The gaps between primes

By LEI SHI

Abstract

It is proved that

- For any positive integer d, there are infinitely many prime gaps of size
2d.

- Every even number greater than 2 is the sum of two prime numbers.
Our method from the analysis of distribution density of pseudo primes in spe-
cific set is to transform them into upper bound problem of the maximum gaps
between overlapping pseudo primes, then the two are essentially the same
problem.
Keywords: Polignac’s conjecture; Twin prime conjecture; Goldbach’s conjec-
ture; Sieve; Prime gaps.
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1. Introduction

In number theory, Polignac’s conjecture was made by Alphonse de Polignac
in 1849 and states:

For any positive even number n, there are infinitely many prime gaps of
size n. In other words: There are infinitely many cases of two consecutive prime
numbers with difference n. The case n = 2, it is the twin prime conjecture.

Although the conjecture has not yet been proven or disproven for any
given value of n, in 2013 an important breakthrough was made by Zhang
Yitang who proved that there are infinitely many prime gaps of size n for
some value of n < 70,000,000. Later that year, James Maynard announced a
related breakthrough which proved that there are infinitely many prime gaps
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of some size less than or equal to 600. As of April 14, 2014, one year after
Zhang’s announcement, according to the Polymath project wiki, n has been
reduced to 246. Further, assuming the Elliott—Halberstam conjecture and its
generalized form, the Polymath project wiki states that n has been reduced to
12 and 6, respectively [6].

Goldbach’s conjecture is one of the oldest and best-known unsolved prob-
lems in number theory and all of mathematics. It was proposed by the German
mathematician Christian Goldbach in a letter to Leonhard Euler on 7 June
1742. It states that every even whole number greater than 2 is the sum of two
prime numbers. The conjecture has been shown to hold for all integers less
than 4 x 10'®, but remains unproven despite considerable effort [3].

In this paper, we will prove the above two conjectures.

- Theorem 1. For any positive integer d, there are infinitely many prime
gaps of size 2d.

- Theorem 2. Every even number greater than 2 is the sum of two prime
numbers.

Here is a brief introduction to the main ideas of proofs.

In the study of a + b problems, the B, (x,z) type sieve function is com-
monly used. Since Brun obtained 9 + 9, many research results on a + b type
propositions have corresponding forms of twin prime number problem. For
example, the Brun-Buchstab sieve method for deriving the 5 4+ 5 problem can
also be used to prove with almost the same complexity that there are infinite
positive integers n such that the number of prime factors for n and n + 2 does
not exceed 5. But the complexity of these two problems shows a significant dif-
ference when the Selberg sieve is used to estimate the upper bound of P, (x, z).
At this point, the two problems can be linked together through the monotonic
principle in the sieve method.

The abstract form of the sieve method is usually referred to as

S(A,P):=A\ [ 4,
peEP

where A is a set of integers, P is a set of prime numbers, and 4, is a subset
of all elements in A that can be divisible by p. It is easy to see from the
Inclusion-Exclusion Principle that
#S(A,P) =) (~1)" Ao,
QCP
For any subset Q of P,
Ag = ﬂ Ap.
pEQ

It can be seen that the sieve method is essentially calculating the number of
remaining elements in the Difference of a set and the Union. The basic problem
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of the sieve method is to estimate the upper bound and positive lower bound
of the sieve function (if any).
In typical scenarios, the modern definition of the sieve function is

S(A,P,z):={a€ A: Vp|P(2), pfa},
where
P(z)= H .

peP
p<z

It is easy to see that
#S (AP, 2) = > 1,

a€A
(a,P(z)) =1

That is to calculate the number of elements in A that are coprime with P (z).
So when using the sieve method to study twin prime numbers and the Goldbach
problem, that is A ={i(i—2): i <w} and A= {i(w—1i): i <w}.

The form of the sieve function on a continuous interval will be like

S(0,P;P):={0<a<P: (a,P)=1},

where

rP=1]n»

peEP
P is composed of the first n odd prime numbers
P = {pl7p25p37 e 7pn} .

When n is sufficiently large, for any positive integer d, if h and h — d are
both elements of S (0, P; P), then there must exist two odd numbers ¢; and g2
in S (0, P; P) that are coprime with P and with a gap of size 2d, such as:

qleh_Pa

QQZQ(h—d)—P.

