Approach to enhance quantum gravity effects by ultimate acceleration

Huaiyang Cui
Department of Physics, Beihang University, Beijing, 102206, China
Email: hycui@buaa.edu.cn

Abstract: In analogy to the ultimate speed c, assume that there is an ultimate acceleration β, nobody's acceleration can exceed this limit β. By fitting observational data, it is found that the solar system has an ultimate acceleration of $\beta=2.961520\times10^{10}$ (m/s2), no rocket's acceleration can exceed this limit β. Because this ultimate acceleration is a large number, any effect connecting to β will become easy to test, including quantum gravity test. The ultimate acceleration makes a strict restriction on planet-rotation, it establishes a quantum rule for gravity, it is reported in this paper that the Sun and first four planets (Mercury, Venus, Earth, Mars) are quantized very well in accordance with the limit β. In other words, the ultimate acceleration β can derive out a generalized matter wave which causes the planetary quantization. Using the generalized matter wave and its Planck-constant-like constant, the solar system, Jupiter's satellites, Saturn's satellites, Uranus' satellites, Neptune's satellites as five different many-body systems are investigated with the Bohr orbit model. The calculation results agree well with experimental observations for these planets and satellites. This paper also discusses the possibility of applying the generalized matter wave to the Moon's orbit, tropic cyclone and virus.

1. Introduction

Today, quantum gravity has developed many different approaches. Many directions have led to significant advances with various appealing ideas; these include perturbative quantum gravity, nonperturbative quantum gravity, loop and string theory, etc. [1]. C. Marletto et al. proposed an experiment to detect the entanglement generated between two masses via gravitational interaction [2]. T. Guerreiro discussed the quantum mechanical description of a gravitational wave interacting with a cavity electromagnetic field [3]. Some quantum gravity proposals are extremely hard to test in practice, as quantum gravitational effects are appreciable only at the Planck scale.

The present paper suggests an approach to enhance the quantum gravity effect for test. For example, considering the assumption that there is an ultimate acceleration β, nobody's acceleration can exceed this limit β, the following section 3 shows $\beta=2.961520\times10^{10}$ (m/s2) in the solar system. Because this ultimate acceleration is a large number, any effect connecting to β will become easy to test, including quantum gravity test. In order to clarify the concept of ultimate acceleration, we first have to invoke the relativistic equality principle.
2. How to connect the ultimate acceleration with quantum gravity

(1) Pythagorean theorem and the relativity

In the relativity, the speed of light c is an ultimate speed, nobody's speed can exceed this limit c. The relativistic velocity u of a particle satisfies

$$u_1^2 + u_2^2 + u_3^2 + u_4^2 = -c^2 .$$

(1)

No matter what particles (electrons, molecules, neutrons, quarks), their 4-vector velocities all have the same magnitude: $|u|=ic$. All particles gain equality because of the same magnitude of their 4-velocity u.

In an inertial frame, consider a particle of mass m with speed v, according to the Pythagorean theorem, in time interval dt the particle moves

$$dx_1^2 + dx_2^2 + dx_3^2 = v^2 dt^2$$

(2)

Subtracting the both sides of the above equation by $c^2 dt^2$, we get

$$dx_1^2 + dx_2^2 + dx_3^2 - c^2 dt^2 = v^2 dt^2 - c^2 dt^2$$

(3)

It can be rewritten as

$$\left(\frac{dx_1}{dt}\right)^2 + \left(\frac{dx_2}{dt}\right)^2 + \left(\frac{dx_3}{dt}\right)^2 - c^2 \left(\frac{dt}{dt}\right)^2 = -c^2 \left(1 - \frac{v^2}{c^2}\right)$$

(4)

We define the fourth axis and the proper time interval as

$$x_4 = ic t; \quad d\tau = \sqrt{1 - \frac{v^2}{c^2}} dt$$

(5)

Then, the coordinates $\left(x_1, x_2, x_3, x_4 = ic t\right)$ construct up the relativistic space-time in which the 4-vector velocity are specified by

$$u_1 = \frac{dx_1 / dt}{\sqrt{1 - v^2 / c^2}} \quad u_2 = \frac{dx_2 / dt}{\sqrt{1 - v^2 / c^2}}$$
$$u_3 = \frac{dx_3 / dt}{\sqrt{1 - v^2 / c^2}} \quad u_4 = \frac{dx_4 / dt}{\sqrt{1 - v^2 / c^2}}$$

(6)

We have

$$u_1^2 + u_2^2 + u_3^2 + u_4^2 = -c^2$$

(7)

It means that the magnitude of 4-vector velocity for every particle takes the same value: $|u|=ic$ (constant imaginary number), this is called as the velocity equality principle.

