
Michael Girgis  

 

 

  

Modified Lorentz Transformations and Minkowski Space Splits in 

Inverse Relativity  

Michael Girgis  

PO box 11000, Gamal Abu Al-Rish str. Tallah, Menia, Egypt 

E-mail: michael.grgs@yahoo.com  

June 3, 2022 

ABSTRACT : New transformations of space and time coordinates achieve kinds of symmetry that 

the classic Lorentz transformations fail to achieve, we get the new transformations When 

analyzing a four-dimensional vector in Minkowski space into two four-dimensional vectors, the 

first is known as the symmetry vector and the second is known as the parallel vector, Where each 

vector is represented in a new four-dimensional space, this analysis leads to the splitting of the 

Minkowski space into a positive and a negative space, Thus, we have new transformations of the 

coordinates of space and time called modified Lorentz transformations, Which expresses one of 

those spaces, the positive space (positive spacetime), which adheres to the principles of special 

relativity 

Keywords: Lorentz transformations - Four-dimensional vector - Minkowski space - Spatial symmetry - 

Principles of relativity - Causality and light speed - Inverse Relativity - Energy and time paradox  

 

1  INTRODUCTION 

Lorentz transformations are transformations of space and time coordinates from one inertial 

reference frame to another, with the stability of the speed of light for all observers in the reference 

frames, It was founded by Hendrik Lorentz in 1903 to explain the experiment carried out by 

Michelson–Morley [5] [3] in 1887, The Lorentz transformations are the mathematical and 

physical basis for both the special and general theory of relativity as well, It revealed to us the 

properties of space and time such as length contraction, time dilation, and the merge of time as a 

fourth dimension of space in a four-dimensional space known as Minkowski space, Lorentz 

transformations are achieved through certain observing conditions in which the speed of light is 

constant, , but what if we change the observing conditions used in these transformations, even if 

that is from a purely theoretical point of view, Will we get the same Lorentz transformations or      
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a new transformations? Just to change our observation conditions followed! , And if we obtain 

new transformations, will it reveal to us other properties of space and time that differ from the 

properties of space and time in the special theory of relativity?! Or will we reach the same 

properties as before? 

2  METHODS  

2-1  Vector Symbol in The Lorentz Transformations 

We also know from the special theory of relativity that the Lorentz transformations [2] [3] [5] are 

a set of equations that express the transformations of the space and time coordinates of a four-

dimensional vector from one inertial reference frame [13] to another, so we prefer that the set of 

equations be written with the vector symbol, In order to distinguish between them and the new 

transformations, where the vector symbol here is  𝛼`⃗⃗  ⃗   

𝑥`𝛼0
= 𝛾 ( 𝑥𝛼 − 𝑉𝑠𝑡𝛼  )                                                     (1.2) 

𝑦`𝛼0
= 𝑦𝛼                                                                            (2.2) 

𝑧`𝛼0
= 𝑧𝛼                                                                            (3.2) 

𝑡`𝛼0
= 𝛾 (𝑡𝛼  −  

𝑉𝑠  𝑥𝛼

𝑐2
)                                                    (4.2) 

𝛾 =
1

√1 −
𝑉𝑆

2

𝑐2

                                                                     (5.2) 

The zero symbol here expresses the occurrence of the event in the frame of reference S' and 

therefore it is not necessary to be on the left side in the previous set of equations, while the 

inverse Lorentz transformations for the same event are written in the following set 
 

𝑥𝛼 = 𝛾 ( 𝑥`𝛼0
+ 𝑉𝑠𝑡`𝛼0

 )                                                  (6.2) 

𝑦𝛼 = 𝑦`𝛼0
                                                                            (7.2) 

𝑧𝛼 = 𝑧`𝛼0
                                                                           (8.2) 

𝑡`𝛼0
= 𝛾 (𝑡𝛼 + 

𝑉𝑠  𝑥𝛼

𝑐2
)                                                    (9.2) 
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2-2 Symmetry of the Lorentz Vector in Space 

We assume that there are two reference frames S and S' [2] [13] from Cartesian coordinate 

system, each frame of reference has an observer at the origin point O and O', as we assume that 

the frame S' is moving at a uniform velocity VS  relative to the S frame in the positive direction of 

the x-axis as shown in Figure: 1-2 

𝑆` →  𝑥` 𝑦` 𝑧` 𝑡`    

   𝑆 →  𝑥  𝑦  𝑧  𝑡 

During the passage of the reference frame S' and at the moment when the frames S and S' match 

(that is, when O' matches with O) where  𝑥 =  𝑥` =  0  and 𝑡 = 𝑡` =  0, an event occurred in this 

frame which is the emission of a photon from a light source at origin point O', After a period of 

time ∆t, the photon reached the point P  in space, and the frame of reference S' reached the point 

Q on the x-axis (see Figure: 1-2), where every observer here observes the displacement vector     

of the photon under the conditions of the first observation, i.e. according to the classical 

observation conditions used in special relativity 

 

Figure: 1-2 
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The observer O' observes the displacement vector of the photon (event path) relative to its 

reference frame S' (i.e. observes the displacement vector of the photon relative to him) from the 

origin point O' to the point P which is the three-dimensional position vector  𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗   𝑜𝑟   𝑂′𝑃⃗⃗⃗⃗⃗⃗  ⃗ , So  

the length of this vector in the S' coordinate system is  

‖ 𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗‖ = √ 𝑥`𝛼0
2 + 𝑦`𝛼0

2 + 𝑧`𝛼0
2                                           (10.2) 