It is easy to know that a sufficient condition for ¢; and g2 to be prime numbers
is that their values are both on the interval [pn, P2+ 2pn].
Defining product functions

v(a) = H -
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Then, for the problem of the gap between prime numbers, there is a sieve
function that removes multiple congruence classes

S2(0,P;Pv(a)):={0<a<P: (v(a),P)=1}.

In this way, the problem of the gap between two prime numbers is trans-
formed into the problem of the distribution of elements in the Sy sieve. Con-
sidering the gap between adjacent elements in Sy sieve, if the maximum gap
between adjacent elements in Ss sieve is not greater than }%, then there must
be at least one element h* in S sieve, so that the values of ¢] = 2h* — P and
¢ =2 (h* — d) — P are both within the interval [pn,pfl + 2pn].

The problem of the sum of two prime numbers is similar. Simply replace
the (h — d) in the g2 expression with (d — h), and replace —P with 4P, then
we can obtain that the two elements g; and ¢o satisfy ¢ + g2 = 2d. But this
constraint is more stringent on the maximum gap between adjacent elements
in Ss, to ensure that such a prime pair always exists continuously for any d.

So we unified the sum of two prime numbers problem and the gap between
prime numbers problem into the minimum upper bound problem of the gaps
between adjacent elements in the Sy sieve.

Certainly, we can also describe this same problem in a more intuitive set
form.

For any positive integer d, take a sufficiently large prime p,,, where p,, is
the n-th odd prime. [x1]

Let the set H denotes all integers without factors p1,p2, -, pn.

H={h: (Yp € {p1,p2.- - ,pa}) (P 1 |R])} [2]

For any element h belongs to H, if (h — d) also belongs to H, there must
be two odd pseudo primes [%3] ¢; and g2 with a gap of size 2d belonging to H,
such as:
q1 = 2h — T,

q2:2(h_d)_T>

T = H .

pE{p1,p2,* ;Pn}
Then the sufficient condition for them to be real prime numbers is in the
domain [pn, P2+ 2pn].
Let H* be the set of overlapping pseudo primes [#4], composed of all
elements that meet the above conditions.

H*={h: heHA(h—d) € H}.

where

Now let’s consider the gaps between adjacent elements belong to H*. Ob-
viously, if the maximum gaps between adjacent elements belong to H* are less
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2
than %", there will be at least one element h* belongs to H, so that ¢; and
g2 are both in the domain [pn, P2+ 2pn] , because the range is greater than p2.

The case of sums of two primes is similar, except that (h —d) will be
replaced by (d — h) and the condition of maximum gaps between adjacent
elements belong to H* must be less than P

Therefore, the core of this proofs is that the upper bound of the maximum
gaps between overlapping pseudo primes must be less than pg—%. By estimating
the maximum length of consecutive elements in the complement set of H*, we
will prove that it holds when p,, is greater than 2096.

Remark 1.
[¥1] in other words, as long as d is sufficiently small, such as d = 1, then p,
can be arbitrary. Actually, p, > 2d will be enough.
[¥2] for example, for p, =5, H={...,-4,-2,-1,1,2,4,7,8,11,13,14,16,17,...}.
[¥3] pseudo prime means that it contains no factors p1,pe, -+ , pn.
[*4] overlapping pseudo prime means that element h and its corresponding
element (h — d) are both pseudo primes in set H.

