spherical assumed mass distribution (outgoing 

photons), which serves as a simple model for the universe (using the FLRWM, it is quite easy to arrange that all 

directions are of a radial kind). 

 

Due to the measurable expansion of the universe we know that in the course of cosmic evolution all real physical 

distances R(t) = a(t)r over the time-dependent scale parameter a(t) being stretched according to the solution of 

FE Eq. (3b). 

 

For a galaxy resting in the coordinate system of the FLRWM, the real physical distance from the origin of 

coordinates becomes calculated to 
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if  = 0 is considered. The radial co-moving coordinate r does not depend on time for galaxies. 

 

The physical distance of the light-emitting galaxy from the origin of coordinates at time te (the time at that time) 

is therefore 
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while for the analog distance of the galaxy containing the observer at the same time 
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applies. The physical distance of both galaxies at the time te is therefore 
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For the physical distance between both cosmic objects at a later time - means today‘s time here - t0 > te then 

applies 

 

   .)( 0000000 eaeaea RRrrararaDtD   (16) 

 

However, both distances mentioned above are worthless for the computation of cosmological relevant distance 

relations, since the emitted photons make their physical way to the observer, which has to be calculated in 

accordance with 

 

 .00 eeaeea RRraraD   (17) 

 

To see this, imagine a photon that detaches itself at the time te < t0 from the emitting galaxy at the coordinate re, 

where the scale parameter at this time has the value ae. After the photon has moved freely through the expanding 

universe, it will arrive at the coordinate point ra, the place of the observer within another galaxy, at time t0, with 

the scale parameter at that time being a0. Thus, the photon does not travel the path described by Eq. (15) nor by 

Eq. (16). The real distance traveled by the photon is always unequal to any one of these two distances. This must 

be taken into account when deriving the redshift distance. 

 

The real physical light path is illustrated by the green line in Fig. 2: 
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Figure 2.   Real physical light path. 

 

These remarks may be sufficient as a preliminary to the now following derivation of the redshift distance. 

 

 

2.2 The redshift distance 

 

We now want to investigate which equation results for the redshift distance (corresponding to the photon path), 

which depends on the redshift z, if the integral 
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is used. This integral results for  = 0 when the line element ds is set equal to zero in the FLRWM Eq. (2a) and 

radial (ϑ = φ = const) outgoing photons are considered. Eq. (18) describes the motion of photons inside the 

universe traveling from the co-moving coordinate re to the co-moving coordinate ra. 

 

During the travel time of the photons, the scale parameter changes from a(te) = ae to a(t0) = a0. If the time 

differential is replaced using the FE (3c), follows from Eq. (18) 
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After the executing of the integral we get 
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We have used the appropriate terms for both involved conservation laws [see Eq. (22)]. 

 

Some further simple calculation steps result in 
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because of 
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or 
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Eq. (22a,b) show us that we can use Km = Kem = K0m and Kr = Ker = K0r, respectively, because these values are 

the same constant ones. 

 

Now we multiply both sides with a0 and get 
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(23) 

 

On the left side of Eq. (23) is not yet the real path traveled by the photon, but the today’s physical distance D0 of 

the two galaxies involved. 

 

We now introduce the redshift named z. To this end, we recall the simple relation between the scale parameters 

at two different times te and t0 and the redshift 
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and also 
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If Eq. (24b) and Eq. (24c) are inserted into Eq. (23), the result is 
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(25) 

 

Next, all unknown variables have to be eliminated from Eq. (25). Therefore we use the light path D introduced 

by Eq. (17) 
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to find 
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Using 
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we find after some simple calculation steps 
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This results in 
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As further abbreviations we introduce now 
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and get therefore 
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(31) 

 

This is the equation for the redshift distance, for which we were searching. 

 

The parameter Ω0rm denotes the today’s ratio of radiation density and non-relativistic matter density how it is 

used in the astrophysical literature. 

 

The redshift distance D is therefore a function of z and the three parameters R0a, β0m and Ω0rm which all can be 

determined fundamental by fitting the equation to appropriate astrophysical measurements. 

 

The name β0m was chosen for the second parameter because it is a today’s quotient of two velocities, where the 

denominator is the speed of light in vacuum named c0. 

 

The astrophysical literature does not know the parameter 0m. It results from the non-zeroing of ra for the 

observer and of re ≠ 0 for the observed galaxy, respectively. 

 

Now we can have a look at some possibilities of values belonging to the three parameters. 

At first we can neglect the parameter Ω0rm if the today’s radiation density is very small in comparison of non-

relativistic matter density and find in this way 
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We published this equation already in [11]. 



 14 

 

For Ω0rm ≠ 0 and β0m = 1 the following equation results 
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If we want additional neglect the today’s density of radiation in Eq. (33) we get the simpler equation 
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We now give another expression for 1/β0m: 
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We have used 
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With RS = 2MFsG/c0
2
, the Schwarzschild radius of mass MFs of the so-called Friedmann sphere was introduced 

for pure formal reason. It does not play the same role here in cosmology as it does within the Schwarzschild 

metric. 

 

The mass MFs takes into consideration all non-relativistic gravitational effective components of the visible 

universe: MFs = ∑ Mi. These can also be different energy components Ei, to which, according to Einstein's 

energy-mass relationship Mi = Ei/c
2
, masses Mi can be assigned. 

In addition, with MFs as the total mass, mass components that are invisible to us - perhaps only so far - are taken 

in to consideration. 

 

Therefore, we can rewrite the redshift distance as 
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For β0m = 1/2 we get R0a = RS. In this case, we could believe that every observer is places (formally) on the 

surface of a black hole (corresponding to the Friedmann sphere) and that he always looks into a black hole while 

observing. 

 

For a galaxy located in the center of the Friedmann sphere, an observer would measure an infinitely large 

redshift. Overall, that could be logical. 

 

For β0m = 1, R0a = RS/4 results and the speed V0 would be exactly identical to the today’s speed of light c0. 

 

If the comparison with the measurement data would show β0m = 1, we would get 
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because of then 
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In this case, we would immediately see that the total mass MFs of the Friedmann sphere goes directly into the 

equation in form of the formally introduced Schwarzschild radius RS (instead of RS and R0a at the same time). 

Therefore, RS could be used as a scale of cosmological distances. 

 

Fig. 3 shows the redshift distance Eq. (31) normalized to the distance R0a for various values of the parameter β0m 

and Ω0rm = 0. 
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Figure 3.   Redshift distance for different values of the parameter β0m and Ω0rm = 0. 

 

Fig. 4 shows the redshift distance Eq. (31) normalized to the distance R0a for various values of the parameter 

Ω0rm and β0m = 1. 
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Figure 4.   Redshift distance for different values of the parameter Ω0rm and β0m = 1. 

 

The curvature of all the curves is a direct consequence of the Friedmann equation. 