According to the Pythagorean theorem, the acceleration a of a particle is

$$a_1^2 + a_2^2 + a_3^2 = a^2; \quad (a_4 = 0; \quad \therefore x_4 = ic t)$$

(8)

Assume that particles have an ultimate acceleration β as limit, no particle can exceed this acceleration limit β. Subtracting the both sides of the above equation by β^2, we have

$$a_1^2 + a_2^2 + a_3^2 - \beta^2 = a^2 - \beta^2; \quad a_4 = 0$$

(9)

It can be rewritten as
\[
\left[a_1^2 + a_2^2 + a_3^2 + 0 + (i\beta)^2 \right] \frac{1}{1-a^2/\beta^2} = -\beta^2
\]

(10)

Now, the particle subjects to an acceleration whose five components are specified by

\[
\alpha_1 = \frac{a_1}{\sqrt{1-a^2/\beta^2}}; \quad \alpha_2 = \frac{a_2}{\sqrt{1-a^2/\beta^2}}; \\
\alpha_3 = \frac{a_3}{\sqrt{1-a^2/\beta^2}}; \quad \alpha_4 = 0; \quad \alpha_5 = \frac{i\beta}{\sqrt{1-a^2/\beta^2}};
\]

(11)

where \(\alpha_5 \) is the newly defined acceleration in five dimensional space-time \((x,J,x_2,x_3,x_4=ict,x_5)\). Thus, we have

\[
\alpha_1^2 + \alpha_2^2 + \alpha_3^2 + \alpha_4^2 + \alpha_5^2 = -\beta^2; \quad \alpha_4 = 0
\]

(12)

It means that the magnitude of the newly defined acceleration \(\alpha \) for every particle takes the same value: \(|\alpha|=\beta\) (constant imaginary number), this is called as the acceleration equality principle.

(2) Visualization of matter wave

How to resolve the velocity \(u \) and acceleration \(\alpha \) into \(x, y, \) and \(z \) components? In realistic world, a hand can rotate a ball moving around a circular path at constant speed \(v \) with constant centripetal acceleration \(a \), as shown in Fig.1(a).

In analogy with the ball in a circular path, consider a particle in one dimensional motion along the \(x_1 \) axis at the speed \(v \), in the Fig.1(b) it moves with the constant speed \(|u|=ic\) almost along the \(x_4 \) axis and slightly along the \(x_1 \) axis, and the constant centripetal acceleration \(|\alpha|=i\beta\) in the \(x_5 \) axis at

\begin{align*}
\text{Fig.1} & \quad \text{(a) A hand rotates a ball moving around a circular path at constant speed \(v \) with constant centripetal acceleration \(a \). (b) The particle moves along the \(x_1 \) axis with the constant speed \(|u|=ic\) in the \(u \) direction and constant centripetal force in the \(x_3 \) axis at the radius } iR \text{ (imaginary number).}
\end{align*}
the constant radius iR (imaginary number); the coordinate system $(x_i, x_4 = i ct, x_5 = iR)$ establishes a cylinder coordinate system in which this particle moves spirally at the speed v along the x_i axis. According to usual centripetal acceleration formula, the acceleration in the x_4-x_5 plane is given by

$$i \beta = \frac{|u|^2}{iR} = -\frac{c^2}{iR} = i \frac{c^2}{R} .$$

(13)

Therefore, the track of the particle in the cylinder coordinate system $(x_i, x_4 = ict, x_5 = iR)$ forms a shape, called as acceleration-roll. The faster the particle moves, the longer the spiral step is, while in the relativistic coordinate system $(x_i, x_4 = i c t)$ the acceleration-roll is invisible due to lacking the x_5 axis.

