Twin prime numbers, Goldbach's proof of conjecture

Ryujin Choe

twowq@naver.com

abstract
Twin prime numbers, Goldbach's proof of conjecture

Twin prime numbers are infinitely large.

All even numbers greater than 2 may be expressed as the sum of two prime numbers.
5 10 15 20 25 30 …

Except for the case where synthetic water is included,

Consider that there is an N-length equivalent sequence as above. For example
If there is a 7-length equivalent sequence as above,

Teeth

\[
\begin{array}{cccccc}
\times & \times & \circ & \times & \times & \circ \\
\end{array}
\]

You can think of it as filling in the blank X here

\[
\begin{array}{ccccccccc}
\circ & \circ \\
\end{array}
\]

\[
\begin{array}{cccc}
\circ & \times & \circ \\
\end{array}
\]
As above, there is a multiple of 3 every third time (red circle)

Let's say this pushes the black circle to the right

The N th black circle here is the

$$\frac{p+1}{p-1} \cdot N$$ th circle or to the left
About ρ who is satisfied with $\rho \leq N$

$$\frac{\rho + 1}{\rho - 1} \cdot N$$
continuous series of equivalent series is minimum
Include more than N terms that are not divided by ρ
as to ρ_1, ρ_2 satisfying $\rho_1, \rho_2 \leq N$
\[
\frac{p_1 + 1}{p_1 - 1} \cdot \frac{p_2 + 1}{p_2 - 1} \cdot N \text{ series of equivalent sequences are}
\]

It includes at least \(N \) terms that are not divided into \(p_1, p_2 \)

N-length equivalent series
For each p_1, fill in \times that cannot be filled with \circ

Let's do this again

You can think of it as filling \circ with \times
that cannot be filled for each \hat{p}_2.

In the same way, when there are two equivalent sequences,

○ ○ ○ ○ ○ ○ ○ ○

If there is a 7-length equivalent sequence as above,

× × ○ × × ○ × × ○ × × ○
For each p_1 in the first order of magnitude, \times cannot be filled

$\times \circ \times \circ \times \circ \times \circ \times \circ \times \circ \times \circ \times$

For each p_1 in the second order, \times cannot be filled

If you think about filling in \bigcirc,

$\times \bigcirc \times \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \times \bigcirc \bigcirc \bigcirc$
It is the same as filling \times in \circ, where 2 spaces are empty for each p_1. Therefore

About p who is satisfied with $p \leq N$

$$\frac{p + 2}{p - 2} \cdot N$$

series of two equal order sequences are at least

contains terms that are not divided
into N or more,
as to p_1, p_2 satisfying $p_1, p_2 \leq N$
The two consecutive series of
\[
\frac{p_1 + 2}{p_1 - 2} \cdot \frac{p_2 + 2}{p_2 - 2} \cdot N \text{ contain at least } N
\]
terms that are not divided by p_1, p_2.
Thus, the two consecutive
\[\prod_{p < x} \left(\frac{x + 2}{x - 2} \right) \cdot x-\text{sequence sequences} \]
both contain at least \(x \) terms that are not divided by a decimal fraction of \(x \) or less.

For \(3 \leq x \), \[\frac{x + 2}{x - 2} < \left(\frac{x}{x - 1} \right)^4 \]
For $x \geq 10^4$,

$$\prod_{p \leq x} \frac{p}{p-1} \leq e^\gamma \ln x \left(1 + \frac{1}{2\ln^2 x}\right)$$

(Kevin Broughan, Equivalents of the Riemann hypothesis (2017), 188)

$$\left(e^\gamma \ln x \left(1 + \frac{1}{2\ln^2 x}\right)\right)^4 x$$ series of two consecutive equivalent sequences are:
Include at least x terms that are not divided into decimal places below x.

Therefore, it has a value of x^2 or less when there are two consecutive equal sequences of \[\left(e^{\gamma \ln x} \left(1 + \frac{1}{2 \ln^2 x} \right) \right)^4 x, \]

If you do not include any arguments
below \(x \), they are prime,

Two consecutive \(\left(e^{\gamma \ln x} (1 + \frac{1}{2 \ln^2 x}) \right)^4 x \)

-sequences with values equal to or less than \(x^2 \) contain terms that are prime on at least both sides.

1. Proof of twin prime conjecture
12345⋯n
34567⋯n + 2

As shown above, it can be shown that there are cases where two equal order sequences are prime numbers at the same time.

For the maximum prime \(p \) below \(n \), \(p^2 < n \) is satisfied, and the length of
the above equivalent sequence pair is n

Since when $10^4 < p$ satisfies

$$\left(e^{\gamma \ln p \left(1 + \frac{1}{2 \ln^2 p}\right)}\right)^4 p < p^2$$

at least p pairs of equivalent sequences are prime at the same time.
2. Proof of Goldbach's conjecture

\[1 \ 2 \ 3 \ 4 \ 5 \ \cdots \ (n-1) \]
\[(n-1) \ (n-2) \ (n-3) \ \cdots \ 1 \]

As shown above, it can be shown that there are cases where two equal order sequences are prime numbers at the same time.

For the maximum prime \(p \) below \(n-1 \),
\(p^2 < n - 1 \) is satisfied, and the length of the above equivalent sequence pair is \(n - 1 \)

Since when \(10^4 < p \) satisfies

\[
\left(e^{\gamma \ln p (1 + \frac{1}{2 \ln^2 p})} \right)^4 p < p^2,
\]

at least \(p \) pairs of equivalent sequences are prime at
the same time.