Spiral galaxies – explanation for their shape and the velocity curve flattening

Abstract: Spiral galaxies pose two profound conundrums that the current Big Bang theory has no clear answers to. I claim that the observations of the velocity curve flattening and the spiral shape of galaxies emerge from the velocity of a star in a galaxy. The star velocity is the superposition of velocities exerted on a star by the Pivot, the black hole at the center of the galaxy, and the distributed mass of the galaxy.

Problem description

Spiral galaxies pose two profound conundrums that the current Big Bang theory has no clear answers to.

Fig. A is the velocity curve flattening of stars in galaxies. Vera Rubin and her team observed in 1970 that the velocity of stars in a galaxy does not behave as expected by Kepler’s law that has been verified in the solar system. Instead of curving down after a certain peak, it stays flat. Physicists suggested a theory that the reason for this phenomenon can be due to the presence of an un-visible mass inside or around the galaxy. They called it dark matter and calculated its mass to be approximately 5.5 times the mass of the galaxy’s visible mass. Despite an extensive search for dark matter, it was not observed anywhere in the universe and its nature is not known.
Fig. B shows the spiral arms of a Galaxy. The first question is, what is the origin of the spirals and how spirals can be created in a universe that, according to the Big Bang, is expanding radially in all directions? Second, why are the arms stable after billions of years? The arms of a galaxy would become more and more tightly wound, since the matter nearer to the center of the galaxy rotates faster than the matter at the edge of the galaxy. The arms would become indistinguishable from the rest of the galaxy after only a few orbits. For example, our Milky Way galaxy since its creation has completed more than 50 orbits. This is called the winding problem.

To answer these two profound conundrums, I divide my paper into two parts. In the first part, I describe the entire structure of the universe. In the second part which is based on part 1, I relate specifically to the spiral galaxies.

Part 1- Structure of the Pivot universe.

I claim that both the phenomena of spiral galaxies emerge from the structure of the universe, which I designate the structure of the Pivot universe. My hypothesize of the current structure of the Pivot universe is as follows: At the center of our universe resides a **spinning** massive neutron star I designate the Pivot. While spinning the Pivot drags space around it, according to general relativity. It will be shown that the shape of dragged space is not entirely flat. However, for an observer located at the Milky Way, the **visible** universe is
arranged in a flat disk shape that orbits the Pivot. I claim that the origin of the Pivot and the visible universe was a primeval nucleus that was built up slowly from the energy of the infinite vacuum space. When the primeval nucleus reached a maximal acceleration possible it exploded into two parts. It is important to note that this structure explains additional cosmological observations that the Big Bang has no explanations for, e.g., the Michelson Morley experiment and the origin of celestial bodies spinning. The flatness of the universe is verified by observation. A quote from reference [1]: “...experimental data from various independent sources (WMAP, BOOMERanG, and Planck for example) confirm that the universe is flat with only a 0.4% margin of error”.

From the general relativity point of view, the Pivot is a Kerr black hole. One of the results of general relativity is the frame-dragging of space around any spinning celestial body. This phenomenon was first predicted by Lense-Thirring in 1918 and later in 1963, it was derived from solving the Kerr metric. This prediction was verified by the Gravity Probe B experiment. Gravity Probe B measured the frame-dragging by Earth and was found to be minuscule. However, when general relativity is used for massive celestial bodies the influence of frame-dragging is significant. In the following paragraph, I will show the influence of the Pivot on space.