The previous formula is slightly different from the formula used in mathematics because 

mathematics is concerned with the vector only, but here we are interested in the vector variables 

(components), the number zero represents the occurrence of the event in this frame as we 

mentioned previously 

𝑥`𝛼0
2 + 𝑦`𝛼0

2 + 𝑧`𝛼0
2 = 𝛼`0

2                                                (11.2) 

The length of the displacement vector can be obtained by the velocity of the photon 𝑉𝛼0
`  on this 

vector, and  𝑡`𝛼0
 is the time that the photon takes along this vector 

𝑉𝛼0
` =

𝛼`0
𝑡`𝛼0

                                                                   (12.2) 

𝛼`0
2 = 𝑉`𝛼0

2  𝑡`0
2                                                           (13.2) 

Substituting from Equation 11.2 into Equation 13.2, we get the time dimension in the equation 

and thus we arrive at the four-dimensional description of the vector  𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗ [6] 

𝑥`𝛼0
2 + 𝑦`𝛼0

2 + 𝑧`𝛼0
2 − 𝑉`𝛼0

2  𝑡`𝛼0
2 = 0                                        (14.2) 

𝑉𝛼0
`⃗⃗ ⃗⃗  ⃗ represents the velocity of the photon on the vector  𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗ , which is observed by the observer   

O' relative to the frame of reference S', i.e. in the first observation conditions, but the previous 

equation is a general equation where  𝑉𝛼0
`  ≤   𝑐  , and the velocity of the photon here is equal to 

the speed of light because it is in first observation conditions [12], So we write the equation in    

the following form 

𝑥`𝛼0
2 + 𝑦`𝛼0

2 + 𝑧`𝛼0
2 − 𝑐2 𝑡`𝛼0

2 = 0                                         (15.2) 
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As for the observer O, he observes the displacement vector of the photon relative to his reference 

frame S (that is, he observes the vector of the displacement of the photon relative to him, i.e., in 

the first observation conditions) from the origin point O where the moment of photon emission 

was O' matches O) to the point P in space which is a 3D position vector  𝛼` ⃗⃗ ⃗⃗     𝑜𝑟   𝑂𝑃⃗⃗⃗⃗  ⃗, so             

the length of this vector in the S-coordinate system is 

‖ 𝛼` ⃗⃗ ⃗⃗  ‖ = √ 𝑥𝛼
2 + 𝑦𝛼

2 + 𝑥𝛼
2                                               (16.2) 

By following the same previous steps in equations 12.2, 13.2, 14.2, we arrive at the four-

dimensional form of the vector 𝛼` ⃗⃗ ⃗⃗   

𝑥𝛼
2 + 𝑦𝛼

2 + 𝑥𝛼
2 − 𝑉𝛼

2 𝑡𝛼
2  = 0                                           (17.2) 

𝑉𝛼  ⃗⃗ ⃗⃗    is the velocity of the photon on the vector 𝛼` ⃗⃗ ⃗⃗   that the observer O observes relative to the S 

frame, i.e. in the first observation conditions, 𝑡𝛼  is the time that the photon takes along this 

vector, the previous equation is also a general equation where 𝑉𝛼  ≤   𝑐 , and the velocity of         

the photon here also is equal to the speed of light because it is in the same conditions of 

observation, So we write the previous equation in the following form 

𝑥𝛼
2 + 𝑦𝛼

2 + 𝑥𝛼
2 − 𝑐2 𝑡𝛼

2 = 0                                           (18.2) 

We notice from equations 15.2 and 18.2 that the photon velocity in the first observation 

conditions, is constant for the observers or relative to the two frames, Which fulfills the second 

postulate of special relativity [5] [9], So the transformation between these two vectors is       

through the above mentioned Lorentz transformations, as we also notice from the previous        

two equations that the vectors 𝛼` ⃗⃗ ⃗⃗   ,    𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗ as four-dimensional vectors are symmetrical in the 

magnitude ( Rotational Geometric Symmetry ) [15] and thus are represented in a four-

dimensional vector space, which is Minkowski space [2]  [8], We also find that the speed of      

light is symmetrical in this space and thus appears as a cosmic constant 

𝑥𝛼
2 + 𝑦𝛼

2 + 𝑥𝛼
2  −  𝑐2 𝑡𝛼

2   =    𝑥`𝛼0
2 + 𝑦`𝛼0

2 + 𝑧`𝛼0
2 − 𝑐2 𝑡`𝛼0

2                      (19.2) 

But from the inverse Lorentz transformations equation No. 9.2 we conclude that 

𝑐2 𝑡𝛼
2   >   𝑐2 𝑡`𝛼0

2                                                          (20.2) 
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Thus  

𝑥𝛼
2 + 𝑦𝛼

2 + 𝑥𝛼
2   >   𝑥`𝛼0

2 + 𝑦`𝛼0
2 + 𝑧`𝛼0

2       ∴       ‖ 𝛼` ⃗⃗ ⃗⃗  ‖  >  ‖ 𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗‖                     (21.2) 