2. Notation and definitions

Notation.
a, b, c, d, h, 1, j, k, m, n, q, t, w, u: integers.
p: a prime number.
p¢: the t-th odd prime number p;=3, po=>5, etc.
a | d means a is a divisor of d.
a 1 d means a does not divide d.
x: variable.
|z] means the largest integer which does not exceed x.
[2] means the least integer not less than x.
means d choose a; the binomail coefficient L
a al(d—a)!
A: an abstract field for function parameter.
Z: the field of integers.
MP°: the base set of p1,p2, -, Pn.
M;: infinite set generated by elements of M° with offset i.
M;u; means M; U M.
Aa,b) means AN Ja,b).
|A| denote the cardinality of set A.
A(A,d): generate a new set by adding d to each element of set A.
T (a): product function.
X (a,A): use 0 or 1 to indicate whether a belongs to A.
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A (d): the von Mangoldt function.
0 (x): the first Chebyshev function.
¥ (z): the second Chebyshev function.
(a1,az,as,--+), (--+): ordered arrays.
((a1,az2,-++)), ¥((--+)): custom functions for lemma declaration.
((a1,a2,--+),m): a custom function for proving lemma.
J (p), K(p), S(w): custom functions for proving lemma.
o(z): a custom function, we will prove that it is less than 1.
n: used to denote the gaps of overlapping pseudo primes.
L; (a,t): used to estimate 7 .
T, H: custom sets.
v (H1,Ha, -+ ): defined to assist in estimating L; (a,t).
(f (z))" means f’ (x), that is the derivative of f ().
exp{---}: exponential function.
inf{--- }: greatest lower bound.
sup{- - - }: least upper bound.

Definition 1. For n > 1,
M® = {p1,p2,- -+ ,Pn} -
Definition 2. For any 1,
Mi= |J {km+i}.

keZ
m € M°

Definition 3. For any 7 and j,
M;u; = M; UM;.
Definition 4. Let A be the function, defined by
AMAd)={m:m=a+dNa€A}.
Definition 5. For any a,

T(a)= [] (m—a)

meM©°

Definition 6. Let the function x be given by

1 if a € A,
x(a,A) = { 0 otherwise.

Definition 7. The von Mangoldt function A is defined by

| Inp ifd=pknAk>1,
A(d) = { 0 otherwise.
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The unique factorization property of the natural numbers implies
Ind=>"Al(a),
ald
the sum is taken over all integers a that divide d [7].

Definition 8. The first Chebyshev function 0 (x) is defined by
0 (z) =) Inp,
p<w

where the sum is over primes p < z [2].

Definition 9. The second Chebyshev function 1 (x) is defined similarly
Y(z) =) Y p=> A(d),
kJENkaJ; d<z

with the sum extending over all prime powers not exceeding = [2].

3. Lemmas

In this section we introduce a number of prerequisite results, some of them
given here may not be in the strongest forms, but they are adequate for the
proofs of Theorems 1 and 2.

LEMMA 1. (Vi,5)( M = A(M;, j—1) ).
Proof. By Definition 2 and Definition 4, we obtain
kel
m € M°
= J {em+i+(G-i)}

keZ
m € MP°

LEMMA 2. (Vi,h,a) ( x (h, M) =x(h+a, A(M;, a)) =x(h+a, Mii,)).
Proof. Let us suppose
X (h7 M’L) = 13
then
(Fko € ZAmo e M°) (komo+i=h).
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And by Lemma 1,
A (Ml, a) = Mi+a.

Hence,
X (h+a, MM, a)) =x (h+a, Mita)

= X ((komo + 1) + a, Miqq)

= X (komo + (i +a), Miya)

= 1.
Otherwise,

x (h, M;) =0,
then
(VkeZAmeM®)(km+i#h).
Hence,
h+a#km+ (i+a),
i.e.
X (h+a, Miyq) =x(h+a, X(M;, a)) =0.

So that

(Vi,hya) ( x (h, M) =x(h4+a, A(M;, a)) =x(h+a, Mi1,)).

LEMMA 3. (Vi,h Am €M) ( x(m(h—1i)+i, M;)=1).
Proof. Obviously,
(Hko € 7Z N mg EMO)(kom()-i-O:m )

Let
ki =ko(h—1),
then
m(h—i)+i = kimg +i.
So that

x (m(h—1i)+1i, M) = x(kimo+14, M;) = 1.

LEMMA 4. (Vi,h Au ¢ M) ( x (h, M) = x (u(h—1)+1i, M;) ).
Proof. Suppose that
X (ha Ml) = 17
then
(Fko € ZAmoeM®) (kgmo+i=h).
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Hence,
X (u(h —1i) 41, M) = x ((uko) mo + i, M;) = 1.
Otherwise,
x (h, M;) =0,
then

(Vko € ZAmo e M°) (komo+i#h ).
Noting that
(Vk1€Z/\m1€M°)(k1m1—|—O7§u).

Combining the both, we have
(Vko € ZANmg € M®) ((koma #u(h —1) ).