As like a steel spring which contains elastic wave, the track in the acceleration-roll in Fig.1(b) can be described by a wave function whose phase changes 2π for one spiral step. The wave function phase changes 2π for one spiral circumference $2\pi (iR)$, and the small displacement of the particle on the spiral track is $|u|d\tau = ic d\tau$ in the 4-vector u direction, thus this wave phase along the spiral track is evaluated by

$$\text{phase} = \int_0^\tau \frac{2\pi}{2\pi (iR)} ic d\tau = \int_0^\tau \frac{c}{R} d\tau .$$

(14)

Substituting the radius R into it, the wave function ψ is given by

$$\psi = \exp(-i \cdot \text{phase}) = \exp(-i \int_0^\tau \frac{c}{R} d\tau) = \exp(-i \frac{\beta}{c} \int_0^\tau d\tau) .$$

(15)

In the theory of relativity, we known that the integral along $d\tau$ needs to transform into realistic line integral, that is

$$d\tau = -\frac{c^2}{-c^2} \frac{d\tau}{c^2} = \frac{d\tau}{c^2} (u_1^2 + u_2^2 + u_3^2 + u_4^2) \frac{d\tau}{c^2} .$$

(16)

Therefore, the wave function ψ is evaluated by

$$\psi = \exp(-i \frac{\beta}{c} \int_0^\tau d\tau) .$$

(17)

$$= \exp(i \frac{\beta}{c} \int_0^\tau (u_1dx_1 + u_2dx_2 + u_3dx_3 + u_4dx_4))$$

This wave function may have different explanations, depending on the particle under investigation. If the β is replaced by the Planck constant, the wave function of electrons is given by

$$\text{assume: } \beta = \frac{mc^3}{\hbar} .$$

(18)

$$\psi = \exp\left(i \frac{\hbar}{\hbar} \int_0^\tau (mu_1dx_1 + mu_2dx_2 + mu_3dx_3 + mu_4dx_4)) \right)$$

where $mu dx = -E dt$, it strongly suggests that the wave function is just the de Broglie's matter wave [4,5,6]. In Fig.1(b), the acceleration-roll of particle moves with two distinctions: right-hand chirality and left-hand chirality. The direction of the angular momentum J would be slightly different from the advance x_i due to spiral precession. It is easy to calculate the ultimate acceleration β, the radius
R and the angular momentum J in the plane x_4-x_5 for spiraling electron as

$$\beta = \frac{c^3 m}{\hbar} = 2.327421\text{e+29} \text{ (M/s}^2\text{)}$$

$$R = \frac{c^2}{\beta} = 3.861593\text{e-13} \text{ (M)}$$

$$J = \pm m |u| iR = \mp \hbar$$

The wave function ψ in Eq.(17) is a pure geometry wave. Considering planets in the solar system, no Planck constant can be involved. In a many-body system with the total mass M, the ultimate acceleration can be rewritten in terms of Planck-like constant h as

$$\psi = \exp\left(\frac{i}{\hbar M} \int_0^x (u_1dx_1 + u_2dx_2 + u_3dx_3 + u_4dx_4)\right)$$

The constant h will be determined by experimental observations. In next section we shall try to use this wave function as the planetary scale waves in the solar system to explain quantum gravity effects for the planets and satellites [7—25], the wave function is called as the acceleration-roll wave.

Tip: actually, ones cannot get to see the acceleration-roll of particle in the relativistic space-time $(x_1,x_2,x_3,x_4=ict)$; only get to see it in the cylinder coordinate system $(x_1,x_4=ict,x_5=iR)$. [28]

(3) Position equality principle

Position, velocity and acceleration are three basic concepts in particle physics, correspondingly, we have the position equality principle, the velocity equality principle, and the acceleration equality principle, respectively. The position equality principle admits there exists an ultimate distance D which is automatically recognized as the diameter of our universe: among the D range nobody can escape. The position equality principle provides us a useful insight into cosmic microwave background, the Hubble law and dark matter.