 

For β0m = 1, the redshift distance D = R0a is achieved for z = ∞. 

 

The comparison of Eq. (31) and Eq. (31a), respectively, with a Hubble diagram thus determines the current 

radius R0a = a0ra of the Friedmann sphere (today's physical location of the observer) and its Schwarzschild radius 

RS. 

 

Overall, each observer is located on the surface of all imaginable Friedmann spheres around him (for each 

viewing direction a Friedmann sphere with the radius R0a belongs). The extra-galactic objects (placed on r = re) 

observed by him then all lie according to their redshift z on a radial line somewhere between the observer 

(placed on r = ra) and the center of the Friedmann sphere (placed on r = 0). 

 

The physical radius R0a = a(t0)ra of the Friedmann sphere changes in reality with time and forms always a limit of 

visibility, which is growing with time: Ra(t) = a(t)ra. 

Outside of every imaginable Friedmann sphere - means here the opposite of observer - there is also mass, which, 

however, has no gravitational effect to the place of the observer. 

 

It should be mentioned extra that the conceivable Friedmann spheres naturally at least partially overlap. 
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An increasing limit distance R0a decreases with time the velocity V0 introduced above, because RS is a constant. 

Because Eq. (31) and Eq. (31a), respectively, describes the physical behavior of photons in the universe, the 

velocity V0 in Eq. (30) could be interpreted as an effective speed of light c0* in vacuum: 

 

 

 
.

23

8

2
*0

0

000
0 c

R

RcGR
V

a

Sma 


 

 

(30a)

 
 

This velocity changes according to R0a and 0m, respectively, over the time and has for us as today's observers - 

because of very probable β0m = 1 - just the value of the vacuum velocity c0 that we can measure today. 

 

If this interpretation is correct, the effective speed of light c0* was infinitely large at the beginning of the 

expansion of the universe, because at that time the Friedmann sphere was infinitely small and its matter density 

was infinitely large, respectively. There is therefore no problem with speeds, which are apparently greater than 

today's speed of light, when looking into the visible universe. 

 

Addition: 

We can look at parameter βtm using the two different times t0 and te, respectively 
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If we combine both equations, we get 
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This results in 
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In summary we get 
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If we find β0m = 1 using measurement values this yields 
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(41a) 

 

 

2.3 Hubble parameter 

 

For calculating the Hubble parameter we make a Taylor series expansion of our redshift distance Eq. (31) up to 

first order in z and find 
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This results in 
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This is how we find the today's Hubble parameter 

 

  .

1
1

1

2

1
,,

0

00

0
0000

a

rmm

rmmaa

R

c
RH






















  
 

(44) 

 

The today’s Hubble parameter H0a depends on the parameters R0a and Ω0rm and on the speed quotient β0m 

introduced above and is in this form valid only for small redshifts because of the series expansion made. This 

means that this H0a is only valid locally near the observer. 

 

Using the Eq. (35) we can rewrite the Hubble parameter to 
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(44a) 

 

In this form, a direct comparison with Eq. (11) - the Hubble parameter of astrophysical literature - is possible. 

 

The reciprocal of the Hubble parameter is the Hubble time 
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Without radiation yields 
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In case of β0m = 1 and Ω0rm = 0 yields 
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This simple equation can be found in the astrophysical literature for flat spaces. 

 

Addition: 

We can look at the Hubble parameter using the two different times t0 and te, respectively 
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(46) 

 

 If we combine both equations, we get 
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This results in 
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or 
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(50) 

 

In summary we get 
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Without radiation we find 
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If we assume β0m = 1 this yields 
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(53) 

 

Now we see that the Hubble parameter is a function of redshift. Therefore, it makes no sense to use bigger 

redshifts for evaluation of the today’s Hubble parameter. 

The minimum value Hea = H0a is found for z = 0. 

 

If we consider the today's Hubble parameter Eq. (44) obtained above for small redshifts as a definition, we can 

write the redshift distance via 
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also like this 

 

 
   

.
1

1
1112

1
,,; 00

0

0

0

00
0

0








































 z

zR

R

z

R
RRzD rmrm

a

H

rm
a

rmHa
a

a

 

 

(44c) 

 

The quotient RH0a = c0/H0a is called the Hubble radius in the astrophysical literature. For this distance, the escape 

speed by definition reaches the speed of light if it is assumed that a linear Hubble law is valid for all distances, 

which is - of course - a rough approximation. The Eq. (44c) is therefore only valid for small redshifts how the 

equations (32) and (34) itself. 

 

 

2.4 The magnitude-redshift relation 

 

The magnitude-redshift relation results by the general definition of the apparent magnitude m 
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Here an apparent limit magnitude m0a was introduced instead of R0a, which also changes with time. Substituting 

Eq. (31) into Eq. (54) then provides the sought magnitude-redshift relation 
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The three free parameters m0a, 0m and Ω0rm can be determined by direct comparison with a suitable magnitude-

redshift diagram of astrophysical objects. 

 

For 0m = 1, the following simpler equation results 
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If we ignore in additional the possible radiation within our equation, we get the following simpler equation 
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(55b) 

 

We published this equation already in [11]. 

 

For comparison, reference is made to Eq. (82) from chapter 5.2, which is known from the astrophysical 

literature. Please be aware that the parameter 0m is not known in the astrophysical literature. 

 

 

2.5 The angular size-redshift relation 

 

This relation results in for larger distances over 
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In this equation  means the measurable angular size and  the linear size of the observed extra-galactic object. 

 

Using 0m = 1 we get 
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In logarithmic form Eq. (57) becomes to 
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With 0m = 1 we get the simplified equation 
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If we ignore in additional the possible radiation within our equation, we get 
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We published this equation already in [11]. 

 

For comparison, reference is made to Eq. (83) from chapter 5.2, which is known from the astrophysical 

literature. 

 

 

2.6 The number-redshift relation 

 

In flat Euclidean space the equation for the light-path sphere becomes to 
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If we introduce the redshift distance via Eq. (31) 
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we get for the number-redshift relation 
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(61)

 

 

where N0a means the expected number of objects in the whole light-path sphere V0a and besides 
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applies. With  the number density was named. In logarithmic form results 
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If we here also set 0m = 1, we get 
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If we ignore in additional the radiation within our equation, we find 
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(63b) 

 

We published this equation already in [11]. 

 

For comparison, reference is made to Eq. (84) from chapter 5.2, which is known from the astrophysical 

literature. 

 

 

3. Derivation of further physical redshift distances 

 

The starting point for the derivation of the further redshift distances are the following elementary equations 
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and 
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and also 
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This results in the following further distances 
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(68) 

 

Ree is the distance at that time between the galaxy observed emitting the light and the origin of the coordinates at 

the time te the light was emitted (te: time at that time). 