From the inverse Lorentz transformations also equations 7.2, 6.2 we conclude that 

𝑥𝛼  >  𝑥`𝛼0
                                                                   (22.2) 

This means that the two vectors 𝛼` ⃗⃗ ⃗⃗   ,    𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗ as three-dimensional vectors in three-dimensional 

vector space (Spatial Euclidean Space) [7] are unequal in length and are not parallel in    

direction, we conclude that the Lorentz transformations do not preserve the magnitude and 

direction of the vector in three-dimensional space, that is, it violates the transitional symmetry 

[16] of the vector in three-dimensional space, as shown in Figure: 1-2, or in other words, it 

violates the symmetry of the spatial space 

 

2-3  Postulate Change the Conditions of Observation  

The reason why Lorentz transformations [11] violate this type of symmetry (Transitional 

Symmetry) is the observation conditions on which the Lorentz transformations depend,  where 

each observer observes the same 4D vector with relative to his reference frame as shown in the 

previous item, but when changing these observing conditions where each observer observes       

the same vector, but 3D and relative to only one frame of reference, we find here both observers 

agree on the length of the vector in spatial space, Thus, transitional symmetry is achieved with   

the new observation conditions and when these observation conditions apply to the previous 

event. 

We find that the observer O observes the displacement vector of the photon, but not relative to its 

reference frame S, but relative to the reference frame S', (i.e. not relative to him but relative to the 

observer O'), in other words, observer O wants to observe a three-dimensional displacement 

vector in his frame of reference S, corresponding to the vector 𝛼`0 ⃗⃗⃗⃗⃗⃗  ⃗ in magnitude and direction, In 

order for the observer O to fulfill these observing conditions, he analyzes the displacement    

vector of a photon 𝛼` ⃗⃗ ⃗⃗   in his reference frame S into two displacement vectors. 

 



Michael Girgis  

 

7 
 

 

2-4  Lorentz Vector Analysis in Reference Frames  

The first vector is the displacement vector  𝑂𝑅 ⃗⃗⃗⃗⃗⃗  ⃗  𝑜𝑟   𝛽 ⃗⃗⃗⃗   In order for this vector to fulfill the 

second observation conditions, we assume that it is parallel in direction and equal in magnitude 

the vector  𝛼`0 ⃗⃗⃗⃗⃗⃗  ⃗   in three-dimensional space, In other words, we assume that the vector 𝛽 ⃗⃗  ⃗ is in 

symmetry with 𝛼`0 ⃗⃗⃗⃗⃗⃗  ⃗ (the symmetry here is transitional geometric), so the vector 𝛽 ⃗⃗  ⃗ is called the 

symmetric vector, it is also a position vector in the S-coordinate system, so it is written in the 

same formula Equation 10.2 

‖ 𝛽 ⃗⃗  ⃗ ‖ = √ 𝑥𝛽
2 + 𝑦𝛽

2 + 𝑧𝛽
2                                                   (23.2) 

By following the same previous steps in 12.2, 13.2, 14.2, we arrive at the four-dimensional 

description of the vector   𝛽 ⃗⃗⃗⃗  

𝑥𝛽
2 + 𝑦𝛽

2 + 𝑧𝛽
2 − 𝑉𝛽

2 𝑡𝛽
2 = 0                                                  (24.2) 

Where 𝑉𝛽 ⃗⃗⃗⃗  ⃗ is one of the components of the velocity 𝑉𝛼  ⃗⃗ ⃗⃗   in the reference frame S, and it     

represents the velocity of the photon relative to the frame S' when observed by the observer O        

in the second observation conditions (i.e. the photon’s velocity relative to the observer O' from     

the point of view of the observer O   ( 𝑡𝛽 is the time that the photon takes along the vector  𝛽 ⃗⃗⃗⃗  , to 

determine the components values of the four-dimensional vector  𝛽 ⃗⃗⃗⃗ , we conclude from the      

above that the two vectors  𝛽 ⃗⃗⃗⃗   𝑎𝑛𝑑  𝛼`0⃗⃗ ⃗⃗  ⃗  are equal 

𝛽 ⃗⃗  ⃗ =   𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗                                                                (25.2) 

Thus the components of both vectors are also equal in the three-dimensional vector space     

(spatial space) 

𝑥𝛽 =  𝑥`𝛼0
                                                              (26.2) 

𝑦𝛽 = 𝑦`𝛼0
                                                              (27.2) 

𝑧𝛽 = 𝑧`𝛼0
                                                              (28.2) 
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Since the space-coordinate transformation equations here are symmetrical, therefore, the time 

transformation 𝑡𝛽 must be symmetric with respect to the dimensions of the spatial space, In other 

words, the value of the time transformation should not change from one spatial dimension to 

another, unlike the Lorentz transformations in which the time transformation 𝑡𝛼 with respect to 

the X dimension is greater than the y, Z dimensions (see Equation 9.2),  this means that the time 

transformation here is subject to another kind of symmetry, which is the symmetry of the time-

transformation value with respect to the dimensions of the spatial space, so we assume the 

following transformation for it 

𝑡𝛽 = 𝑡`𝛼0
  𝛾                                                              (29.2) 

Arranging the equations 26.2,  27.2,  28.2,  29.2  in this form 

𝑥𝛽 =  𝑥`𝛼0
                                                               (26.2) 