Thus,

u(h — i) 4+ 1 # kamo + 1,
ie.

X (w(h—1)+1i, M;)=0.
So that

(Vi,h A Mo) (x (hy M) = x (u(h— ) +i, M) ).
Remark 2. A stronger conclusion is that
{m: 0<m<T(0)Am¢ My}

is a multiplicative group of integers modulo 7' (0). It will not be proved here
because this conclusion is not used in the proofs of this paper.

LEMMA 5. (Vi,h,d) ( x (h, M;) = x (h+dT (0), M;) ).
Proof. By Lemma 2,

X (hy M) = x (h+dT (0), My qr(0))

and
Miyaro) =AMy, dT(0) = | ) {km+i+dT(0)}.
keZ
m € M°
By the Definition 5,
T70)= [] m
meMe

This implies that
(Ve e ZAm e M) ((3ko € Z) ( km+dT (0) = kom ))
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Combining this with above,

(3.1)

Hence,

Miyar) = U

LEI SHI

{km + i+ dT (0)}

keZ
m € MP°

= U

ko € Z
m € M°

= M.

X (hy My) = x (h+dT (0), My ar(o)) = x (h+dT (0), M;).

Remark 3. So we can see that M; is periodic and its period is 7" (0).

LEMMA 6. (Vi,j, h, d) ( X (h, Miuj) =X (h +dT (0) R Miuj) ) .

Proof. By Lemma 5 we have

and

It is easy to see that

M) ,

X (h, Mj):X(h+dT(0)7 Mj)'

X (h+dT (0), Miy;) = x (h+dT (0), My) ® x (h+dT (0), Mj)
=X (h, M;) ® x (h, M)
:X(h7 M’iuj)u

where we do not need to know exactly what operator ® does.

Remark 4. We can also prove it by the truth table.

X (R, MG) | x (h,My) | x(h+dT(0) | x(h+dT'(0) | x (h,Miy;) | x(h+dT'(0)
, Mi;) » M) » M)
0 0 0 0 0 0
0 1 0 1 1 1
1 0 1 0 1 1
1 1 1 1 1 1

So My, and M; have the same period.
LEMMA 7. My [0,7(0))]=T(0)—T(1).
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Proof. 1t is easy to see that

Mo [0, (0))] =

U

moEM[0,7°(0))

U mo

(VKEZAMEMP®) (mo=kmAmo€[0,7(0)))

1 1
Y m- 0z ()
{m.} CM° {m1,mo} C M°
|{m1}]:1 mi1 < mso
1
2 . <m1m2m3)_

:T(O) {ml,mg,mg} QM

m1 < mg < ms

—1 1

(D) 2 (M1m2m3---mn)

{m17m27m37'” amn} QMO

m<mo<mzg<---<my

Then the alternating series can be reduced to showing that
Mo 0.7 O)] =7 0) (1 3 ) =T O =7 (1),
LEMMA 8. (Viya) ( |[M;[a,a+T(0))|=T(0)—-T(1)).
Proof. By Lemma 2,
M [a,a 4+ T (0))] = |A(M;, —a) [a—a,a+ T (0) — a)
= [Mi— [0,T(0))]
= Mo [0, T(0))] -

By Lemma 7,

M [a,a +T(0))] = [Mo [0, T (0))] =T (0) = T'(1).

LEMMA 9. (Vi,j,a) ( [Msyja,a+T(0)) <T(0)—T(2) <T(0)).
Proof. 1If
FkeZ)(j=i+EkT(0)),
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then (by (3.1))

[Miu; [a, a+T(0))] = [Miui [a,a + T (0))]
= |M; [a,a + T (0))|
=T(0)-T().

Otherwise, let us suppose
(Vm eMp)(j—iZ0(modm)).
It is similar to the proof of Lemma 7, we have

[Miiu; [0, T (0))] =

21 22
Y o @- 2 (Ew)
{mi} CM° {m1,mo} C M°
|{m1}]:1 my < Mmg
23
2 . <m1m2m3)_

T(O) {ml,mg,mg} g M

m1 < mgog < ms

-1 gn

-+ (D" 2 (M1m2m3---mn)

{mlam27m37'” ’mn}gMo

m<mo<mg<---<my

Then the alternating series can be reduced to showing that

My 0.7 )] =7 0) (1= 53] =T 0) - T).