Rea is the distance at that time of the observer's galaxy from the origin of the coordinates. 

R0e is the today’s - at time t0, at which the light is absorbed on the place of observer - distance of the light-

emitting galaxy from the origin of the coordinates. 

R0a is today's distance of the galaxy containing the observer from the origin of the coordinates. 

 

These distances become concretely with Eq. (31) 
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and 
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(70) 

 

and of course too 
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These distances from the origin of coordinates yield 
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(72) 

 

De is the distance at that time te between the observed galaxy and the galaxy in which the observer is located. 

 

Furthermore we find 
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(73) 

 

D0 is the today’s distance between the two participating galaxies. 

 

The following figures illustrate the equations for the further redshift distances, where we have normalized all 

distances to R0a. 

 



 28 

 

 

Figure 5.   Redshift distance Rea normalized to the distance R0a and Ω0rm = 0. 

 

This distance is not depending on parameter β0m. 
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Figure 6.     Redshift distance R0e normalized to the distance R0a for various values of the parameter β0m and 

Ω0rm = 0. 

 

 

 

Figure 7.    Redshift distance Ree normalized to the distance R0a for different values of the parameter β0m and 

Ω0rm = 0. 
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Figure 8.   Today's redshift distance D0 normalized to the distance R0a for various values of the parameter β0m 

and Ω0rm = 0. 

 

 

 

Figure 9.   The redshift distance at that time De normalized to the distance R0a for various values of the 

parameter β0m and Ω0rm = 0. 

 

In the astrophysical literature, none of these redshift distances are known and they cannot be derived there, 

respectively. 

 

We will give concrete values for such redshift distances for the galaxy M87 and 27 SN Ia below. 
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approximations for e.g. small redshifts z and is mainly of theoretical nature. The essay is therefore a theoretical 

offer to the observing cosmologists. 
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4.1 Magnitude-redshift relation 

 

The apparent magnitude m depends according to Eq. (55) in addition to the measurable redshift z also on the 

three parameters β0m, Ω0rm and m0a. 

 

To find the values of the parameters, the quasar catalog by Véron-Cetty et al. [1] is suitable in which measured 

redshifts and apparent magnitudes of 132,975 quasars are given. 

 

Fig. 10 shows all these quasars in a single magnitude-redshift diagram, where we have used log10(cz) on the axis  

of ordinates. 

 

 

 

Figure 10.   Magnitude-redshift diagram for all 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

A clear edge exists on the right side of the accumulation of measurement points, which indicates minimum 

apparent magnitudes for associated redshifts. The apparent magnitudes are usually up to far to the left of this 

edge inside the diagram. 
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If we form redshift intervals with mean values of the redshifts and the corresponding mean values for the 

apparent magnitude, this fact leads to a clear curvature of the mean value curve in the direction of the redshift 

axis. This curvature should be explained by means of a valid astrophysical theory. More precisely: The theory 

has to explain the curvature! This suggests that our redshift distance [i.e. ultimately Eq. (55)] could be suitable 

for the measured values. 

 

It is precisely this strange magnitude-redshift diagram, which was stimulating us to think about cosmological 

distance determinations for many years [9]. 

 

To evaluate the quasar data set, we first create 75 z-intervals with 1,773 quasars each. For these intervals, we 

calculate the mean values <zi> and the associated mean values <mi> of the quasars. 

 

We use the following σ
2
-function 
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(74) 

 

for our evaluation of the data. 

The abbreviation pk with k = 1, 2, 3 stands for the three parameters we are looking for, β0m, Ω0rm and m0a. 

 

If we use our magnitude-redshift relation Eq. (55), the σ
2
-function looks more concrete 
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(74a) 

 

Using the quasar data and the usual mathematical procedure, we find the parameters to be β0m = 1.05401 and m0a 

= 20.30342. 

 

Fig. 11 shows the result of the mean value formation and the adaptation of our theory to the curvature of the 

mean value curve. 
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Figure 11.   Magnitude-redshift diagram for 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 

 

A possible interpretation of the measured magnitude-redshift relation may be: 

From our point of view, the quasars came in to being historically slowly as relatively few and weakly luminous 

objects at a point in time that corresponds to about z ≈ 4.3 (development effect). The quasars later behaved as 

our theory expects in flat space and moved with time - i.e. for decreasing redshifts z - on average along the 

theoretical curve (in the diagram from top right diagonally to bottom left). The quasars have gradually died out 

in the recent past and became relatively bright in this process. 

 

 

4.2 Number-redshift relation 

 

We use the following σ
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-function to evaluate the number-redshift relation 
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The abbreviation pk with k = 1, 2, 3 stands for the three parameters we are looking for, β0m, Ω0rm and N0a. 

 

If we insert our number-redshift relation Eq. (61), the Eq. (75) reads concrete 

 

4,5 

4,7 

4,9 

5,1 

5,3 

5,5 

5,7 

5,9 

6,1 

6,3 

6,5 

17 18 19 20 21 22 

lo
g 1

0(
 <

cz
> 

) 

<m> 

log10( <cz> )-<m>-relation  
β0m = 1.05401,   m0a = 20.30342,   Ω0rm = 0 



 34 

 

   
  .log1log3

1

1
1

1
log3

1

1

,,,

1

2

,0101000

0

10

000

2


 













































N

i

iobsaii

i

rmrm

m

rmami

NNzz
zN

Nz





 

 

(75a) 

 

Using simple mathematics, we find N0a = 172,376 for the theoretically expected total number of quasars, if we 

use the value β0m = 1.05401 found via the magnitude-redshift relation. 

 

The expected number N0a is slightly larger than the actual number of quasars measured within the catalogue of 

M.-P. Véron-Cetty et al. [1]. This indicates a certain incompleteness of the measurements, because N0m means 

the sum of all objects which should be found up to z = ∞ (see chapter 2.6). May be that development effects have 

to be involved also, but such effects are not the object of our theoretical contemplations. 

 

Fig. 12 shows the graphic result. 

 

 

 

Figure 12.   Number-redshift diagram for the 132,975 quasars according to M.-P. Véron-Cetty et al. [1]. 
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The abbreviation pk with k = 1, 2, 3 stands for the three parameters we are looking for, β0m, Ω0rm and δ/R0a. 

 

If we use our angular size-redshift relation Eq. (57), the Eq. (76) reads concrete 

 

 

 

.

1

1
1

1

)1(

1

1
,,,

1

2

,

00

0

0

00

0

2






































































N

i

iobs

i

i

rmrm

m

i

a

rmm

a

i

z
z

z

RNR
z 









 

 

 

 

(76a) 

 

The comparison of the theory with the measurement data using β0m = 1.05401 results in a value of δ/R0a = 5.46 x 

10
-5

. 

 

Fig. 13 shows the graphic result. 
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Figure 13.   Angular size-redshift diagram according to K. Nilsson et al. [2]. 