𝑦𝛽 = 𝑦`𝛼0
                                                               (27.2) 

𝑧𝛽 = 𝑧`𝛼0
                                                               (28.2) 

𝑡𝛽 = 𝑡`𝛼0
  𝛾                                                             (29.2) 

The previous set of equations represent the inverse Lorentz transformations, but in the new 

observation conditions, so they are called inverse modified Lorentz transformations, As for 

getting the modified Lorentz transformations for the same event, it is by analyzing the observer    

O' of the displacement vector 𝛼`0⃗⃗ ⃗⃗   in the reference frame S' 

𝑥`𝛽0
= 𝑥𝛼                                                               (30.2) 

𝑦`𝛽0
=  𝑦𝛼                                                               (31.2) 

𝑧`𝛽0
= 𝑧𝛼                                                                (32.2) 

𝑡`𝛽0
= 𝑡𝛼  𝛾                                                             (33.2) 

Modified and inverse modified Lorentz transformations are characterized by the transitional 

symmetry of the vector in three-dimensional space (spatial space) [7], it represents the 

transformation of a four-dimensional vector from one inertial reference frame to another while 

maintaining the symmetry and homogeneity of the three-dimensional space (spatial space), Thus, 

the laws of physics remain unchanged with these transformations, i.e. we must use the same 

mathematical formulas for the laws of physics for transferring from one inertial reference frame  
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to another in the new observation conditions, and this is considered a commitment to the  

principle of special relativity [2] [10], but with the new observation conditions. 

The second vector resulting from the analysis process is the displacement vector 𝑂𝑄 ⃗⃗⃗⃗ ⃗⃗  ⃗ 𝑜𝑟  𝜑` ⃗⃗⃗⃗  ⃗ it is 

also a three-dimensional position vector in the S-coordinate system as shown in Figure: 1-2, so it 

is written in the same formula as equation 10.2 

‖ 𝜑` ⃗⃗⃗⃗  ⃗ ‖ = √ 𝑥𝜑
2 + 𝑦𝜑

2 + 𝑧𝜑
2                                                 (34.2) 

By following the same previous steps in 12.2, 13.2, 14.2, we arrive at the four-dimensional 

description of the vector 𝜑 ⃗⃗  ⃗   

𝑥𝜑
2 + 𝑦𝜑

2 + 𝑧𝜑
2 − 𝑉𝜑

2 𝑡𝜑
2 = 0                                             (35.2) 

Where 𝑉𝜑  ⃗⃗⃗⃗  ⃗ represents the photon’s velocity on the vector  𝜑 ⃗⃗  ⃗ it is the second component of the 

velocity  𝑉𝛼  ⃗⃗ ⃗⃗    , 𝑡𝜑 is the time that the photon takes along the vector 𝜑 ⃗⃗  ⃗ , to determine the 

components values of the four-dimensional vector  𝜑 ⃗⃗  ⃗, we conclude from Figure: 1-2 that 

 𝜑` ⃗⃗⃗⃗  ⃗ =   𝛼`⃗⃗ ⃗⃗  −   𝛽 ⃗⃗⃗⃗                                                              (36.2) 

Thus, the vector components 𝜑` ⃗⃗⃗⃗  ⃗ are the product of the process of subtracting the components of 

the vector  𝛽 ⃗⃗⃗⃗  from the components of the vector  𝛼`⃗⃗ ⃗⃗  , taking into account that the subtraction of 

times is through the velocity components on the X-axis 

𝑥𝜑 =  𝑥𝛼  − 𝑥𝛽                                                            (37.2) 

𝑦𝜑  =  𝑦𝛼  −  𝑦𝛽                                                             (38.2) 

𝑧𝜑 = 𝑧𝛼  −   𝑧𝛽                                                           (39.2) 

𝑉𝑥𝜑  𝑡𝜑 =  𝑉𝑥𝛼  𝑡𝛼  − 𝑉𝑥𝛽   𝑡𝛽                                        (40.2) 

Because the last equation contains two unknowns  𝑉 ⃗⃗ ⃗⃗ 
𝑥𝜑  𝑎𝑛𝑑   𝑡𝜑  So we must assign a value to 

one of them, so we assume that the component  𝑉 ⃗⃗ ⃗⃗ 
𝑥𝜑   is equal to the speed of light, and in this 

case the component  𝑉 ⃗⃗ ⃗⃗ 
𝑥𝛽   will be equal to zero because the speed of light is the maximum speed 

of a photon [12] according to the second postulate of special relativity, and the equation     

becomes as follows 

𝑐𝑡𝜑 =  𝑐𝑡𝛼  −  0                                                          (41.2) 
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Substituting for the vector transformations   𝛼`⃗⃗ ⃗⃗   (Inverse Lorentz Transformations) [4] [11] and  

the vector transformations  𝛽 ⃗⃗⃗⃗  (Modified Inverse Lorentz Transformations) which we have 

imposed 

𝑥𝜑 = 𝛾 ( 𝑥`𝛼0
+ 𝑉𝑠𝑡`𝛼0

 )  −  𝑥`𝛼0
                                      (42.2) 

𝑦𝜑  = 𝑦`𝛼0
 −  𝑦`𝛼0

                                                              (43.2) 