According to general relativity, the angular speed $\Omega(r, \theta)$ of the co-rotating reference frame is given in Eq. 1. The angular speed is dependent on both the radius and the colatitude θ. Note: The angular speed is not dependent on an azimuthal angle because the solution is axis-symmetric. See reference [2]

$$\Omega(r, \theta) = \frac{R_H \cdot \alpha \cdot r \cdot C}{(r^2 + \alpha^2 \cdot \cos^2 \theta)(r^2 + \alpha^2) + R_H \cdot \alpha^2 \cdot r \cdot \sin^2 \theta}$$ \hspace{1cm} (Eq. 1)

The velocity of space about the Pivot is:

$$V_{pivot}(r, \theta) = \Omega(r, \theta) \cdot r$$ \hspace{1cm} (Eq. 2)

In this paper, the following constants and variables are used. The derivation of these parameters is given in [3]:

$$H = H_0 \cdot \left(\frac{r}{R_H} \right)^{\alpha^2 + \alpha^2 \cdot \cos^2 \theta}$$

$$C = C_0 \cdot \left(\frac{r}{R_H} \right)^{\alpha^2 + \alpha^2 \cdot \cos^2 \theta}$$

$$\alpha = \alpha_0 \cdot \left(\frac{r}{R_H} \right)^{\alpha^2 + \alpha^2 \cdot \cos^2 \theta}$$
\[
M_{pivot} = 7.82 \cdot 10^{53} \text{ kg} \quad \text{.. Mass of the Pivot}
\]
\[
J_{total} = 2.13 \cdot 10^{67} \text{ J} \cdot \text{s} \quad \text{.. Total angular momentum of the universe}
\]
\[
\alpha = \frac{J_{total}}{M_{pivot} \cdot C} = 0.96 \cdot \text{Gly}
\]
\[
R_H = 122.75 \cdot \text{Gly} \quad \text{.. Schwarzschild radius of the Pivot}
\]
\[
R_{in} = 122.88 \cdot \text{Gly} \quad \text{.. Inner radius of visible universe disk}
\]
\[
R_{mv} = 123.36 \cdot \text{Gly} \quad \text{.. Milky Way radius}
\]
\[
R_{out} = 175.57 \cdot \text{Gly} \quad \text{.. Outer radius of visible universe disk}
\]

Fig. 1 shows the velocities of space about the Pivot (Eq. 2) for two cases: 1) Colatitude angle \(\theta = 0 \text{ deg} \), i.e., on the axis of rotation 2) Colatitude angle \(\theta = 90 \text{ deg} \), i.e., on the equatorial plane of the Pivot.

From the graph, it is shown that the velocities near the Pivot reach 32\(c\) for \(\theta = 0 \text{ deg} \), and 2.5\(c\) at \(\theta = 90 \text{ deg} \). At a distance near the inner radius of the disk (~123\text{Gly}) space velocity drops substantially to ~2300\text{km/s}.
Fig. 2 is a schematic cross-section of the entire universe based on Fig. 1. The event horizon sphere is also shown. The visible universe is the flat disk that is located outside the event horizon. The approximate location of the Milky Way is shown. My main claim is that the Milky Way, like all other celestial bodies, is dragged by space at the velocity that is calculated by general relativity $V_{mw\text{-}gr}$, but simultaneously this velocity must be equal to the velocity $V_{mw\text{-}Newton}$ that is calculated by Newton’s gravitation law.

This claim solves the disputes raised by Michelson and Morley’s experiment (MME). There exists a stationary vacuum space (or aether), but around the Pivot space is dragged. Celestial bodies located in the dragged space move at the same velocity as space. There is no relative velocity between them and space. This explains the MME results that there is no relative velocity between Earth and space. On the other hand, the situation differs for a celestial body 1 that is located at the same distance from the Pivot as the Milky Way, but, in the stationary space. Calculating the velocity of this body 1 according to Newton’s law gives:

$$V_{cb1} = \sqrt{\frac{G \cdot M_{pivot}}{R_{mw}}} = 0.7C.$$ At such a velocity the friction between space and celestial body 1 is such that it will spiral into the Pivot. This result applies to any other celestial body that is located in the stationary space. In other words, no celestial body can exist, for a long time outside the region of dragged space. It will be attracted by the gravity of the Pivot. While approaching the Pivot the velocity of space becomes bigger than the speed of light, thus the matter of any celestial body will be transformed into radiation and will be ejected through the poles. This phenomenon has been observed in black holes.
The region of the sphere with a radius smaller than r_H (i.e., the event horizon) cannot be seen by an observer located in the Milky Way. Therefore, we can simplify (Eq.1) by substituting $\theta = 90\,\text{deg}$. This gives:

$$\Omega(r) = \frac{R_H \cdot \alpha \cdot C}{r^3 + \alpha^2 \cdot r + R_H \cdot \alpha^2} \quad \text{(Eq. 3)}$$