 

For the purpose of comparison, the theoretical curve from the literature [see Eq. (83)] was inserted also. This 

curve cannot explain the position of the measured values in the diagram especially for larger redshifts. 

 

The determination of the linear size δ requires the knowledge of R0a. Because the absolute magnitudes are known 

for some SN Ia (which differ strangely enough slightly from one another), we can determine R0a using a 

magnitude-redshift diagram of these cosmic objects. We will carry out this within the next chapter. 

 

 

4.4 Fixing of R0a with the help of SN Ia 

 

By W. L. Freedman et al. [3], data from a total set of 27 SN Ia were made available, with the help of which we 

can determine both the distance R0a - the observers current physical distance from an origin of coordinates - and, 

as a main result, the today’s Hubble parameter H0a. 

 

The data we are interested in are the distance modules (μTRGB and μCeph, respectively), the maximum apparent 

magnitudes (mCSP_B0 and mSC_B, respectively) and the radial velocities VNED, from which the redshifts zNED can 

be calculated. 

 

The methods taken into account in [3] for determining the maximum apparent magnitude and thus the associated 

absolute magnitude are different, which is why somewhat different values are given for one and the same SN Ia.  

For our purposes, we calculate the mean values from these data and assign them to the relevant SN Ia. 

 

We calculate the absolute magnitudes Mi of the SN Iai using (μTRGB - mCSP_B0) and (μCeph - mSC_B), respectively, 

and then we always calculate an average value <Mi> if both value pairs are specified for one and the same SN Ia. 

From all the absolute magnitudes obtained in this way, we finally form the mean value of the absolute magnitude 

to be <M> ≈ -19.245, which enables us to determine the distance R0a with the aid of the parameter m0a, which 

results from the magnitude-redshift diagram of the SN Ia. The simple equation used for this is 

 

 

 

 

.10
1

5
0

0 




Mm

a

a

R  

 

(77)
 

 

The graphic result is shown in Fig. 14. 
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Figure 14.   Magnitude-redshift diagram for 27 SN Ia according to W. L. Freedman et al. [3]. 

 

The theoretical curve (green) lies exactly on the linear trend line (dashed in red), the equation of which is given 

in the figure. 

 

Finding m0a ≈ 23.209 and using the mean value of the absolute brightness <M> = -19.245, the distance R0a ≈ 

3,096.92 Mpc we are ultimately looking for is the essential result of this data analysis. 

 

With the help of the value of R0a and taking the Eq. (34), which is an approximation for small redshifts, the 

today's Hubble parameter H0a ≈ 65.66 km/(s∙Mpc) results, if we neglect the radiation density how before also. 

This value is slightly below the Planck value (2018) with H0, Planck ≈ 67.66 km/(s∙Mpc) [4].  

 

In Table 9 in the appendix, all the values we have used for the magnitude-redshift diagram of the 27 SN Ia are 

compiled. 

 

Using Eq. (30a) we get as result for the today's mass density 
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With the help of parameters, β0m and R0a determined by us, we find ρ0m ≈ 7.822 x 10
-29

 g/cm
3
 for today's matter 

density inside the universe. 
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the constant mass of the Friedmann sphere - so called by us - results in MFs ≈ 2.86 x 10
56

 g. 

 

Because we generally do not consider the accuracy within this paper, we simply specify the decimal places with 

up to three places, whereby the mathematical analysis of the data usually delivers more decimal digits. 

 

Using Eq. (36) we find for the Schwarzschild radius RS ≈ 13,761.94 Mpc and the speed which is contained in Eq. 

(36a) results in V0 ≈ 315,984.25 km/s. This value is a little bit bigger than the velocity of light c0 in vacuum. 

Therefore we could think that the parameter value β0m = 1 should be realized in the nature. We believe that more 

and better data material would give us this value. 

 

With the known value R0a ≈ 3,096.92 Mpc we can calculate the mean linear size of the Nilsson objects [2] to be 

δ ≈ 0.169 Mpc, because we have found δ/R0a = 5.46 x 10
-5

 for them. 

Using known R0a and β0m, of course, all linear dimensions of these objects can be calculated using their angular 

size and redshift if they could be measured. 

 

 

4.5 Peculiar velocities of SN Ia 

 

Because all SN Ia have in general the same average absolute magnitude <M> ≈ -19.245 they all have to lie on 

the theoretical curve in Fig. 13. As this is not the case, they must have partly peculiar velocities, which can be 

calculated in a simple way. The following Table 1 shows the result: 

 

SN Ia zobserved zHubble 
cz = vpeculiar 

(km/s) 
SN Ia zobserved zHubble 

cz = vpeculiar 

(km/s) 

2011fe 0,00151772 0,00142648 27,351 2011iv 0,00435635 0,00395939 119,006 

1989B 0,00229826 0,00264803 -104,860 1998aq 0,00456316 0,00483165 -80,494 

1998bu 0,00229826 0,00247075 -51,711 2011by 0,00456316 0,00522767 -199,216 

2001el 0,00349242 0,00448653 -298,028 2013dy 0,00470325 0,00434344 107,869 

1981B 0,00350242 0,00330580 58,945 2012ht 0,00482667 0,00530087 -142,162 

1990N 0,00350242 0,00520350 -509,969 1994ae 0,00517691 0,00603589 -257,514 

1994D 0,00350242 0,00349444 2,392 2007sr 0,00567726 0,00448653 356,972 

2012cg 0,00350242 0,00343039 21,594 2002fk 0,00621763 0,00723407 -304,719 

2015F 0,00423960 0,00469921 -137,788 1995al 0,00629102 0,00626417 8,049 

2012fr 0,00434300 0,00407087 81,583 2007af 0,00661458 0,00545039 349,014 

1980N 0,00435635 0,00405208 91,218 2005cf 0,00748518 0,00609216 417,616 

1981D 0,00435635 0,00388677 140,776 2003du 0,00807892 0,00772045 107,467 

2006dd 0,00435635 0,00465588 -89,797 2009ig 0,00845251 0,00710087 405,214 

2007on 0,00435635 0,00467749 -96,277         
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Table 1.   Peculiar velocities of the 27 SN Ia and host-galaxies, respectively. 

Peculiar velocities with a positive sign mean that the SN Ia is moving away from us as observer in addition to the 

pure Hubble flow. Velocities with negative sign show that the SN Ia is moving locally in the direction of 

observer. 

 

These peculiar velocities given here are only the right ones if the absolute magnitude <M> of the SN Ia used is 

real valid. 

 

One can calculate all redshift distances - e.g. D, D0 and De -, which are of interest using the corrected zHubble from 

Table 1. 