𝑧𝜑 =  𝑧`𝛼0
 −  𝑧`𝛼0

                                                             (44.2) 

𝑐𝑡𝜑 = 𝑐𝛾 (𝑡`𝛼0
 +

𝑉𝑠  𝑥`𝛼0

𝑐2
)                                                (45.2) 

We get the next  

𝑥𝜑 =  𝛾 ( 𝑉𝑠𝑡`𝛼0
+ 𝑥`𝛼0

(1 − 𝛾−1)  )                              (46.2) 

𝑦𝜑  =  0                                                                                (47.2) 

𝑧𝜑 =  0                                                                                 (48.2) 

𝑡𝜑 = 𝛾 (𝑡`𝛼0
 +  

𝑉𝑠  𝑥`𝛼0

𝑐2
)                                                (49.2) 

The previous set of equations represents the inverse transformations of the vector  𝜑` ⃗⃗⃗⃗  ⃗ and they 

show us that the direction of the vector  𝜑` ⃗⃗⃗⃗  ⃗ is parallel to the direction of the displacement of the 

reference frame S' on the X-axis, In other words, the vector  𝜑` ⃗⃗⃗⃗  ⃗  is always parallel to displacement 

of the reference frame S', so it is called the parallel vector, as shown in Figure:1-2, , by following 

the same previous steps but with the classical and modified Lorentz transformations we get the 

vector transformations   𝜑` ⃗⃗⃗⃗  ⃗ 

𝑥`𝜑0  =  𝛾 (− 𝑉𝑠𝑡𝛼 + 𝑥𝛼(1 − 𝛾−1)  )                              (50.2) 

𝑦`𝜑0  =  0                                                                             (51.2) 

𝑧`𝜑0  =  0                                                                              (52.2) 

𝑡`𝜑0  = 𝛾 (𝑡𝛼 − 
𝑉𝑠 𝑥𝛼

𝑐2
)                                                     (53.2) 
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2-5  Minkowski Space Split  

As we analyze the Lorentz vector in the Minkowski space [2] [8] into two four-dimensional 

vectors, we also represent each vector resulting from the analysis process in its own space, As a 

result, the Minkowski space splits into two four-dimensional spaces. 

The Positive Space 

We find from equations 14.2 and 24.2 that the four-dimensional vectors   𝛽 ⃗⃗⃗⃗  ,    𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗  are equal in 

the magnitude, and therefore they can be represented in a new four-dimensional space called 

positive space (or Positive Spacetime). 

𝑥𝛽
2 + 𝑦𝛽

2 + 𝑧𝛽
2 − 𝑉𝛽

2 𝑡𝛽
2     =   𝑥`𝛼0

2 + 𝑦`𝛼0
2 + 𝑧`𝛼0

2 − 𝑉`𝛼0
2  𝑡`𝛼0

2                 (54.2) 

Substituting from the modified inverse Lorentz transformations of equations 26.2,  27.2,  28.2,  

we conclude that 

𝑉𝛽
2 𝑡𝛽

2     =   𝑉`𝛼0
2  𝑡`𝛼0

2                                                      (55.2) 

Substitute also from the modified inverse Lorentz transformations of equations 29.2  to  55.2 

 

𝑉𝛽
2  𝑡`𝛼0

2  𝛾2 = 𝑉`𝛼0
2  𝑡`𝛼0

2                                                   (56.2) 

𝑉𝛽
2  = 𝑉`𝛼0

2  𝛾−2                                                                (57.2) 

𝑉𝛽 = 𝑉𝛼0
`  𝛾−1                                                                    (58.2) 

 

But as we mentioned earlier that 𝑉𝛼0
`  ≤   𝑐 , So we can write the equation in the following form 

also 𝑉𝛽 =  𝑐 𝛾−1 , This means that the speed of light decreases in the new observation conditions 

with the increase of Vs, meaning that the observer O observes that the velocity of the photon 

decreases relative to the observer O' with the increase in the velocity of the reference frame Vs, 

although both vectors 𝛼`0⃗⃗ ⃗⃗  ⃗  and  𝛽 ⃗⃗⃗⃗  have the same length (Event Path) or are in a homogeneous 

spatial space,  but the time dilation causes the velocity of the photon to slow down on the event 

path, In other words, if the speed of light in the Minkowski space is constant relative to all 

observers in exchange for the contraction of length and the dilation of time, we find here in the 
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positive space that the spatial space is symmetric relative to all observers in exchange for the 

dilation of time and reduction of the speed of light 

To understand the positive space in a deeper way, we suppose an event other than the emission of 

a photon in the reference frame S', such as an elastic collision between two particles of equal mass 

and velocity, We represent this event through two vectors whose intersection point represents the 

collision point as shown in Figure: 2-2, This event expresses a causality where each particle is the 

cause of changing the direction of the other particle, As a result of the symmetry of the spatial 

space for all observers in the positive space, this causality is also the same, In other words, any 

causality that occurs between two vectors in the observer’s space O' also occurs between their 

symmetric vectors. 