Fig. 3 is the plot of (Eq. 3). It shows that space in the Pivot's equatorial plane has a spiral shape. I postulate that the gravity force that attracts the Milky Way to Pivot, propagates along the geodesic presented by the spiral, rather than the straight line connecting the centers of the Pivot and the Milky Way. To equate the velocity of dragged space and the velocity of the Milky Way according to Newton's gravitational law, the distance according to Newton's gravitational law between...
the Pivot and the Milky Way (R_{mw}) must be replaced with the length of the spiral (L_{mw}).

The reader is referred to [4], where these concepts are used for the solar system and a neutron star.

Fig. 3 – dragged space on the Pivot’s equatorial plane
Calculation of GR frame-dragging vs. Newton's gravitational law of Milky Way around the Pivot

According to general relativity:

\[\Omega(R_{mw}) = 6.28 \times 10^{-14} \, \text{rad yr}^{-1} \]

...The angular velocity of Milky Way around the Pivot - From (Eq. 3)

\[V_{mw, gr} = \Omega(R_{mw}) \cdot R_{mw} = 2321 \, \text{km s}^{-1} \]

...The velocity of Milky Way around the Pivot

\[T(R_{mw}) = \frac{2 \cdot \pi}{\Omega(R_{mw})} \]

...The rotation time of Milky Way around the Pivot

Finding the length of a geodesic \(L_{mw} \) is done by using the formula of spiral length:

\[L_{mw} = \int_{0}^{r_{mw}} \sqrt{1 + \left(\frac{d\theta}{dr} \cdot \Omega(r) \cdot T(R_{mw}) \right)^2} \, dr \approx 5.22 \times 10^5 \, \text{G} \]

...Length of geodesic - Pivot to Milky Way

Newton's gravitational law:

\[V_{mw, Newton} = \sqrt{\frac{G \cdot M_{pivot}}{L_{mw}}} = 3250 \, \text{km s}^{-1} \]

...The velocity of Milky Way according to Newton's law

Comparing the two calculated velocities gives:

\[\frac{V_{mw, \text{Newton}}}{V_{mw, gr}} = 1.4 \]

There is a discrepancy between the two velocities. I do not know yet, what are the reasons for this discrepancy. It should be noted that in reference [2], I used parameters that are based on observations that are not firmly verified. For example: the maximum acceleration possible in the universe and Birch's estimation on the angular velocity of the universe.

The origin of the spinning of celestial bodies

An additional phenomenon that is explained by the Pivot structure is the fact that all celestial bodies spin. I postulate that space has viscosity. On the surface of the Pivot, the viscosity is enormous. That makes the dragging of space possible. However, in the visible universe, the viscosity is reduced substantially. Nevertheless, the viscosity is still sufficient to cause the spin of celestial bodies. It is shown in Fig. 4 that all celestial bodies spin in the same direction (CW), which is
opposite to the Pivot and the entire universe rotation CCW. A detail of a celestial body in the right part of Fig. 4, shows that the velocity \(V_2 < V_1 \), therefore the celestial body must rotate CW.

I claim that the frame-dragging of space resembles the flow of a viscous fluid. An experimental proof that a rigid body that is submerged in a viscous fluid spins and rotates is given by Prof. Taylor in the video [5], starting at 3:38 minutes. The theory of this experiment is the Stokes flow that describes a low Reynolds number flow, i.e., a flow where the inertial forces are small compared to the viscous flow. It can be shown that the inertial forces in the Pivot universe are small compared to the viscous forces. I claim, without verification, that it is possible to derive the shape of dragged space around the Pivot by using Stokes equations, however, for this end, one must define the viscosity of space as a function of gravity. Using general relativity equations is simpler because it is not required to define the viscosity of space. Please note in the experiment that the motion of the rigid ring stops immediately as the cylinder stops rotating. Returning to the universe - I claim that all celestial bodies in the universe that are located in the dragged vacuum space will spin and rotate as long as the Pivot spins. As the Pivot is composed of neutrons and antineutrons that have an intrinsic spin, most probably the Pivot will spin forever. Therefore, I claim that the visible universe will also exist forever.