For the opposite case, there is at least one m € M such that the coefficient of
each term containing m in the above alternating series is divided by 2.
The reason is that

@meM) ({km+j:keZ}={km+i:keZl).

Therefore,
My 0.7 O)] < 70) (1 153 ) =T 0) -T2,
when
(IJm e M) (j—i=0(modm)).
Obviously,

T0)>T(1)>T(2)>0.
Combining with the above, we have

[Miu; [0, T (0))] <T(0) = T(2) <T(0).
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By Lemma 6, M,; is periodic with 7' (0), and considering Lemma 8, we can
get
[Mliu; [a,a +T(0))] = [Mu; [0,7(0))| <T(0) —=T'(2) <T(0).

LEMMA 10. (3n > 0) ((Vi,j,a) ( [Miyj [a,a+n)| <n)).

Proof. By Lemma 9, there are at least T'(2) numbers in any range 7 (0)
that make
X (h, Miy;) =0,
where
hela,a+T(0)).

It can also be expressed as

(Vi, j,a) > 1]>7(2) >0
he[a,a+T(0)) Ax(h, M;;)=0

So that
0<n<T(0).

On the basis of Lemma 10 we have
LEMMA 11. (Vi,j,a) ((3h € [a,a+n))( x (h, M) =x(h+j—1i, M;)=0)).
Proof. By Lemma 10,
(i, j,a) ((3ho € [a,a +n)) ( x (ho, Miu;) =0)),

so that
X (ho, Mi) = x (ho, M) = 0.
By Lemma 2,
X (ho, M) = x (ho +j — 4, My).
Therefore,

X (ho, M) = x (ho +Jj —14, M;) =0.

LEMMA 12. Fort > 1,

(Vmy, ma, ms, -+ ,my € M°) (Zp(é) < Zﬁ(é))

0T 0T
where

,0(((11,(12,(13, o ))
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0 (3 >i=>1)(ai=a; Naif(j—1)),
- I1

B m € M° m
m| (arazas - - -)

otherwise.

and
o (( =
al.ao.as. - -+ _
1,442,043, (11@2(13"‘7
and
T: U {(mhlamh27mh37"' 7mht>}~
{hl,hg,h:),,m ,ht}2{172,3,~~ ,t}
Proof. Let
(Vw > 1) (mt+w = anrw) 5
and
T(n) = U {(mhlvmhzamhga"' 7mhn)}'
{hl,hz,hg,-" ,h,L}:{1,2,3,~~~ ,n}
Then
S oi)mcim (Y 1) /T
S€T Ap(6)#0 SET (n)Ap(8)7#0
= H m | / (mimaoms---my).
meMPC Am|(mimams---my¢)
So that

Soo-( > n

0T SET Ap(8)#0 meMPC Am|(mimams---my)
< 71 =>_9(9).
mimams - - - Mmy e

On the basis of Lemma 12 we have

LEMMA 13. Fort > 1,

D PO < 9()

0T 0T
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where
T: U {(m17m27m37"‘ 7mt)}‘
my € M°
mo € M°
my € MP°
Proof. Let
o 0 mq %p7
so- ) et
de(l,t]
and
5 !
h1i>0Ahyg >0A---ANhy, >0
hi+hy+---+h,=t
and

{7-177-27"' 77;}

— U (
hi>0Ahy >0A---Ahy,>0
hi+ho+---+h,=t

U {(m1,ma,ms, - ,my)}

mq € M°
mo € M°

my E M°
(Vd € [1,n]) (T (pa) = ha)

It is easy to see that

T=TiuThu---UT;,
and
(Vs>j3i>i>1)(T,NTi=¢).

Combining this with Lemma 12, we have

D)= > p0)< Y. D 90 =) 0()

seT de[1,s] 64€Ta de[1,s] 64€Ty seT

15
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Similarly, for
(Vw > 1) (mt+w = pn-‘,—w) 5

and

T(n): U {(mhnmhzﬂmhs?“'

{h1,h2,h3, s hn}={1,2,3,- ;n}

PINIOESD DRI
)

€T (n) dET (n

we also have

LEMMA 14. (Vx > 3)

11 (1-—2p—1)>fli

)
2Zp<a In“x

Proof. By Mertens’ second theorem [5],
Z (p_l) =Inlhz+M+0(1/Inz).

p<w

The value of M is approximately [4]
M =~ 0.261497212847642784 - - - .