 

 

4.6 Real further redshift distances for the SN Ia 

 

Because we were able to determine R0a, we can graphically display all the further redshift distances in a form, 

which is not normalized to R0a. The result is shown in Fig. 15, using the values we found for β0m and R0a. 
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Figure 15.   Redshift distance D (real light path) and all further redshift distances Di (i = 0, e) and Rjk (j = 0, e; k 

= e, a) as a function of the redshift up to z = 11. 

 

To interpret Fig. 15: 

a) For redshift z going towards infinity the distance D goes to R0a. This means that no observer can observe 

objects for which is D > R0a ≈ 3,096.92 Mpc. 

b) The light path distance D = R0a - Ree is always greater than the distances D0 (today’s) and De (time at that 

time). 

In particular, the light path D is not equal to the today’s distance D0 between two astrophysical objects. 

c) The distances Rjk are physical distances from an origin of  coordinates and develop directly with the change in 

the scale parameter a(t) over time. For large redshifts, the scale parameter was correspondingly small and, as a 

result, the associated physical distances were also correspondingly small. 

d) The distance at that time De is interesting: It shows a maximum for a specific redshift and only approaches 

zero for very large redshifts.  

 

For calculation of the real redshift distances of SN Ia, we use the corrected redshifts because of peculiar 

velocities calculated in the chapter before. 

 

Table 2 summarizes all calculated redshift distances of the 27 SN Ia used by us for analyzing the data. 

 

SN Ia Rea Ree R0e R0a De D0 D 

2011fe 3,092.51 3,090.42 3,094.83 3,096.92 2.09 2.09 6.50 

1989B 3,088.74 3,084.87 3,093.04 3,096.92 3.87 3.88 12.05 

1998bu 3,089.29 3,085.67 3,093.30 3,096.92 3.61 3.62 11.25 

2001el 3,083.09 3,076.55 3,090.35 3,096.92 6.54 6.57 20.37 

1981B 3,086.72 3,081.89 3,092.08 3,096.92 4.83 4.84 15.03 

1990N 3,080.89 3,073.31 3,089.31 3,096.92 7.58 7.61 23.61 

1994D 3,086.14 3,081.03 3,091.80 3,096.92 5.10 5.12 15.89 

2012cg 3,086.33 3,081.32 3,091.89 3,096.92 5.01 5.03 15.60 

2015F 3,082.44 3,075.59 3,090.04 3,096.92 6.85 6.88 21.33 

2012fr 3,084.36 3,078.43 3,090.96 3,096.92 5.94 5.96 18.49 

1980N 3,084.42 3,078.51 3,090.99 3,096.92 5.91 5.93 18.41 

1981D 3,084.93 3,079.26 3,091.23 3,096.92 5.67 5.69 17.66 

2006dd 3,082.57 3,075.78 3,090.10 3,096.92 6.78 6.82 21.14 

2007on 3,082.50 3,075.69 3,090.07 3,096.92 6.82 6.85 21.23 

2011iv 3,084.71 3,078.93 3,091.12 3,096.92 5.78 5.80 17.99 

1998aq 3,082.03 3,074.99 3,089.85 3,096.92 7.04 7.07 21.93 

2011by 3,080.81 3,073.20 3,089.27 3,096.92 7.61 7.65 23.72 

2013dy 3,083.53 3,077.19 3,090.56 3,096.92 6.33 6.36 19.73 

2012ht 3,080.59 3,072.87 3,089.16 3,096.92 7.72 7.76 24.05 

1994ae 3,078.34 3,069.57 3,088.09 3,096.92 8.77 8.83 27.36 

2007sr 3,083.09 3,076.55 3,090.35 3,096.92 6.54 6.57 20.37 

2002fk 3,074.68 3,064.18 3,086.35 3,096.92 10.49 10.57 32.74 

1995al 3,077.64 3,068.54 3,087.76 3,096.92 9.10 9.16 28.38 

2007af 3,080.13 3,072.20 3,088.95 3,096.92 7.93 7.97 24.72 

2005cf 3,078.17 3,069.31 3,088.01 3,096.92 8,86 8,91 27,61 

2003du 3,073.19 3,062.00 3,085.64 3,096.92 11.19 11.28 34.92 
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2009ig 3,075.08 3,064.78 3,086.54 3,096.92 10.30 10.38 32.14 

 

Table 2.   Redshift distance D and the further redshift distances Di and Rjk of all 27 SN Ia. 

 

To interpret the distances from Table 2: 

For a more detailed explanation, we take into account the SN Ia 2006dd, for example, and use it to interpret the 

meaning of the distances in the table. 

 

The "light-travel time" always means the time interval between the emission of light (the time at that time te, 

2006dd) by the SN Ia 2006dd and today (t0), i.e. Δt2006dd = t0 - te,2006dd. This light-travel time is generally different 

for all observable cosmic objects, here especially for the individual SN Ia 2006dd we will consider. 

 

a) The today's (t0) distance between the selected SN Ia 2006dd and us as observers is D0 ≈ 6.82 Mpc. 

b) The distance at that time (te) between this SN Ia 2006dd and us as observers was De ≈ 6.78 Mpc. 

According to this, the distance between the two cosmic objects has increased by about 0.04 Mpc during the light-

travel time Δt2006dd = t0 - te,2006dd. 

c) The SN Ia 2006dd has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 

14.32 Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observers has been expansively shifted away from the origin of the coordinates by ΔRa 

= R0a - Rea ≈ 14.35 Mpc during the light-travel time due to a(t). 

The difference between the two displacement distances is of course the increase in the distance between the two 

cosmic objects noted above. 

e) The real light path (redshift distance) covered by the photons within the interval of time Δt2006dd = t0 - te,2006dd  

is D ≈ 21.14 Mpc. It is unequal to the other mentioned distances Di and greater than these. 

 

 

4.7 Evaluation of the data from the black hole in M87 

 

For the sake of simplicity, we summarize the data taken from the astrophysical literature on the galaxy M87 

containing a black hole (BH) in it in the first line of Table 3 {see [5] and [6]}. 

The second line lists the data specified in this paper, which usually differ from those in the astrophysical 

literature. 

 

  D [ Mpc ] MB [ mag ] z mB [ mag ] ΘBH [ μas ] δ/2 = RS [ pc ] MBH [ g ] 

literature 16.9 / 16.8 -23.5 0.004283 9.6 42 

 

1.2928E+43 

we 19.45 -21.845 

   

1.9805E-03 4.1161E+43 

 

Table 3.   Summary of data from galaxy M87 containing a black hole in it. 
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The theory was adapted to the measured angle size ΘBH given in the astrophysical literature. Overall, a larger 

redshift distance D, a smaller absolute magnitude MB and a similar value of mass MBH of the black hole follow. 

 

Table 4 lists the values found by means of our theory for all redshift distances Rjk, Di and D, respectively. 

