The Proofs of Legendre’s Conjecture and Three Related Conjectures

Wing K. Yu

Abstracts

In this paper, we are going to prove Legendre’s Conjecture: There is a prime number between
n? and (n + 1) for every positive integer n. We will also prove three related conjectures. The
method that we use is to analyze a binomial coefficient. It has been developed from the method
of analyzing a central binomial coefficient that was used by Paul Erdds to prove Bertrand’s
postulate - Chebyshev’s theorem.
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1. Introduction

Legendre’s Conjecture was proposed by Andrien-Marie Legendre [1]. The conjecture is one of
Legendre’s problems (1912) on prime numbers. It states that there is a prime number between
n? and (n + 1)? for every positive integer n.

In this paper, we will prove Legendre’s Conjecture by analyzing the binomial coefficient (’Zl)
where A is an integer and A > 3. It is developed from the method that was used by Paul Erdés [2]
to prove Bertrand’s postulate - Chebyshev’s theorem [3].

In Section 1, we will define the prime number factorization operator and clarify some terms
and concepts. In Section 2, we will derive some lemmas. In Section 3, we will develop a
theorem to be used in the proofs of the conjectures in the later sections. In Section 4, we will
prove Legendre’s conjecture, and in Section 5, we will prove Oppermann’s conjecture [4],
Brocard's conjecture [5], and Andrica’s conjecture [6].

Definition: Fa2p>b{()::)} denotes the prime number factorization operator of (’Zl), an integer

expression. It is the product of the prime numbers in the decomposition of (’}f) in the range of
a>p > b. In this operator, p is a prime number, a and b are real numbers, An>a>2p>b=>1.

It has some properties:

It is always true that Fa2p>b{(’1:)} >1 —(1.1)

If there is no prime number in (A:) within the range of a 2 p > b, then Faz;»b{(?)} =1,

or vice versa, if Fa2p>b{(/1,f)} = 1, then there is no prime number in (’Zl) within the range of

azp>b. —(1.2)
20 0 0 .

For example, when A =5 and n =4, F162p>10{( 4 )} =13"-11" = 1. No prime number 13 or 11

isin (240) in the range of 16 2 p > 10.

If there is at least one prime number in (’:l) in the range of a 2 p > b, then Fa2p>b{(l:)} >1,

or vice versa, if Fa2p>b{(/1:)} > 1, then there is at least one prime number in (’17?) within the

rangeof a>p > b. —(1.3)

For example, when A =5 and n =4, F182p>16{(240)} =17 > 1. A prime number 17 is in (240)
within the range of 18 > p > 16.

Let v, (n) be the p-adic valuation of n, the exponent of the highest power of p that divides n.
Similar to Paul Erd8s’ paper [2], we define R(p) by the inequalities pR(p) <An< pR(p)“, and

determine the p-adic valuation of (’17’:) .

R an A-1)n n
v () = 5 (@D = (@ — DD = v, = I8 (|| = |2 = [5:]) < =)
because for any real numbers a and b, the expression of |a + b| — |a] — | b] is 0 or 1.
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Thus, if p divides (’1") then v, ((’m)) < R(p) <log,(An), or p’ (( n)) <pR® < An — (1.4)
Andif An2p > [\/Ej, then 0 < v, ((lnn)) <R(p)<1 — (1.5)

Let 711(n) be the number of distinct prime numbers less than or equal to n. Among the first six
consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional
six consecutive natural numbers, at most one can add two prime numbers, p =1 (MOD 6) and

p =5 (MOD 6). Thus, 7T(n) < [§J+2 <242, — (1.6)

From the prime number decomposition,

ny _ (An)! (n)! (n)!
whenn > [ Vin], (’f) ) szzbn {n!-((/l—l)n)!} .F"2P>lml {n'-((A—nn)!} [Van|=p {n' (- 1)n)'}

i _ G _G
whenn < [V, (57) < Dinapon {n!-((l—l)n)!} l\/m>l’ {n' (O l)n)'}

n (An)! ) (an)! (an)!
Thus, (n) < Dinzpsn {n!_((l__l)n)!} Fnzp>[\/m {—n!-((A—nn)!} [ Vin|=p {—n, e 1)n)l}

(an)! } ~ { (An)! } . . - .
Dinspsn {n!-((l—l)n)! =Dinspon D since all prime numbers in n! do not appear in the

rangeof An2p >n.
(an)

m} < anp p. It has been proved [7] that forn > 3,
. —1)n)!

Gn)! } I 2n-3
<«

nl-((A-Dnyt ) = 1P p<2 '
(An)!

I o
n!-((l—l)n)!} < (An) =

@)t 1 . 5203 Vin o
((A—l)n)!} 27 (An) -7

Referring to (1.5), I n2ps|vin| {
anp p< 22n—3. Thus, forn > 3 n>p>l\/EJ {

Referred to (1.4) and (1.6), F[mjzp {

Thus, forn > 3, (A:) <Dinspon {

2. Lemmas

2(2x-1) >( x )x

Lemma 1: If a real number x > 3, then
x—1 x—1

—(2.1)

2(2x 1) 2(x-1)(2x-1)'=2(2x-1)(x-1)' -2

Proof:
Let f,(x) = , then fi'(x) = (x—1)2 T (x—1)2 <0

Thus, fi(x)isa strlctly decreasing function for x > 1.