Through this example, we can provide a mathematical, geometric and physical definition of the 

positive space 

Definition 

Mathematically it is a four-dimensional beta space resulting from modified or inverse modified 

Lorentz transformations, geometrically it is the space of the intersection vectors, physically it is 

the space of causality where the laws of physics appear in constant mathematical formulas 

         

Figure: 2-2 
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Negative or Parallel Space  

From equations 14.2 and  35.2 we find that the four-dimensional vectors  𝜑` ⃗⃗⃗⃗⃗⃗  ,    𝛼`0⃗⃗ ⃗⃗⃗⃗  ⃗ are equal in 

the magnitude, and therefore we represent them in a new space called negative space (or negative 

spacetime) 

𝑥𝜑
2 + 𝑦𝜑

2 + 𝑧𝜑
2 − 𝑉𝜑

2 𝑡𝜑
2     =   𝑥`𝛼0

2 + 𝑦`𝛼0
2 + 𝑧`𝛼0

2 − 𝑉`𝛼0
2  𝑡`𝛼0

2                  (59.2) 

Substituting from 47.2,  48.2  to  59.2 

𝑥𝜑
2 − 𝑉𝑠

2 𝑡𝜑
2   =  𝑥`𝛼0

2 + 𝑦`𝛼0
2 + 𝑧`𝛼0

2  − 𝑉`𝛼0
2  𝑡`𝛼0

2                            (60.2) 

The last equation shows us that the vector  𝜑` ⃗⃗⃗⃗⃗⃗   always has a constant direction (which is the 

positive direction of the X-axis) in the spatial space of the negative space for any event that 

occurs in the space of the observer O', This means that all events that occur in the observer's space 

O' or positive space in general are represented in the spatial space of negative space by vectors 

parallel in the direction relative to all observers, Thus, we have here another type of symmetry, 

which is the directional symmetry in the negative space for the different vectors in the positive 

space, and because the vectors of this space are always parallel to each other, therefore, no 

causality occurs in it, that is, there are no points of intersection, collision or connection, When 

representing the previous collision event in negative space, we find that each vector  𝜑` ⃗⃗⃗⃗⃗⃗  moves 

along the vector  𝛽 ⃗⃗⃗⃗  in spatial space without changing direction, as shown in Figure: 3-2 

Here we can also provide a mathematical, geometric and physical definition of negative space 

Definition 

Mathematically it is a four-dimensional phi space resulting from transformations or inverse 

transformations of the vector phi, geometrically it is the space of parallel vectors in which the 

vectors remain without changing their direction, physically it is a non-causal space, i.e. without 

causality 
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Figure: 3-2 

2-6 Transformations of Velocity Vectors 

We can now obtain transformations of photon velocity vectors from one frame of reference to 

another with the new observation conditions, to transform the velocity vectors from the frame of 

reference S' to the S frame in one degree of freedom, we use the inverse modified Lorentz 

transformations but in differential form 

𝑑𝑥𝛽 =  𝑑𝑥`𝛼0
                                                                 (61.2) 

𝑑𝑦𝛽 =  𝑑𝑦`𝛼0
                                                                 (62.2) 

𝑑𝑧𝛽 = 𝑑𝑧`𝛼0
                                                                 (63.2) 

𝑑𝑡𝛽 =  𝑑𝑡`𝛼0
  𝛾                                                             (64.2) 

By dividing the equation of time by the equation of distance  

𝑑𝑥𝛽

𝑑𝑡𝛽
 =  

𝑑𝑥`𝛼0

𝑑𝑡`𝛼0

  𝛾−1                                                      (65.2) 

𝑑𝑦𝛽

𝑑𝑡𝛽
 =  

𝑑𝑦`𝛼0

𝑑𝑡`𝛼0

  𝛾−1                                                      (66.2) 

𝑑𝑧𝛽

𝑑𝑡𝛽
 =  

𝑑𝑧`𝛼0

𝑑𝑡`𝛼0

 𝛾−1                                                       (67.2) 
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We shorten the previous set of equations to the following formula 

𝑥̇𝛽  =  𝑥̇`𝛼0
  𝛾−1                                       𝑉𝑥𝛽

= 𝑉𝑥𝛼0

`   𝛾−1                               (68.2) 

𝑦̇𝛽  =  𝑦̇`𝛼0
  𝛾−1               𝑂𝑅                  𝑉𝑦𝛽

= 𝑉𝑦𝛼0

`   𝛾−1                                (69.2) 

𝑧̇𝛽  =  𝑧̇`𝛼0
  𝛾−1                                       𝑉𝑧𝛽

= 𝑉𝑧𝛼0

`   𝛾−1                                (70.2) 

 

As for the transformation of the velocity vectors from the frame of reference S' to the frame S in 

three degrees of freedom, it is through the equation that was previously proven in the positive 

space item. 