 

[ Mpc ] Rea Ree R0e R0a De D0 D 

we 3,083.71 3,077.47 3,090.65 3,096.92 6.25 6.27 19.45 

literature --- --- --- --- --- --- 16.8 

 

Table 4.   Redshift distances Di, D and Rjk belonging to the black hole in M87. 

 

From these values, the expansion-related shifts in distance of the galaxy M87 and of the galaxy with us as 

observers can be calculated, which took place during the time of light travel. 

 

The theory from the astrophysical literature does not know the most distances listed in Table 4. Therefore, they 

cannot be calculated using this theory and not determined in terms of value. 

 

The distance D differs because of the physical meaning: In our theory, D is the real physical light path, which is 

not the case in the astrophysical literature. 

 

We briefly interpret the meaning of the distances listed in Table 4, whereby the light-travel time is again defined 

as described in a former chapter: 

a) The today's (t0) distance between the BH or the galaxy M87 and us as observers is D0 ≈ 6.27 Mpc. 

b) The distance at that time (te) between the BH (or M87) and us as observers was De ≈ 6.25 Mpc. 

Accordingly, the distance between the two cosmic objects has increased by about 0.02 Mpc during the light-

travel time ΔtBH, M87 = t0 - te,BH, M87. 

c) The BH (or M87) has been shifted expansively away from the origin of the coordinates by ΔRe = R0e - Ree ≈ 

13.18 Mpc during the light-travel time due to the time-dependent scale parameter a(t). 

d) The galaxy with us as observer was expansively shifted away from the origin of the coordinates by ΔRa = R0a 

- Rea ≈ 13.21 Mpc during the light-travel time due to a(t). 

e) The real light path (redshift distance) covered by the photons during the interval of time ΔtBH, M87 = t0 - te,BH, 

M87 is D ≈ 19.45 Mpc. It is unequal to the other mentioned distances Di and greater than these. 

 

Fig. 16 shows the various calculated distances in a clear form. 
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Figure 16.   Visualization of the distances Di, D and Rjk with regard to M87 and observer. 

 

The distances are not drawn to scale here. 

 

 

4.8 Maximum values known today: Galaxy UDFj-39546284 and Quasar J0313 

 

The galaxy UDFj-39546284 [8] currently holds the record among the galaxies with a redshift of z = 10.3, while 

the quasar J0313 [7] with z = 7.642 holds the analog record among the quasars. 

 

Table 5 shows all the corresponding distances Rjk, Di and D together using Mpc as unit of measurement. 

 

object name z D D0 De Ree R0e Rea R0a object 

J0313 7.642 2,962.902 2,043.448 236.455 134.018 1,158.183 358.357 3,096.92 quasar 

UDFj-

39546284 10.300 3,005.525 2,175.642 192.535 91.395 1,032.763 274.064 3,096.92 galaxy 

 

Table 5.   All calculated redshift distances Rjk, Di and D for the two cosmic objects with the maximum redshifts 

and for us as observer [ Mpc]. 
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Table 6 summarizes the spatial shifts of the objects with respect to the origin of coordinates due to the expansion 

during the associated light travel times. 

 

object name R0e - Ree R0a - Rea object 

J0313 1,024.165 2,738.563 quasar 

UDFj-39546284 941.368 2,822.856 galaxy 

 

Table 6.   Expansion-related shifts in the distance of the quasar and the galaxy and of the observer [Mpc]. 

 

We have already explained above how the tables have to be interpreted. 

 

Fig. 17 shows the distances Di and D of the three special chosen astrophysical objects analyzed in this paper in 

one diagram, whereby we have entered all numerical values for the distances in Mpc. 

 

 

 

Figure 17.   All distances Di and D for M87, J0313 and UDFj-39546284. 

 

The middle curve shows the today’s distances D0 of the three objects from us as observers. These distances are 

clearly shorter than the associated light paths D of these objects. 
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5 Additions 

 

5.1 About the mass of Friedmann sphere 

 

The cause of the expansion of the universe visible to us as observers is its effective constant mass MFs or the 

time-varying density ρm(t), respectively. It ensures that the scale parameter changes over time. To check this 

statement, one should simply set the matter density in the Friedmann equation to zero. 

 

Every cosmologist, therefore, has to ask himself where exactly this mass is located in the visible universe. He 

can gain an answer for this by borrowing the appropriate ideas from classical non-relativistic Newtonian 

cosmology. There he has to imagine a mass sphere whose radius changes over time (e.g. grows). This means that 

the mass in question is completely within this sphere, and it is evenly distributed and remains there according to 

the cosmological principle. In relativistic cosmology, the time depend product of scale parameter and co-moving 

coordinate distance R(t) = a(t) r takes over the role of the physical radius of the mass sphere, and it holds that the 

entire mass to be considered is inside this sphere (Friedmann sphere named here). 

  

Incidentally, the Friedmann equation of the flat universe looks strangely exactly as the equation of the non-

relativistic Newtonian cosmology. There is no relativity seen in the equation, e.g., in the sense of limiting the 

rate of change da/dt of the scale parameter to the speed of light c0. 

 

The Fig. 18 shows the projection of a Friedmann sphere in to the plane at time t0 (today) in which examples of 

possible places for an observer and galaxy observed are drawn. 
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Figure 18.   Friedmann sphere containing examples of physical locations of an observer and a galaxy. 

 

Because of the law of conservation of mass  
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(36a)

 
 

which is used here, we see that R0a is today's radius of the Friedmann sphere with today's mass density ρ0m. 

 

An observable galaxy can minimally have the co-moving coordinate with re = 0. If a galaxy is placed there, we 

observe an infinitely large redshift for such a galaxy according to our redshift distance. For all other locations re 

≠ 0 of an observed galaxy, a smaller redshift is always measured. 

 

Of course, each observer can also, e.g., look in exactly the opposite direction to the direction shown (green 

arrow). In this case, he looks again into a Friedmann sphere, which belongs to this direction. For D = R0a, there is 

also an infinite redshift in this direction. The observer can of course also look in any other directions. The 

observer always looks into Friedmann spheres, which of course partially overlap. 
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Overall, there is a part of the universe with a spherical radius R0a, that is visible to any observer. A universe 

thought to be spherical corresponds to at least one sphere with the radius 2 x R0a, since beyond R0a there is 

always also mass. Every observer sits on the surface of Friedmann spheres. Nevertheless, he can believe that his 

place is also in a center of such a Friedmann sphere. 

 

If we would put the position of an observer a little outside the Friedmann sphere shown in Fig. 16, he would find 

the same situation as described above, if the universe would be actually much larger than a sphere with the 

radius 2 x R0a or even infinitely large. 

 

 

5.2 About the derivation of the redshift distance within the astrophysical literature 

 

In the astrophysical literature, the observer is usually placed in the coordinate origin ra = 0 (see Fig. 19). Because 

of re  ≥  ra = 0, this results in the light path simply as Dliterature = a0re. This depends only on the co-moving 

coordinate location re of the observed galaxy and on the today’s value of the scale parameter a0. An earlier scale 

parameter such as ae does not play a role in this approach, which we consider as a strong limitation of the 

generality.  