For p > 2,

Z (p7') =Inlnz+ M +0(1/Inz).

2<p<lz

The value of M’ is approximately
M’ ~ —0.238502787152357217 - - - .

7mhn)}?

Since
1-2p~1
In(1-2p7") +2p7!| = / (' —1)dt
1
|2 2 22 23
Clp p 202 3p3 4
22 23 24
%2 2 T
2
pp—2)
and
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is convergent, the series
> (n(1-2p7") +2p7Y)
p>2
must be convergent. Because the series
>
p>2
is divergent and so the product
H (1 — 2p_1)
p>2
must diverge also (to zero). We can deduce that

> (m(1-2p7 ) +2p7")

2<p<lz

n(1-2p")+2p ") => (In(1-2p7") +2p ")

Mz(m;zﬂ)

p>x

(In(1-2p7 ") +2p ") +0(z71),

In < (1 — 2p1))

S )+ Y M-+ 2

(ln (1 — 2p_1) + 2p_1) +0 (

I
=07 =~

St
IA

p<z 2<p<z
= 2lnlnz —2M' + Z (ln (1 — 2p_1) + 2p_1) + 0 (ln_1 x) .
2<p<lz

It’s known from numerical calculation
> (n(1-2p7") +2p7") = —0.660393386913.
p>2

Combining with the above, we can crudely estimate

[ a-2">r

2
2<p<lz

T In“z

through numerical analysis.



18 LEI SHI

< =I! 62> .
(1£)1)”

Proof. If |z | = 2k is even, then

| k
|z ]! _ 2k < 92k — 45 < 2K+ <1 4 1> < 6%,
(L5)* \ * 2

LEMMA 15. (Vz > 1)

18

because it’s the largest binomail coefficient in the binomail expansion of (1 + 1)2k.
Otherwise, |z] = 2k + 1 is odd, then

! IR
] :<2k+1)(k+1)§22k(k:+1)§2%+1<1+2> <65,

k

LEMMA 16. Upper bounds exist for both 6 (z) and ¢ (x) that

Vz>1)(0(z) <t¢(r) <zln6).
Proof. By Definition 9, we have

(o)) = v (@) +v () +v(3)+v () +

x x
Changing x to BL and inserting -2In <L§J !) into the above equation we obtain

(o)) =2 (15)1) =v @ v (5) +v (5) - (7)) +

It is obvious that

so that

¢(x)—¢(g) gm(w)—gm(@!) :m( L‘”J'! ) .

Combining this with Lemma 15, we can get
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---, we have

o(3) -0 (2) < ()
o(2) - (2) < (F)ms

¢ (5) - () < () mo

rT T T
Changi to —, —, =
anging z to o, -, o

Adding up them all, we have

Y () < xIn6.
It is easy to see that the relationship between 6 (x) and v (z) is given by

1
Y (x) = 29 (:Ud)
a>1
There is the fact that
0(z) <Y (zr) <zlné.

LEMMA 17. For x > 3, let

(=22 )z e

2<p<z 2<p<lzx
then o (z) < 1.
Proof. By Lemma 16,

In p | <6(x) <zlné,
2<p<zx
thus
H p | <exp{zln6}.
2<p<zx
By Lemma 14,

1— ] (-2p7") 3(1— Of).

2Zp<a In“ x

19
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Combining these results with numerical analysis we obtain

0.4 >(%)IIH6

o(x) <exp{zln6} (1 — —5—
In*z

<exp{xIn6}exp{—zln6}
=1.

4. Estimation of Ly(a,t) and 7

In this section we estimate Lo (a,t) and 7.
First, for t > 0, let

Li(a,t)={m: {mm+1,m+2,--- m+t} CM[a,a+T(0)+1t)}.

We can see that for each element in L; (a,t), it denotes that there are (t 4 1)
consecutive elements in M [a,a + T (0) + ¢). We have

t+1
L (a,8)] gT(O)( _58) .