Consider a star that have distance r to the sun (to us), we establish a frame of reference with the origin at the sun, as shown in Fig.2 in the Cartesian coordinates (x,y,z), the Pythagorean theorem tells us

$$x^2 + y^2 + z^2 = r^2$$

(21)
Because the distance is a very large quantity for the star, we worry about non-Euclidian effect that may involve within, we modify it as

\[x^2 + y^2 + z^2 = r^2 + kr \] \hspace{1cm} (22)

where the \(kr \) term represents the possible non-Euclidian effect. Suppose there is the ultimate distance \(D \) in the universe, then we have

\[x^2 + y^2 + z^2 - D^2 = -D^2 + r^2 + kr \]

\[x^2 + y^2 + z^2 - D^2 = -D^2 \left(1 - \frac{kr}{D^2} - \frac{r^2}{D^2} \right) \] \hspace{1cm} (23)

It can be rewritten as

\[x \left(\frac{1}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \right)^2 + y \left(\frac{1}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \right)^2 \]

\[+ z \left(\frac{1}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \right)^2 + iD \left(\frac{1}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \right)^2 = -D^2 \] \hspace{1cm} (24)

Then, new coordinates can be established, are specified by

\[x' = \frac{x}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \]

\[y' = \frac{y}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \]

\[z' = \frac{z}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \]

\[d' = \frac{iD}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \] \hspace{1cm} (25)

In the new coordinates \((x', y', z', d')\), all stars to the origin are the same for their same distance:

\[|x'^2 + y'^2 + z'^2 + d'^2| = iD \] \hspace{1cm} (26)

The magnitude of the distance is a constant! It is in analogy with the velocity equality principle in the relativistic space-time. The new coordinates \((x', y', z', d')\) is named as the **position equality space** in the followings. The above equation is called as the **position equality principle**.

Notice that a star moving at the classical position \((x, y, z)\) will never be able escape from us in the position equality space \((x', y', z', d')\), simply because
In other words, all distance stars are confined in an equivalent cavity with the diameter D. Our universe is a blackbody cavity in terms of the position equality principle, in which all electromagnetic radiations warm up our universe, as shown in Fig.3.

\[
x' = \frac{x}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \Rightarrow |x'| < D
\]

\[
y' = \frac{y}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \Rightarrow |y'| < D
\]

\[
z' = \frac{z}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \Rightarrow |z'| < D
\]

According to the blackbody theory, our universe has a mean temperature T with a standard blackbody spectrum in the cavity $r=0$, experimental observations confirmed the profile of cosmic microwave background radiation to be an exact blackbody radiation spectrum at the temperature $T=2.725K$, as shown in Fig.4.
Now, let us test the position equality principle using the Hubble law. Consider an atom at far distance \(x = r \), emitting an electromagnetic wave of wavelength \(\lambda \). We must hold the position equality principle for all stars, so actually we live in the new coordinate system \((x', y', z', d')\), what we see is

\[
x' = \frac{x}{\sqrt{1 - kr / D^2 - r^2 / D^2}} \quad dx' \approx (1 + \frac{kr}{2D^2}) dx
\]

\[
y' = y = 0
\]

\[
z' = z = 0
\]

\[
d' = \frac{iD}{\sqrt{1 - kr / D^2 - r^2 / D^2}}
\]

Thus, we at the origin receive the wave length \(\lambda' \) of the electromagnetic wave as

\[
\lambda' \approx (1 + \frac{kr}{2D^2}) \lambda
\]

This is the Hubble law for far stars, the \(2D^2/k \) equals to the Hubble constant, in fact the Hubble law happens in all directions in the sky like cosmic microwave background in all directions. The advantage of the position equality principle is that it is not necessary for stars to recede as prediction by the Doppler effect theory for frequency shift. For last many decades, our vision to the cosmology has been misguided by abuse of the Doppler effect for electromagnetic wave over the Hubble law, the later leads to the expansion of the universe and the big bang. Now, sleeping with the position equality principle, it is time for the universe to become quiet [28].

3. The acceleration-roll wave in planetary systems

In the preceding section, we have defined the generalized matter wave as the acceleration-roll wave, which is a pure geometry wave based on the equality principle.

In a many-body system with the total mass \(M \), a constituent particle has the mass \(m \) and moves at the speed \(v \), its wavelength of matter wave is modified in Eq.(20) as

\[
\lambda = \frac{2\pi h}{mv} \quad \Rightarrow \text{modify} \quad \Rightarrow \lambda = \frac{2\pi hM}{v}.
\]

where \(h \) is a Planck-constant-like constant. It is found that this modified matter wave works for quantizing orbits correctly [28,29].

