A Rotating Frame Paradox in Quantum Mechanics

Karl De Paepe

Abstract

We consider a one particle quantum rotating system. We expect the probability densities at a point to be the same for a stationary and rotating frames of reference. We show this is not the case.

1 Introduction

Consider a frame of reference F' with coordinates r', t' rotating with constant angular velocity ω about the z axis of a frame of reference F with coordinates r, t. The coordinates are related by

$$
\rho' = \rho \quad \varphi' = \varphi - \omega t \quad z' = z \quad t' = t
$$

With respect to F let there be a quantum system of a particle with mass m in a potential $V(r)$. For the wave function $\psi(r, t)$ with respect to F let $\psi'(r', t')$ be the corresponding wave function with respect to F'. We expect the probability densities in the two frames are equal hence [1]

$$
|\psi'(r', t')|^2 = |\psi(r, t)|^2
$$

Consequently there is a real valued function $\beta(r, t)$ such that

$$
\psi'(r', t') = e^{-\frac{i}{\hbar}\beta(r, t)}\psi(r, t)
$$

2 Schrödinger Equations

With respect to F the wave function $\psi(r, t)$ satisfies the Schrödinger equation

$$
-\frac{\hbar^2}{2m}\nabla^2 \psi(r, t) + V(r)\psi(r, t) = i\hbar\frac{\partial}{\partial t}\psi(r', t')
$$

The Lagrangian with respect to F' is

$$
L' = \frac{1}{2}mv'^2 + mv' \cdot \omega \times r' + \frac{m}{2}(\omega \times r')^2 - V'(r')
$$

Construct the Hamiltonian from L'. The wave function $\psi'(r', t')$ then satisfies the Schrödinger equation

$$
-\frac{\hbar^2}{2m}\nabla'^2 \psi'(r', t') - \frac{1}{2}m\omega^2 r'^2 \psi'(r', t') + V'(r')\psi'(r', t') = i\hbar\frac{\partial \psi'}{\partial t'}(r', t')
$$

Now

$$
V'(r') = V(r) \quad \nabla' = \nabla \quad \frac{\partial}{\partial \varphi'} = \frac{\partial}{\partial \varphi} \quad \frac{\partial}{\partial t'} = \frac{\partial}{\partial t} + \omega \frac{\partial}{\partial \varphi}
$$
On substituting (3) in (6) and using (1), (4), and (7) we have
\[
\left[\frac{i\hbar}{2m} \nabla^2 \beta + \frac{1}{2m} \left(\nabla \beta \right)^2 - \frac{\omega}{2} \frac{\partial \beta}{\partial \varphi} - \frac{1}{2} m \omega^2 \rho^2 - \frac{\partial \beta}{\partial t} \right] \psi - i\hbar \frac{\partial \psi}{\partial \varphi} + i\hbar \frac{\nabla \psi}{m} = 0
\] (8)

Adding and subtracting (8), multiplied by \(\psi^* \), and its complex conjugate gives the two equations
\[
2 \left[\frac{1}{2m} \left(\nabla \beta \right)^2 - \frac{\omega}{2} \frac{\partial \beta}{\partial \varphi} - \frac{1}{2} m \omega^2 \rho^2 - \frac{\partial \beta}{\partial t} \right] \psi \psi^* + \frac{i\hbar}{m} \nabla \beta \cdot \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right)

- i\hbar \omega \left(\psi^* \frac{\partial \psi}{\partial \varphi} - \psi \frac{\partial \psi^*}{\partial \varphi} \right) = 0
\] (9)
\[
\nabla \cdot \left(\psi \psi^* \nabla \beta \right) = m \omega \frac{\partial (\psi \psi^*)}{\partial \varphi}
\] (10)

3 No Solution to Equations

Choose \(V \) and \(\psi \) so that \(\psi \) has form \(\psi(\rho, z, t) \) and at \(z \) and \(t \) if \(\psi(\rho, z, t) \) is zero it is zero at a decrete set of \(\rho \). Assume there is a point \(p_0 = (\rho_0, z_0, t_0) \) such that \(\nabla \beta(p_0) \neq 0 \). We can also choose \(p_0 \) so that also \(\psi(p_0) \neq 0 \). We then have \(\psi(p_0) \psi^*(p_0) \nabla \beta(p_0) \neq 0 \). There is a curve with tangent vector \(\nabla \beta \) and containing \(p_0 \). Since the system is symmetric about the \(z \) axis following this curve from \(p_0 \) along the direction of \(\nabla \beta \) or in the opposite direction we will reach a point \(p_1 \) such that \(\nabla \beta(p_1) = 0 \).

From (10) and \(\partial \psi / \partial \varphi = 0 \) we have
\[
\nabla \cdot \left(\psi \psi^* \nabla \beta \right) = 0
\] (11)

hence
\[
\frac{\partial}{\partial s} \left[\psi(s) \psi^*(s) \frac{\partial \beta}{\partial s}(s) \right] = 0
\] (12)

where \(s \) is the coordinate along \(\nabla \beta \). This implies
\[
\psi(p_0) \psi^*(p_0) \nabla \beta(p_0) = \psi(p_1) \psi(p_1) \nabla \beta(p_1) = 0
\] (13)

This is a contradiction hence \(\nabla \beta = 0 \). There is then a function \(f(t) \) such that \(\beta(r, t) = f(t) \). By (9) and form of \(\psi \)
\[
- \frac{1}{2} m \omega^2 \rho^2 - \dot{f} = 0
\] (14)

which does not hold. This \(\psi \) has then no solution for \(\beta \).

4 Conclusion

No solution implies that (2) does not hold. Consequently measuring position of the mass can give the mass is at a point in the stationary frame but is not at that point in the rotating frame of reference.

References