Proof. Considering the proof of Lemma 7 and Lemma 8, and combining
this with Lemma 12 and Lemma 13, we have

Ly (a,8) = | [ Mitwla,a+T(0))| =
wel0,t]

m U {km+i+w}[a,a+T(0))| =

wel0,t] meMe

U ) kmw+i+w}e,a+T(0)
mo € Me° we|[0,¢]
my € M°

IN

my € M°
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S (H)- > O

{m1} C M° {mi,mo} C M°
{mi} =1 my1 < mo
1
2. (mlmzm:s)*
T(O) {ml,m2,m3} g M

mip < mo < Mms
-1 1
A (=D 2 (s )
{mlam2am37"' 7mn} QMO
mr <mo<mg<--- <My

—ro(1- LY

~—

ie.
t+1
L (a,0)) < 7(0) (1 - ;Eé;) .
Because according to Lemma 12 and Lemma 13, we can see that the count of
a specific t+ 1 consecutive elements appearing in the range 7' (0) is not greater
than the value characterized by the function .

T(0)S p(0) <T(0) 30 (5).
Next, let us look at the case of
Ly(a,t)={m:{m,m+1,m+2,--- ,m+t} CMy;la,a+T(0)+1t)}.

We can also see that for each element in Ls (a,t), it denotes that there are
(t + 1) consecutive elements in M;y; [a,a + T (0) +1¢) .

It is similar to the case of L; (a,t), combining this with Lemma 9 and
Lemma 13, we have

L2 (a,t+1)[ <
21 22 t+1
> - 2 (Ew)
{mi} CM° {m1,mo} C M°
‘{ml}’:1 mi1 < mso
23
2. (m1m2m3)_
T(O) {ml,mg,mg} g MO
m1 < mg < ms
1 n
o (_1)” Z (mlmﬁns---mn)
{m17m27m37'” 7mn}gMo

mi<mo<mg<:--<mpy

=T (0) (1 - %)tﬂ.
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Now we can deduce that

4.1 vt >0) [ |Ls(a,t <1‘0(1———f .

Considering the relationship between L (a,t) and n (in Lemma 10, Lemma 11),
we have

(4.2) n>inf{m+1: m >0A|L2(a,m)| =0},

according to the definition of Ls (a,t).

For the next proof of theorems, we assume that there exists 1 that satisfies
2

(4.3) n<bo,
8

It requires

peMP® peMP®

By Lemma 17, we know that we have

when
In? p,, P2
4.4 | .
(14) (0'4)pnn6<L8J
Let ) )
T In* x
= — — |
f(x) S (0.4)1'116

Then for z # 0,

<f(x)>/_1 2In6lnzx
Tz ) 8 0dx

We can easily get a crude result that

!/
(10 .,
x
when x > 436 through numerical analysis.
So that f (z) is monotonically increasing when = > 436.
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Next, the numerical analysis is continued, we can easily get another crude
result that
f(z)>0
when z > 2096.
Now we know that the condition (4.4) is satisfied when p,, > 2096.
Therefore, (4.3) holds for p, > 2096.

i.e.

I N

(Vpn > 2096) ((Hn) (n < %)) .

5. Proof of theorems

We are now in the position to prove Theorem 1 and 2.

For n with p, < 2096, we know that the theorems hold through computer
verification.

Otherwise, we have )

<o

8
Since ) )
Pn _ Dnt1
< o
=73 2

combining this with Lemma 11, we have

1
<Va,i,j c {i+1,i+p”2+ ))

(<3he [a,a#”%;l))(x(h, M) = x (h+j — i, Mi):())).

And let T
a = l + (O) —i_Z)’I’I/7
2
we have
(5.1) <Vi,j c [1,79”2“)) (<3h c {HT(O);p",

2
POVEPR P 1Y) (b, 1) = x (b, M) = 0)).

Then we can deduce that for every h in (5.1) satisfying the condition
(x (hy M) = x (h+j, M) =0),
so we have g1 and g2 are both prime numbers, defined by
@1 =2(h—1i)-T(0),
@=q+2j=2(Mh-1)—T(0)+2j.

