Happy 100th Birthday, Polarography!
- Dedicated to Jaroslav Heyrovsky (1890 – 1967)

Raji Heyrovksa

Academy of Sciences of the Czech Republic (Emeritus), Private Research Scientist (Present)
Email: rheyrovs@hotmail.com

Abstract: Hundred years ago on February 10, Jaroslav Heyrovsky used renewable dropping mercury electrode as a tool for obtaining the current, voltage curve for dissolved solutes in solutions. Thus, polarography was born and has now stood a century as a unique electrochemical method thanks to the renewable fresh metal/solution interface which makes the current, voltage curves absolutely reproducible. The present author learnt this technique using the original galvanometer and photographic paper in her post graduate years. Subsequently she had the pleasure of doing postdoctoral work in Heyrovsky’s Institute of Polarography in Prague. Presented here are some of her articles which contribute to the wonders of polarography.

1. Introduction.
The best introduction to the subject is the Nobel Lecture by Jaroslav Heyrovsky (https://www.nobelprize.org/uploads/2018/06/heyrovsky-lecture.pdf). Since then, numerous publications and reviews can be found on polarography. A recent one is by his son, Michael Heyrovsky (Electrochemistry Encyclopedia, 2010: Jaroslav Heyrovsky and polarography in: https://knowledge.electrochem.org/encycl/art-p03-polarography.htm). The section below summarizes the author’s contributions to polarography and related electrochemistry.

2. Work on polarography.
The main topics of research by the author: Polarography of compounds which adsorb on mercury and change the half wave potential. A new wet-and-measure polarography for minute volumes of solutions and a new current spike polarography technique for surfaces and films. Establishment of absolute potentials of reference electrodes and half wave potentials. Tables of absolute ionic concentrations of supporting electrolytes. Finally, a new interpretation of the electrocapillary curve based on isotension potentials.

References

1. Adsorption in polarographic reversible electrode reactions.
M. Heyrovsky, S. Vavricka, R. Heyrovksa

2. Surface and volume redox processes: difference between potentiometry and polarography.
M. Heyrovsky, R. Heyrovksa
3. Electron transfer through charge-transfer interaction with the electrode.
M. Heyrovsky, R. Heyrovksa

R. Heyrovksa
155th Meeting of Electrochemical Society, USA, Boston, Vol. 79-1 (1979) abstract no. 354. (Extended abstract)

5. Influence of partial molar volume and time of contact on redox processes involving adsorption.
R. Heyrovksa
157th Meeting of Electrochemical Society, USA, St. Louis, Vol. 80-1 (1980) abstract no. 527. (Extended abstract)

M. Heyrovsky, R. Heyrovksa
Proc. II of the J. Heyrovsky Memorial Congress on Polarography, Praha (1980) 64; (Extended abstract) (poster)

7. Further studies of polarographic adsorption waves.
M. Heyrovsky, R. Heyrovksa, J.K. Jailwal, O. Manousek and S. Vavricka
Proc. II of the J. Heyrovsky Memorial Congress on Polarography, Praha (1980) 65; (Extended abstract) (poster)

8. Chemistry and electrochemistry of a reversible redox equilibrium; implications of the Nernst equation.
R. Heyrovksa
161st Meeting of Electrochemical Society, USA, Montreal, Vol. 82-1 (1982) abstract no. 700. (Extended abstract)

9. The Le Chatelier's principle of mobile equilibrium governs electrochemical oxidation and reduction.
R. Heyrovksa
161st Meeting of Electrochemical Society, USA, Montreal, Vol. 82-1 (1982) abstract no. 699. (Extended abstract)

10. An adsorption isotherm incorporating both substrate and adsorbate specificities and adsorbate concentration at monolayer coverage.
R. Heyrovksa
11. Kinetic aspects of the new adsorption isotherm and the approach to dynamic equilibrium.
R. Heyrovská

12. Thermodynamic significance of the transfer coefficients and the Nernst equation.
R. Heyrovská
(Extended abstract)

13. Interpretation of the Butler-Volmer equation (thermodynamics does not allow simultaneous oxidation and reduction at any potential).
R. Heyrovská
(Extended abstract)

14. Thermodynamic aspects of reversible electron transfer at an electrode.
R. Heyrovská
(Extended abstract)

15. The transfer coefficient: a critical thermodynamic assessment.
R. Heyrovská
173rd Meeting of Electrochemical Society, USA, Atlanta, Vol. 88-1 (1988) abstract no. 450
(Extended abstract)