Fig. 4 – Spinning of celestial bodies
Galaxies formation

After the explosion of the primeval nucleus, the disk-shaped visible Universe contained a very hot soup of nucleons that orbited the Pivot. It took the visible Universe 380,000 years to cool down. When this happened, ordinary atoms were formed.

The celestial bodies were created as a result of atoms attracting each other by gravity. The local density of the visible Universe was the cause of the variety of celestial bodies, i.e., dust, stars, neutron stars, and galaxies. If the density of atoms at a particular region in the visible universe ring was too low to enable significant attraction between them, they remained as a cloud of gas that orbits the Pivot. If the density of atoms was sufficient for interaction between them, stars were created. The variety of celestial bodies was dependent on the mass of the born star. Some stars had enough mass to collapse into neutron stars. Galaxies were formed in the following way: if the mass of the star was big enough, it collapsed by gravitation to form a black hole. Once a black hole was created, it started to accumulate matter and stars from the surrounding space. The black hole swallowed some of the matter/stars, but other matter/stars began to orbit around it. The black hole in the galaxy’s center played a crucial role in the first stages of the Galaxy's evolvement. It was the seed of the galaxy formation. However, although the mass of the black hole in the center of the galaxy is relatively huge, it can influence only stars that are orbiting near it. But at this stage, new stars were attracted to the galaxy by the gravity of the distributed mass of the new galaxy, rather than the gravity caused by the supermassive black hole.

Model of a galaxy

Fig. 5 describes schematically the velocities of a star in a galaxy. The star velocity is a superposition of the star velocity around the Pivot and the black hole at the center of the galaxy. The Milky Way is also shown as the observer location.
The velocities on a star in a galaxy are caused by:

a) Distributed mass of the galaxy.

b) The Blackhole in the center of a galaxy.

c) The Pivot.

For calculating these velocities, the following parameters are used:

\[M_{gal} = 2 \cdot 10^{42} \text{ kg} \]

... is the mass of a galaxy similar to the Milky Way.
\[M_{bh} = 8.2 \cdot 10^{36} \text{ kg} \] ...is the mass of a black hole similar to the Milky Way black hole.

\[d = 150 \text{ Mly} \] ...assumed distance Milky Way to the black hole of the observed galaxy

\[R_{gal} = R_{mw} + d \] ...is the distance between the center of a galaxy and the Pivot.

\[r = 0...200 \text{ Kly} \] ...is the distance from the star to the black hole of the galaxy

\[r_0 = 30 \text{ Kly} \] ...is an assumed characteristic radius of the distributed mass in the galaxy.

\[V_{sun_bh} = 230 \cdot \text{km/s} \] ...is the velocity of the Sun around the Milky Way black hole

\[\alpha = 0 \cdot \text{Deg}\ldots360 \cdot \text{Deg} \] ...Angle, see Fig. 5

\textbf{a) The velocity of a star is due to the distributed mass of the galaxy.}

Note: The calculation is according to the Newtonian shell theorem. This is an approximation because the Newton shell theorem relates to a sphere and a galaxy has a thin-disk shape. However, the measurements of a galactic rotation curve of mature spiral galaxies reveal that the rotation velocity \(V_{gal}(r) \) is similar to a sphere. It rises linearly from the galactic center to a characteristic radius \(r_0 \) and then bends down to reach an approximately constant value extending to the galactic periphery. The problem is to assess the value of \(r_0 \).