![Fig.5 A planet 2D orbit around the sun, an acceleration-roll winding around the planet.](image-url)
In the Bohr's orbit model, as shown in Fig.5, the circular quantization condition is given by

\[2\pi r = n \lambda; \quad \frac{\lambda}{v} = 2\pi \frac{hM}{r} \]

\[\Rightarrow \quad \sqrt{r} = h \sqrt{\frac{M}{G}} n \quad (31) \]

It indicates that there is a linear relation between the square root of radius and the quantum number \(n \). The solar system, Jupiter's satellites, Saturn's satellites, Uranus' satellites, Neptune's satellites as five different many-body systems are investigated with the Bohr's orbit model. After fitting observational data, the Planck-constant-like constant \(h \) is obtained in Table 1, respectively, the predicted quantization in Fig.6(a), Fig.6(b), Fig.6(c), Fig.6(d) and Fig.6(e) agrees well with experimental observations for those inner constituent particles. The key point is that the various systems have almost same Planck-constant-like constant \(h \) in Table 1 with a mean value of \(3.51 \times 10^{-16} \text{ m}^2\text{s}^{-1}\text{kg}^{-1} \), at least have the same magnitude!

<table>
<thead>
<tr>
<th>System</th>
<th>(N)</th>
<th>(h) (m(^2)s(^{-1})kg(^{-1}))</th>
<th>(M/M_{\text{earth}})</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar planets</td>
<td>9</td>
<td>(4.574635 \times 10^{-16})</td>
<td>333000</td>
<td>Fig.6(a)</td>
</tr>
<tr>
<td>Jupiter's satellites</td>
<td>7</td>
<td>(3.531903 \times 10^{-16})</td>
<td>318</td>
<td>Fig.6(b)</td>
</tr>
<tr>
<td>Saturn's satellites</td>
<td>7</td>
<td>(6.610920 \times 10^{-16})</td>
<td>95</td>
<td>Fig.6(c)</td>
</tr>
<tr>
<td>Uranus' satellites</td>
<td>18</td>
<td>(1.567124 \times 10^{-16})</td>
<td>14.5</td>
<td>Fig.6(d)</td>
</tr>
<tr>
<td>Neptune's satellites</td>
<td>7</td>
<td>(1.277170 \times 10^{-16})</td>
<td>17</td>
<td>Fig.6(e)</td>
</tr>
</tbody>
</table>
The orbital radii are quantized for inner constituents. (a) the solar system with $h = 4.574635 \times 10^{-16}$ (m2/s). The relative error is less than 3.9%. (b) the Jupiter system with $h = 3.531903 \times 10^{-16}$ (m2/s). Metis and Adrastea are assigned the same quantum number for their almost same radius. The relative error is less than 1.9%. (c) the Saturn system with $h = 6.610920 \times 10^{-16}$ (m2/s). The relative error is less than 1.1%. (d) the Uranus system with $h = 1.567124 \times 10^{-16}$ (m2/s). $n=0$ is assigned to the Uranus. The relative error is less than 2.5%. (e) the Neptune system with $h = 1.277170 \times 10^{-16}$ (m2/s). $n=0$ is assigned to the Neptune. The relative error is less than 0.17%.

In Fig. 6(a), the blue straight line expresses the linear regression relation among the Sun, Mercury, Venus, Earth and Mars, their quantization parameters are $hM=9.098031 \times 10^{14}$ (m3/s). The ultimate acceleration is $\beta=2.961520 \times 10^{10}$ (m/s2). The quantization linear regression relation is independent from individual planetary mass and size.

4. Discussion: Moon, tropic cyclone and virus

The Moon is Earth's only proper natural satellite. It is one-quarter the diameter of Earth, making it the largest natural satellite in the solar system relative to the size of its planet. Earth had five known quasi-satellites.

Applying the linear regression relation of orbit quantization to the Moon, we obtain Fig. 7(a). According to fitting-calculation, the ultimate acceleration is $\beta=1.377075 \times 10^{14}$ (m/s2), the corresponding Planck-constant-like constant is $h=3.276105 \times 10^{-14}$ (m2/skg), indicating that h in this...
case may rise as the total mass M drops comparing to other planets. Another consideration is to take the quasi-satellite's perigee into account, for the moon and 2004_GU9 etc., as shown in Fig.7(b). But this consideration requires further understanding to quasi-satellites [28].