16. Two ways of electron transfer between metal and solution.
M. Heyrovsky, R. Heyrovská

17. A "wet and measure" polarographic device/sensor suitable for both pure and applied research.
Heyrovská
https://www.researchgate.net/publication/278973898 DOI: 10.1149/1.2069442

18. Polarografie v nejmensich objemech roztoku. (Polarography in the smallest volume of solutions)
R. Heyrovská
19. A simple `wet and measure' polarographic device/sensor for pure research and electroanalysis.
R. Heyrovská, M. Heyrovsky

R. Heyrovská
http://pubs3.acs.org/acs/journals/doi lookup?in_doi=10.1021/la00032a007;
http://pubs3.acs.org/acs/journals/toc.page?incoden=langd5&indecade=1&involume=9&inissue=8
https://www.researchgate.net/publication/244404843 DOI: 10.1021/la00032a007

21. Dalsi pokroky "Wet and Measure" polarografie (Further work on "Wet and Measure" polarography).
R. Heyrovská
Moderni Elektroanalyticke Metody, XIV Conference in Pec pod Snezkou, (1994), abstract p.16 (Short abstract in Czech)

22. Jaroslav Heyrovsky, the inventor of polarography
R. Heyrovská
http://www.ias.ac.in/j_archive/currsci/74/6/554-557/viewpage.html

23. J. Heyrovsky's data in 1923 on the deposition potentials of alkali metal cations interpreted here in terms of partial dissociation and hydration.
R. Heyrovská
J. Heyrovsky Memorial Symposium on Advances in Polarography and Related Methods, Prague, Czech Republic, 30th August/1st September 2000. Extended abstract in Book of Abstracts, p. 36.

24. Ionic Concentrations and Hydration Numbers of “Supporting Electrolytes”
R. Heyrovská
Special Issue in honor of Peter Zuman, Electroanalysis, 18 (2006) 351-361. (Full paper)
http://www3.interscience.wiley.com/cgi-bin/abstract/113374642/ABSTRACT

25. Absolute Potentials of the Hydrogen Electrode and of Aqueous Redox Couples
R. Heyrovská
https://www.researchgate.net/publication/239259246 DOI: 10.1149/1.3186645

26. Absolute aqueous redox potentials (via a new link between aqueous and gaseous properties)
R. Heyrovská

a) 9th workshop of physical chemists and electrochemists, Brno, June 2009;

b) Nature Precedings http://precedings.nature.com/documents/3395/version/1 (2009), (Full text)
   https://www.researchgate.net/publication/36790162 DOI: 10.1038/npre.2009.3395.1

27. Aqueous Redox Potentials Found to be Inversely Proportional to the Bohr Radius
R. Heyrovská
   (Abstract)
   https://www.researchgate.net/publication/285259290 DOI: 10.1149/1.3328519

28. Absolute potentials of standard reference electrodes at 25 °C
R. Heyrovská
a) MEM 2009 conference, dedicated to Prof. J. Heyrovsky on the occasion of the 50th
   Anniversary of the award of the Nobel Prize for Polarography, Prague, 9–13 December 2009:
   http://www.natur.cuni.cz/heyrovsky;

b) Conference Proceedings: Chemicke Listy, 103 (2009) OP-10, s238: http://www.chemicke-
   listy.cz (Abstract),

c) OP-10, p. s238, Proceedings of the Modern Electroanalytical Methods 2009, Prague, Czech
   Republic, 9–13 December 2009, Department of Chemistry,
   Faculty of Science, Charles University, Editors: J. Barek, K. Nesměrák,OP-10, page 10

   https://www.researchgate.net/publication/43179529 DOI: 10.1038/npre.2010.4354.1

29. Radii of redox components from absolute redox potentials compared with covalent and aqueous ionic radii
R. Heyrovská
Electroanalysis, 22, (2010) 903 - 907, Published online: 4 March 2010. (Full text)

30. Absolute Potentials of the Hydrogen Electrode and of Redox Couples
R. Heyrovská
11th Eurasia Conference on Chemical Sciences, 6-10 October 2010, The Dead Sea - Jordan
(Poster)

R. Heyrovská
229th ECS Meeting, http://www.electrochem.org/229, May 29-June 2, 2016 | San Diego, CA,
Abstract #72655
R. Heyrovská

R. Heyrovská

34. Communication--A Linear Equation Relating Interfacial Tension and Isotension Potentials to Describe Asymmetry in Electrocapillary Curves
R. Heyrovská