1+
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Proof. Since
X (h, M) = x (h+j, M;) =0,
we have

Because the prime number 2 does not belong to M°,
by Lemma 4, we have

X (hy, M) =x(2(h—1)+1i, M;)=0.
Combining this with Lemma 5 we have
x (hy My) = x(2(h =) +i=T(0), M;) = x (q1, Mo) = 0.
ie.
(5.2) (VYm e M°) (g1 Z0(mod m) ).
Similarly, we have
X (h+J, Mi) =x(2(h—i) +1—T(0) +2j, My) = x (g2, Mo) = 0.
ie.
(5.3) (Vm € M®) (g2 Z 0(mod m) ).
Noting that the domain of h, we can deduce
1 € [pn, Pn(pn +1)],
2 € [pn +2, pn(pn +2)].
Obviously,
T (0) # 0 (mod 2),
q1 # 0(mod 2),
g2 # 0 (mod 2).
And M° contains all odd primes not greater than p,, so that
Vw € [pn, Pn (pn +2)],
if w is not a prime number, there must be
(Im e M°U{2})) (w=0(modm) ).

Thus, combined with (5.2) and (5.3), ¢1 and g2 must be prime numbers.
This implies that
for every ps > 2096, there must be primes p, and p, between ps and

p§+2psa
s+ 1
(vie [L2F0)) (pu—po=20).
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ie.
(Vps > 2096) ((3pa, po € [ps, P2 + 2ps])

(e (252 (o).

Since there are infinite primes, we can conclude that for any positive inte-
ger d, there are infinitely many prime gaps of size 2d. This proves Theorem
1.

Next, let us transform the problem of gaps between primes into the prob-
lem of sums of two primes.

Let
T
i MO )
2
Since

P2
< -
ns g’

combining this with Lemma 10, we have

(5.4) (Vi,je {i+P1+ (p8‘211,z'+p1+ ijﬂ» <(3he {HT(O);“,

i+ TOEPL L ) (v, i) =)

Then we can deduce that for every h in (5.4) satisfying the condition
( x (hy M) =0),

so we have g1 and ¢o are both prime numbers, defined by
q1 :2<h_2)_T(0)7
@2=2(—h)+T(0).

Proof. By the condition,
X (h, M) = x (h, Mj) = 0.
Then it is similar to the proof of Theorem 1,

X (g1, Mo) = x (2(h —1), Mp) = x (h — i, Mo) = x (h, M;) =0,
X (g2, Mo) =x(2(j —h), Mo) = x (h —j, Mo) = x (h, M) =

It is easy to see that

(Vm e M°U{2})) (g1 Z0(mod m) ),

(Vm e M°U{2})) (g2 Z 0(mod m) ).
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Noting that the domain of h, we can deduce
p2
q € {Ph 2{?1 +p1) :

g2 € [ph pzﬂ-pl)-

So ¢1 and g9 are both prime numbers.
Now let us look at the domain of (¢1 + ¢2),

P> p>
G+@p=2(—1c {2p1+2[§1, 2p1 +2L?"J>.

This implies that
for every ps > 2096, there must be primes p, and p, between p; and

pz“‘ph
2

(Vde [pﬁ— []ZEL p1+Lp2sJ>)(pa+pb=2d)'

i.e.

(5.5) (Vps > 2096) <(E|pa,pb € [p1,p? +p1]) ((Vd € [pl + (]fl,

P2
i 12)) (petm=24))).
By Bertrand-Chebyshev theorem [1], we have

Ps+1 < 2Ps,
then

» N

2
ps+1
8

<

9

Ps
2

SO

p: p: Pia i
(V3>1)<[p1+(8517 p1+L28J>ﬂ pr+| Sg lop+ | 82+ J) 75<Z>>'
Combining this with (5.5), we can conclude that

(49 > 2096) (pa ) ((va € [+ 1251, 1+ 121)) (et mo=20))).

where p, is the smallest prime number greater than 2096, that is, 2099.
It is easy to get

2
L+ (%1 — 3+ 550726 = 550729.

i.e.

(Vps > 2096) <(E|pa,pb) <(Vd S [550729, P+ Hfj)) (pa+pp=2d ))) .

While the results of d € [1,550729) can be obtained by computer-aided verifi-
cation.
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Since there are infinite primes, we can conclude that every even number

greater than 2 is the sum of two prime numbers. This proves Theorem 2.
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