𝑉𝛽 = 𝑉𝛼0
`   𝛾−1                                                                (58.2) 

To get the transformation of the velocity vector   𝑉𝜑 
 ⃗⃗⃗⃗⃗⃗  ⃗ from the reference frame S' to the frame S 

we use equations 46.2, 49.2  from the inverse transformations of the vector  𝜑` ⃗⃗⃗⃗⃗⃗  but also in 

differential form 

𝑑𝑥𝜑 =  𝛾 ( 𝑉𝑠𝑑𝑡`𝛼0
+ 𝑑𝑥`𝛼0

(1 − 𝛾−1)  )                                 (71.2) 

𝑑𝑡𝜑 = 𝛾 (𝑑𝑡`𝛼0
 +

𝑉𝑠  𝑑𝑥`𝛼0

𝑐2
)                                                     (72.2) 

By dividing the equation of time by the equation of distance  

𝑑𝑥𝜑 

𝑑𝑡𝜑 
=

  𝛾 ( 𝑉𝑠𝑑𝑡`𝛼0
+ 𝑑𝑥`𝛼0

(1 − 𝛾−1)  )

𝛾 (𝑑𝑡`𝛼0
 +

𝑉𝑠  𝑑𝑥`𝛼0

𝑐2 )

                                (73.2) 

By dividing both the numerator and denominator in the equation by  𝑑𝑡`𝛼0
   

𝑉𝜑 
=

 
𝑑𝑡`𝛼0

𝑑𝑡`𝛼0

 𝑉𝑠 + 
𝑑𝑥`𝛼0

𝑑𝑡`𝛼0

 (1 − 𝛾−1)

 
𝑑𝑡`𝛼0

𝑑𝑡`𝛼0

 +
𝑉𝑠
 𝑐2  

𝑑𝑥`𝛼0

𝑑𝑡`𝛼0

                                         (74.2) 

 

𝑉𝜑 
=

𝑉𝑠 + 𝑉𝑥𝛼0

`  (1 − 𝛾−1)

1 +
𝑉𝑠 𝑉𝑥𝛼0

`

𝑐2

                                                      (75.2) 



Michael Girgis  

 

16 
 

 

The last equation represents the velocity vector transformation equation   𝑉𝜑 
 ⃗⃗⃗⃗⃗⃗  ⃗ by velocity 

components on the x-axis, and when we assume the values of  𝑉𝑠  𝑎𝑛𝑑  𝑉𝑥`𝛼0
 are theoretically 

equal to the speed of light [4], and by substituting for that in the previous equation 

𝑉𝜑 
= 

𝑐 + 𝑐   (1 − 0)

1 +
𝑐 𝑐
𝑐2

   = 𝑐          ∴            𝑉𝜑 
=  𝑉𝑠                               (76.2) 

We find that the first component of the velocity  𝑉𝜑 
 ⃗⃗⃗⃗⃗⃗  ⃗  in the reference frame S is equal to the speed 

of light, while the second component of the velocity  𝑉 ⃗⃗ ⃗⃗ 
𝑥𝛽   which is represented in quantity 

𝑉𝑥`𝛼0
𝛾−1  is equal to zero (see at Equation 68.2 ), Thus, Equation 76.2 also maintains the second 

postulate of special relativity, but when the speed of the reference frame is much less than the 

speed of light 

 𝑉𝑠 ≪ 𝑐                             
𝑉𝑠 𝑉𝑥𝛼0

`

𝑐2
≈ 0                          𝑉𝑥𝛼0

`  (1 − 𝛾−1) ≈ 0                      (77.2) 

𝑉𝜑 
= 𝑉𝑠                                                                   (78.2) 

We conclude from equations 76.2 and 78.2, that at minimum and maximum values of  

𝑉𝑠  𝑎𝑛𝑑  𝑉𝑥𝛼0

`  in the positive direction, the velocity  𝑉𝜑 
 ⃗⃗⃗⃗⃗⃗  ⃗ is equal to the velocity 𝑉𝑠  Thus, we can 

generalize this result for any value of  𝑉𝑠   𝑎𝑛𝑑  𝑉𝑥𝛼0

`  , meaning that  𝑉𝜑 
 ⃗⃗⃗⃗⃗⃗  ⃗ is always parallel in the 

direction and equal to the magnitude 𝑉𝑠 , but if we want to transform the velocity vectors from the 

reference frame S to the frame S', we follow the same previous steps, but with the modified 

Lorentz transformations, and we get the following in one degree of freedom 

𝑥̇`𝛽0
 =  𝑥̇𝛼  𝛾

−1                                       𝑉𝑥𝛽0

` = 𝑉𝑥𝛼
   𝛾−1                               (79.2) 

𝑦̇`𝛽0
 =  𝑦̇𝛼  𝛾

−1               𝑂𝑅                  𝑉𝑦𝛽0

` = 𝑉𝑦𝛼
  𝛾−1                                (80.2) 

𝑧̇`𝛽0
 =  𝑧̇𝛼   𝛾−1                                       𝑉𝑧𝛽0

` = 𝑉𝑧𝛼
  𝛾−1                                (81.2) 

And in three degrees of freedom 

𝑉𝛽0

` = 𝑉𝛼   𝛾−1                                                              (82.2) 
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And with vector transformations  𝜑0` ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    we get 

𝑉`𝜑0 
= −

𝑉𝑠 + 𝑉𝑥𝛼
 (1 − 𝛾−1)

1 −
𝑉𝑠 𝑉𝑥𝛼

 

𝑐2

                                           (83.2) 

3  RESULTS   

The hypothesis of changing the observation conditions used in the Lorentz transformations or in 

special relativity (which is achieved through a process of mathematical analysis of one of the 

basic vectors resulting from the Lorentz transformations) leads to our obtaining two four-

dimensional vectors, The first is known as the symmetry vector, which fulfills the new 

observation conditions, and the second is the parallel vector, This analysis also leads to the 

splitting of the Minkowski space into two spaces, where the parallel vector is represented in a 

four-dimensional space known as negative space without any causality, while the symmetry 

vector is represented in a four-dimensional space known as positive space and its transformations 

are modified Lorentz transformations, which achieve new types of symmetry broken by              

the classic Lorentz transformations, such as the vector transitional symmetry in spatial space      

and the symmetry of the laws of physics or adherence to the principles of special relativity, and 

they are also the transformations that express the new observation conditions 

Therefore, we find in the new observation conditions that the length contraction disappears     

while the time dilation remains present, we also find that the speed of light decreases relative to 

one of the observers and does not appear as a cosmic constant in all inertial reference frames. 