 

In this case, the photons run inside a mass sphere from the outside to the inside, i.e., always towards the origin ra 

= 0 (incoming photons). Any other way of defining Dliterature would be physically nonsense. 

 

 

 

Figure 19.   Observer generally placed on the center of the co-moving coordinate system (ra = 0). 

 

The calculation analogous to our derivation of the redshift distance (see chapter 2.2) results (assuming Ω0rm = 0 

here) first in 
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(79) 

 

We have denoted the index of the maximum distance for which z = ∞ is reached with 0, because the calculation 

based on Dliterature, i = a0 re, i generally gives the today’s distance between any galaxy i and any observer. 

 

In the astrophysical literature, the magnitude distance is indicated with 

 

   ,1 literaturem DzD   (80)
 

 

whereby with the help of factor (1 + z) an overall thinning of the number of photons due to the enlargement of 

the spherical area on which the radiation hits after its way through the universe and the energy loss due to the 

redshift is taken into consideration. 

 

Therefore, it results first in 
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Here, too, the prefactor is a distance parameter for which can be introduced an apparent magnitude. 

 

If, in another case which is also possible, the observed galaxy (each one because there are many; see Fig. 20) 

each placed to its own coordinate origin (outgoing photons), the result of calculation - for obvious reasons of 

symmetry - is of course the same redshift distance as above. This can easily be checked by means of an 

elementary calculation. 
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Figure 20.   Observed galaxies (i = 1, 2) each in their own coordinate origin (re,i = 0). 

 

Therefore, this results in summery for the magnitude-redshift relation in 
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For the angular size-redshift relation we find 
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For the number-redshift relation we get accordingly 
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All three equations also result from the well-known Mattig equation (1958), if the delay parameter q0 = ½ is set 

there, whereby this equation describes a flat universe {see e.g. A. R. Sandage et al. [10]}. 

 

We have used Eq. (83) in the measured value diagram Fig. 12 for comparison with the theory presented here. 

 

 

6. Hubble parameter again 
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At this point we explicitly point out that our equation of today's Hubble parameter - which only applies to very 

small redshifts - differs significantly from the definition (!) used in the astrophysical literature. The equations for 

both are 
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(85a,b) 

 

For an arbitrary point in time t this reads 
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(85a) 

 

The index a generally indicates the spatial proximity to the observer, meaning r = ra. 

 

In our theory, the numerator contains the constant physical speed of light c0 in vacuum, while the current, i.e. the 

variable spatial expansion speed da/dt is found at this place in the astrophysical literature. 

 

In the more recent past - time tx - our distance from the origin of coordinates Rxa < R0a was slightly smaller than 

the current one and the Hubble parameter Hxa was therefore correspondingly larger (also via the parameter βxm). 

 

Furthermore, in the case of the Hubble parameter in astrophysical literature, the - non-physical - actually spatial 

expansion speed da/dt can have been arbitrarily large in the past and, in addition, the scale parameter a(t) 

arbitrarily small. 

Both types of Hubble parameters therefore show a completely different behavior! 

 

In addition, our Hubble parameter is really made up of physical quantities, while the Hubble parameter in the 

astrophysical literature is only defined using the non-physical scale parameter a(t), although to the latter can be 

assigned a suitable unit of a distance - e.g. Mpc. This means that a(t) alone per se is not a physical distance. This 

meaning only applies to the real physical distance R(t) = a(t) r and the differences that can be calculated from it. 
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The Hubble parameter is in general the proportionality factor between the so called Hubble speed V = c0z and a 

distance, i.e. the actual Hubble law applies 
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Both equations are called Hubble law. 

For the redshift z it simply follows therefore 
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(87a,b) 

 

In the astrophysical literature, the redshift z is therefore depending on the ratio of the current speed (da/dt)0 to the 

speed of light c0 in the product with the ratio of an object distance Dlit and the current scale parameter a0. 

 

Our redshift, on the other hand, is depending on the ratio of the light path distance D and the current distance R0a 

of the observer galaxy from an origin of the coordinates and is besides proportional to a factor that contains the 

parameter β0m. 

 

Using the parameter β0m 
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we see in our case 
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i.e. a direct dependence on the Schwarzschild radius RS, or more precisely on the ratio R0a to RS. 

 

Overall, it is somewhat unclear in the astrophysical literature what exactly corresponds to the distance Dlit. 

 

Note: 

Of course, we have set Ω0rm = 0 in equations (85) to (88) for the case of neglecting the radiation matter. 

 

Fig. 21 shows the difference between our non-approximated redshift distance D and the linear Hubble redshift 

distance that is only an approximated one. 

 

 

 

Figure 21.   Non-approximated redshift distance D compared to the linear Hubble redshift distance. 

 

It can be seen that the two curves already clearly separate from each other at z ≈ 0.04, and that the simple linear 

Hubble's law results in distances that are significantly too large for larger redshifts, so that it is no longer 

applicable from around this value. 

 

Recall: 

Of course, it should be noted that the Hubble parameter H0a in our theory results from an approximation for 

small redshifts z. This is not the case with Hlit in astrophysical literature. 
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7. Concluding remarks 

 

The real light path D(z) of the photons through the expanding universe corresponds to a dynamic distance and 

appear therefore as an apparent one. This distance is not identical to the today’s distance D0(z) between the 

cosmic objects. 

For every conceivable observer, the cosmic objects are not spatially, where they appear at first glance! 

In cosmology, nothing is what it seems to be if we look at distances and therefore in the past. 

 

Of course, all cosmological relevant astrophysical objects have a today’s distance D0(z). However, this is not 

observable, but we can calculate it. Photons that are emitted at this distance from the observed galaxy cannot 

have reached us so far. 

 

A fundamental property of quantum mechanics is that it can only make probability statements about the 

microscopic objects it deals with. In our paper is shown that both the measuring and the theorizing astrophysics 

and cosmology, respectively, strictly speaking, can only make statements about mean values of very distant and 

large numbers of cosmic objects. 

This may be one of the reasons why both theories - the theory for the extremely small and the theory for the 

extremely large - do not fit together, i.e. cannot be brought together. 

 

 

 

Note of thanks: 

I would like to thank my wife for the long-standing toleration and the corresponding endurance of my almost 

constant virtual absence. What would I be without her?! 

 

 

 

8. Appendix 

 

In this table appendix, we provide the essential data that we have used and some of the data that we have edited 

or generated for general purposes. 