In contrast with the stiff Planck constant for electrons, planetary Planck-constant-like constant can dramatically vary to a certain value to adapt to its dense constituents in a many-body system, so that this acceleration-roll wave with an adaptive wavelength can be applied to a variety of collective particles such as water-vapor, cloud, atmosphere, asteroids, space debris, etc. as shown in Fig.8. For example, we would make an attempt to use the acceleration-roll wave to describe tornados whose wavelength drops to about 1 meters or tropic cyclones whose wavelength drops to about 10---100 kilometers [28].

In recent years, virus COVID-19 has become a hot issue that is deserved to discuss.
The molecular vibration in the r direction will grow out many spike glycoproteins on the surface of a virus. (b) the k_ϕ should be in constructed interference.

As we know, the wavelength of a generalized matter wave (acceleration-roll wave) is given by

$$\lambda = \frac{2\pi \hbar}{mv} \Rightarrow \text{modify} \Rightarrow \lambda = \frac{2\pi hM}{v} . \quad (32)$$

Since the Earth's $h= 3.276105e-14$(m2/skg), if a COVID-19 virus has a mass of 1e-9kg, then the virus' constant is estimated as $hM = 3.276105e-23$(m2/s). To this estimation, the planetary scale h seems to be not suitable for the virus; but, actually, the virus' constant hM must adapt to itself and its environment. Suppose a virus has a radius of r, its acceleration-roll wave has wave vectors k_ϕ and k_r in a polar coordinate system (r, ϕ) fixed at the virus. As a 2D model, inside the virus body, its acceleration-roll in the ϕ direction must be in destructed interference, that is

$$\oint_L k_\phi (rd\phi) < \pi . \quad (33)$$

On the virus surface, k_ϕ should be in constructed interference in a form of standing wave, that is

$$\oint_L k_\phi (rd\phi) = \pi n \Rightarrow k_\phi = \frac{n}{2r} . \quad (34)$$

The constructed interference is illustrated in Fig.9(b), where the quantum number n is also the node number $n=5$ for the standing wave on the surface. Suppose the virus surface has a rotating speed v, then the virus' Planck-constant-like constant is estimated as

$$k_\phi = \frac{2\pi}{\lambda} = \frac{v}{hM} = \frac{n}{2r} \Rightarrow h = \frac{2rvM}{n} = \frac{2J}{n} . \quad (35)$$

where $J=rvM$ represents approximately the angular momentum of the virus; if J is a small quantity, it is hard to find virus wave behavior. To note that there are several spikes of $|\psi|^2$ around the core in Fig.9(b), which manifests that virus is easy to grow out protein-spikes under the constructed interference of its acceleration-roll wave in the ϕ direction [28].

The acceleration-roll wave is a pure geometry wave, which can be applied to any geometry structures such as viruses, cells, animals, etc.
5. Conclusions

In analogy to the ultimate speed \(c \), assume that there is an ultimate acceleration \(\beta \), nobody's acceleration can exceed this limit \(\beta \). By fitting observational data, it is found that the solar system has an ultimate acceleration of \(\beta = 2.961520 \times 10^10 \text{(m/s/s)} \), no rocket's acceleration can exceed this limit \(\beta \). Because this ultimate acceleration is a large number, any effect connecting to \(\beta \) will become easy to test, including quantum gravity test. The ultimate acceleration makes a strict restriction on planet-rotation, it establishes a quantum rule for gravity, it is reported in this paper that the Sun and first four planets (Mercury, Venus, Earth, Mars) are quantized very well in accordance with the limit \(\beta \). In other words, the ultimate acceleration \(\beta \) can derive out a generalized matter wave which causes the planetary quantization. Using the generalized matter wave and its Planck-constant-like constant, the solar system, Jupiter's satellites, Saturn's satellites, Uranus' satellites, Neptune's satellites as five different many-body systems are investigated with the Bohr orbit model. The calculation results agree well with experimental observations for these planets and satellites. This paper also discusses the possibility of applying the generalized matter wave to the Moon's orbit, tropic cyclone and virus.

References

[23] TANG Zhimei, DING, Zonghua, DAI Liandong, WU Jian, XU Zhengwen, Comparative analysis of space debris gaze detection based on the two incoherent scattering radars located at 69N and 78N, Chin. J. Space Sci, 2018 38, 1, 73-78. DOI:10.11728/cjss2018.01.073.