4   DISUSSIONS  

The classic observation process or the observation conditions used in the Lorentz transformations 

and in special relativity appear on measuring devices, which can be tested experimentally,  Such as 

observing the speed of light for each observer, as in the experiment of Michelson–Morley [11], 

but the observation process or the new observation conditions used in the modified Lorentz 

transformations are achieved through a process of mathematical analysis only, This means that it 

is not achieved from an empirical point of view, but rather from a purely theoretical point of  

view, despite that, it reveals to us important results such as the disappearance of length 

contraction, the speed of light is no longer a cosmic constant in all observation conditions, 

generalizing the principle of relativity even with different observation conditions and revealing     
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a new structure of space-time that is also related to the concept of causality, which is positive and 

negative spacetime. 

Symmetry [14] in the Lorentz transformations is a rotational symmetry of the four-dimensional 

vector in Minkowski space from the geometric side and the symmetry of the speed of light and 

the laws of physics for all inertial reference frames from the mathematical side, but we find 

Lorentz transformations that break the transitional symmetry of vector in the three-dimensional 

Euclidean space (spatial space), while the modified Lorentz transformations are characterized by 

rotational symmetry of the four-dimensional vector in positive space and transitional symmetry of 

the vector in three-dimensional space (spatial space) from the geometric side and symmetry of   

the laws of physics from the mathematical side as well, that is, it achieves geometric symmetry in 

the 3D and 4D space besides the mathematical symmetry and the symmetry of the time 

transformation also with respect to the dimensions of the spatial space, and thus it is multi-

symmetric (see the comparison table). 

The causality in Minkowski space [3] depends on the velocity factor only, as we find that the 

speed of light is the maximum causal speed that exists among observers in the universe, but in the 

positive and negative space (Minkowski space split), we get another description of causality that 

depends on a geometric factor, which is the direction of the velocity vectors, where we find that 

the velocity vectors express the presence or absence of the causality in each space 

As for the transformations of velocity vectors, they are distinguished from the transformations of 

velocity vectors in special relativity [5] in the distribution of the velocity of a particle (photon), 

where it shows us the velocity of the particle parallel to the velocity of the reference frame and  

the velocity of the particle in three degrees of freedom relative to a moving reference frame and 

the effect of the movement of the reference frame on this distribution 
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Comparison table of velocity transformations in special and inverse relativity 

 

Inverse Relativity 

 

Special Relativity 

 

 

Transformations 

of Velocity 

 

 
The second or new 

observation conditions  

 

 

The first or classic observation 

conditions 

 
Observation 

conditions used 

 
 

𝑉𝑥𝛽
=  𝑉𝑥𝛼0

`   𝛾−1 

 
 

𝑉𝑦𝛽
= 𝑉𝑦𝛼0

`   𝛾−1 

 
 

𝑉𝑧𝛽
= 𝑉𝑧𝛼0

`   𝛾−1 

 
 

 

𝑉𝑥𝛼
= 

𝑉𝑠 + 𝑉𝑥𝛼0

`  

1 +
𝑉𝑠 𝑉𝑥𝛼0

`

𝑐2

 

 

𝑉𝑦𝛼
=  

𝑉𝑦𝛼0

`  

𝛾 (1 +
𝑉𝑠 𝑉𝑥𝛼0

`

𝑐2 )

 

 

𝑉𝑧𝛼
= 

𝑉𝑧𝛼0

`  

𝛾 (1 +
𝑉𝑠 𝑉𝑥𝛼0

`

𝑐2 )

 

 

 
 
 
 

In one Degree of 

Freedom 
 

 

 
𝑉𝛽 = 𝑉𝛼0

`   𝛾−1 
 

There is no 

 
In Three Degrees of 

Freedom 

 
 

Analyzing parallel and 
non-parallel velocities 

while keeping the speed 

of light constant 
 

 

Add parallel velocities while 
keeping the speed of light 

constant 

 

The purpose of 

Transformations 
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Inverse Relativity  

 

Special Relativity 

  

 

Types of Symmetry  

 

There is in 4D vector 

 

There is in 4D 

vector 

 
Rotational symmetry of           

the vector magnitude 

 
 

 

There is in 3D vector 

 
 

There is no 

 
Transitional symmetry of        

the magnitude and direction of   

   the vector 

 
 

There is in the positive 

space 

 
There is no 

 
Time symmetry with respect to 

spatial dimensions 

 
 

There is in negative 

space 

 
There is no 

 

Directional symmetry of 

different vectors 

 
 

There is 

 

 
There is 

 
Symmetry of physics laws  

 
 

There is no 

 
There is 

 

Symmetry of the speed of light 
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