 

< V >i < z >i < V >i < z >i < V >i < z >i 

17.12072194 0.269543711 19.5118161 1.28508799 19.7439932 1.86740102 

18.42994924 0.434725324 19.4960406 1.30997857 19.7431839 1.90379949 

18.77986464 0.514410603 19.5406994 1.33635871 19.73815 1.91629442 

18.92177101 0.571495206 19.5648675 1.36044896 19.7370051 1.94113536 

19.01993232 0.621120135 19.5526283 1.38646193 19.6390299 1.96661139 

19.07454597 0.665043993 19.5667343 1.41249746 19.7247377 1.99498872 
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19.10685279 0.710045685 19.5917766 1.43823632 19.7073435 2.02761873 

19.20756345 0.750830795 19.5835759 1.46348111 19.7225437 2.05895826 

19.23878173 0.788362662 19.6146701 1.4877084 19.7209927 2.09067964 

19.34673999 0.823077834 19.6560914 1.50872984 19.7166723 2.12286464 

19.35605189 0.857111675 19.6421545 1.53039989 19.7562211 2.15726452 

19.35379019 0.889902425 19.6730062 1.55031021 19.6955838 2.1915251 

19.35354202 0.925268472 19.669718 1.57141117 19.7102256 2.23148844 

19.36111675 0.958962211 19.691489 1.59370615 19.6203328 2.27565595 

19.36687535 0.99085674 19.6689622 1.61663057 19.6516638 2.32895262 

19.39208122 1.021072758 19.7130344 1.64024196 19.7034969 2.39616356 

19.41216018 1.049862944 19.7208742 1.66227637 19.6915454 2.47184715 

19.43737733 1.076128596 19.7568415 1.68460462 19.7660462 2.57089058 

19.47736041 1.10186802 19.6973942 1.70912747 19.7708009 2.71401918 

19.4307727 1.129618161 19.7453187 1.7323057 19.7781162 2.90122279 

19.45345178 1.157690919 19.7723632 1.75403384 19.9208291 3.05796277 

19.4499718 1.18469656 19.7568754 1.77625888 20.0279357 3.20401523 

19.50609701 1.208890017 19.7599436 1.79742358 20.2283362 3.40521263 

19.48940778 1.233098139 19.7587704 1.82113988 20.5549521 3.7254264 

19.47597857 1.259028765 19.7435195 1.84394303 21.3169261 4.34427862 

 

Table 1.   Mean values from the quasar data set used according to [1]. 

 

Hint: 

<z>i (with i = 1, 2, ..., 75) are the 75 mean values of the redshifts of the quasars in the redshift intervals formed. 

<V>i are the associated 75 mean values of the apparent visual magnitude of the quasars. 

 

zi (end of interval) Ni zi (end of interval) Ni 

0.24669 622 3.45369 128,884 

0.49338 3,891 3.70038 130,205 

0.74008 12,827 3.94708 131,357 

0.98677 25,495 4.19377 132,019 

1.23346 41,724 4.44046 132,432 

1.48015 58,818 4.68715 132,669 

1.72685 78,456 4.93385 132,848 

1.97354 97,109 5.18054 132,902 

2.22023 110,358 5.42723 132,924 

2.46692 117,810 5.67392 132,932 

2.71362 121,463 5.92062 132,949 

2.96031 123,820 6.16731 132,972 
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3.20700 126,835 6.41400 132,977 

 

Table 2.   Numbers Ni summed up in the redshift intervals zi of the quasars according to [1]. 

 

SN Ia μTRGB μCeph μ or <μ> mCSP_B0 mSC_B mB or <mB> Mi or <Mi> VNED z 

1980N 31.46 

 

31.46 12.08 

 

12.08 -19.38 1,306.00 0.004356347 

1981B 30.96 30.91 30.94 11.64 11.62 11.63 -19.31 1,050.00 0.003502423 

1981D 31.46 

 

31.46 11.99 

 

11.99 -19.47 1,306.00 0.004356347 

1989B 30.22 

 

30.22 11.16 

 

11.16 -19.06 689.00 0.002298257 

1990N 

 

31.53 31.53 12.62 12.42 12.52 -19.01 1,050.00 0.003502423 

1994D 31.00 

 

31.00 11.76 

 

11.76 -19.24 1,050.00 0.003502423 

1994ae 32.27 32.07 32.17 12.94 12.92 12.93 -19.24 1,552.00 0.005176915 

1995al 32.22 32.50 32.36 13.02 12.97 13.00 -19.37 1,886.00 0.006291019 

1998aq 

 

31.74 31.74 12.46 12.24 12.35 -19.39 1,368.00 0.004563157 

1998bu 30.31 

 

30.31 11.01 

 

11.01 -19.30 689.00 0.002298257 

2001el 31.32 31.31 31.32 12.30 12.20 12.25 -19.07 1,047.00 0.003492416 

2002fk 32.50 32.52 32.51 13.33 13.20 13.27 -19.25 1,864.00 0.006217635 

2003du 

 

32.92 32.92 13.47 13.47 13.47 -19.45 2,422.00 0.008078922 

2005cf 

 

32.26 32.26 12.96 13.01 12.99 -19.28 2,244.00 0.007485178 

2006dd 31.46 

 

31.46 12.38 

 

12.38 -19.08 1,306.00 0.004356347 

2007af 31.82 31.79 31.81 12.72 12.70 12.71 -19.10 1,983.00 0.006614576 

2007on 31.42 

 

31.42 12.39 

 

12.39 -19.03 1,306.00 0.004356347 

2007sr 31.68 31.29 31.49 12.30 12.24 12.27 -19.22 1,702.00 0.005677261 

2009ig 

 

32.50 32.50 13.29 13.46 13.38 -19.13 2,534.00 0.008452514 

2011by 

 

31.59 31.59 12.63 12.49 12.56 -19.03 1,368.00 0.004563157 

2011fe 29.08 29.14 29.11 9.82 9.75 9.79 -19.33 455.00 0.001517717 

2011iv 31.42 

 

31.42 12.03 

 

12.03 -19.39 1,306.00 0.004356347 

2012cg 31.00 31.08 31.04 11.72 11.55 11.64 -19.41 1,050.00 0.003502423 

2012fr 31.36 31.31 31.34 12.09 11.92 12.01 -19.33 1,302.00 0.004343005 

2012ht 

 

31.91 31.91 12.66 12.70 12.68 -19.23 1,447.00 0.004826672 

2013dy 

 

31.50 31.50 12.23 12.31 12.27 -19.23 1,410.00 0.004703254 

2015F 

 

31.51 31.51 12.40 12.28 12.34 -19.17 1,271.00 0.0042396 

      

<M>= -19.24 

   

Table 3.   Summary of the data which we have used from the 27 SN Ia according to [3]. 

 

SN Ia values that can be traced back to a mean value are marked in green (bold). 

The individual meanings of the data can be found in the article mentioned. 
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The data for the angular-size redshift diagram can be found in full in [2]. 
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