More accurate mathematical solutions were suggested for the thin-disk shape galaxy. For example, see [6]
b) The velocity of a star around the galaxy's black hole

\[V_{bh}(r) = \left(\frac{G \cdot M_{bh}}{r} \right)^{0.5} \cdot \frac{r}{r_0} \]

Note - Although the central black hole of a galaxy is massive it influences only the near region around it. Its influence on the entire galaxy is negligible. Newton’s law is applicable here because frame-dragging is only near the black hole of the galaxy.

c) The velocity of a star in a galaxy orbiting the Pivot:

\[V_{p_star}(r, \alpha) = \Omega \cdot (R_{gal} - r \cdot \cos(\alpha)) \]

Summation of the three velocities on the star gives:

\[V_{sum}(r, \alpha) = V_{p_star}(r, \alpha) + (V_{gal}(r) + V_{bh}(r)) \cdot \cos(\alpha) \]

Orbital velocity of Milky Way around the Pivot:

\[V_{p_mw} = \Omega(R_m) \cdot R_{mw} = 2320 \frac{km}{s} \]

The velocity of a star in a galaxy as seen by an Earth observer is given by:
\[V_{\text{star}}(r, \alpha) = V_{p_{-\text{mv}}} - V_{\text{sun}}(r, \alpha) + V_{\text{sun_{bh}}} \quad (\text{Eq. 4}) \]

Eq. 4 explains the two phenomena of a spiral galaxy.

The velocity flattening of a spiral galaxy

Fig. 6 is the curves of a star velocity in a galaxy and it is flattened out as \(r \) becomes bigger. The closer the star to angles 90deg or 270deg the curve is flattened. In any case, all the velocity curves are confined between the two extreme curves of the graph (the red and the dotted blue). The exact shape of the graph is dependent on \(\alpha, d, r \).

![Fig. 6 – Rotation curve for a galaxy as seen by Earth observer](image-url)
The shape of a spiral galaxy

The angular displacement, during the elapsed time t, of a star orbiting the galaxy’s black hole is designated (θ) (See Fig. 5). $\theta(r, \alpha) = \int_0^t \frac{V_{\text{star}}(r, \alpha)}{r} \, dt$, where $V_{\text{star}}(r, \alpha)$ is given in (Eq. 4). Fig. 7 shows the shape of a spiral shape galaxy 10 billion years after its creation. (Note: The reason for using the modulo operator in the following equations is that stars in Galaxies have completed by now many full rotations around the galaxy’s black hole. For example, the Milky Way makes a full rotation around the black hole located at its center every \sim250 million years. Thus, the Milky Way has completed more than 50 full revolutions).

\[
\theta_1(r, \alpha) = \text{mod} \left(\int_0^t \frac{V_{\text{star}}[r, (\alpha) \, \text{deg}]}{r} \, dt, 360 \text{deg} \right)
\]

\[
\theta_2(r, \alpha) = \text{mod} \left(\int_0^t \frac{V_{\text{star}}[r, (\alpha) \, \text{deg}]}{r} \, dt, 360 \text{deg} \right) - 180 \text{deg}
\]

Fig. 7 – Current Shape of a spiral galaxy at $\sim t = 10$ billion years after its creation.
Conclusion:

The observations of the velocity curve flattening and the spiral shape of galaxies emerge from the velocity of a star in a galaxy. The star velocity is the superposition of velocities exerted on a star by the Pivot, the black hole at the center of the galaxy, and the distributed mass of the galaxy.

References

[1] The shape of the universe
https://en.wikipedia.org/wiki/Shape_of_the_universe

[3] The structure of the Pivot universe
https://www.academia.edu/45575390/The_structure_of_the_Pivot_Universe

[4] Could Newton's gravity theory be reconciled with Einstein's general relativity theory?
https://www.academia.edu/65097861/Could_Newtons_gravity_theory_be_reconciled_with_Einsteins_general_relativity_theory

https://www.youtube.com/watch?v=QcBpDVzBPMk

[6] Modeling the Newtonian dynamics for rotation curve analysis of thin-disk galaxies
https://www.academia.edu/28274865/Modeling_the_Newtonian_dynamics_for_rotation_curve_analysis_of_thin_disk_galaxies