Since f;(3)=5and lirn fl(x) =4, forx>3,wehave52 f;(x) =

2(2x-1)
>
x-1 4

Let f>(x) = ( ) then £, (x) = ((x 1)x)’_ (ex Iz 1), ex.lnﬁ-(x-lnﬁ),

K@= (E) (o (n2))- () (i on 2 25)
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f'(0)= (_1) (n5-5) —(2.1.1)
1 1 1 1 1 1
In (2.1.1), ;=;+x—2+;+g+x_5+g+...

2 3 4 5 6

X X X X

Using the formula: In(1 + x) =x — — + —_——— + —_——— + .-+, we have
x 1 -1
ln; 1+_71__ln(1+x) x+2x2+3x3+4x4+5 + s T
Thus for x = 3, m>2 - L <o
x—1 x—1
X X
Since (xle) is a positive number for x 23, f,'(x) = (ﬁ) : (lnﬁ — ﬁ) <0.
Thus f5(x) is a strictly deceasing function for x > 3.
X
Since f,(3) =3.375and llm fo(x)=e=2.718,forx 23, 33752 f,(x) = (x 1) >e —(2.1.2)
Since forx >3, f;(x) has a lower bound of 4 and f, (x) has an upper bound of 3.375,
Z(Zx 1) .
filx) = > fo(x) = ( — ) is proven. —(2.1.3)
n Aln—l+1
Lemma2:Forn>2and 123, ( n ) > n(—1)—Dn=A+1 —(2.2)
Proof:
_ Any _ 21\ _ 2A(2A-1)(21-2)! _
When 223andn=2, (7")=(%)= G = AA-) —(2.2.1)
/lln—l+1 AZA—A+1 A(1-1 A
— - e =2 () —(2.2.2)
n(l—l)(l n—-1+1 2(/1_1)2(1 1)-A+1 2 1—1
_ 2(21-1) 2\
In (2.1) when x = 1 > 3, we have 1 > (/1_1) — (2.2.3)
A(A-1 A(A-1
Since ( > ) is a positive number for A 2 3, referring to (2.2.1) and (2.2.2), when ( > )
multiplies to both sides of (2.2.3), we have
(1(1—1)) (2(2,1—1)) - A24-1) = (,m) S (/1(/1—1)) ( y) )/1_ FYLEVER
2 -1 ) “\n 2 1-1) ~ n(A-1)@-Dn-2+1
An—2A+1
An A
Thus, ( n ) > (A—1)-Dn—A+1 when A>3 andn =2. —(2.2.4)
n /1/'Ln—/1+1
By induction on n, when A = 3, if ( n ) > (A1) A-Dn—A+1 is true for n, then for n+1, we have
(/’l(n+1)) _ (An+l _ (An+)(An+1-1)--(An+2)(An+1) ) (An)
n+l n+l (An+A-n-1)(An+A1-n-2)--(An-n+1)(n+1)
A(n+1) An+)(An+1-1)-(An+2)(An+1) ' AAn—a+1
n+1 (/'ln+l—n—1)(An+/1—n—2)~~(/1n—n+1)(n+1) n(A-1)A-1n-1+1
A(n+1) An+)(An+1-1)-(An+2) Antl 1 AAn—a+1
n+1 (/'ln+l—n—1)(An+/1—n—2)~~(ln—n+1) n  (n+1) (A-1)A-Dn-2a+1
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. An+1 An+)(An+A-1)-(An+2) 2 \@-1
Notice ( )

> A, and —
An+A-n-1)(An+A-n-2)---(An—-n+1) A-1

An+d A An+i-1 N A An+2 . A
n+l-n-1 A-1’ An+i-n-2" 1-1"  An-n+1_ A-1"

because
(n+1) A1 . & . 1 . AAn—A+1 _ 2A(n+1)—A+1

n+1 (/1_1)(/1—1) 1 (n+1) (1_1)(21—1)n—/1+1 - (n+1)(/1_1)(/1—1)(n+1)—1+1
AAn—A+1

Thus (* — (2.2.5)

From (2.2.4) and (2.2.5), we have forn 22 and A >3, (21711) > -1y Dn—A+1

Thus, Lemma 2 is proven.

3. A Prime Number between (A -1)nand Anwhenn2(A-2)225

Proposition:
Forn > A1 —2 > 25, there exists at least a prime number p such that (1 —1)n<p<An. —(3.1)
Proof:
. . . . . (An)!
Referring to (1.7), when n > (1 —2) > 3, if there is a prime number p in F/lnzp>n {m},
An)!

thenp2n+1=,/(n+2)n+1>vAn. From (1.5),0< v, (Fln2p>n {m}) <R(p) <1
Then every prime number in I’ {(/1—11)'} has the power of 0 or 1 —(3.2)

n (an)! } 23, 1 2R 42
From (1.7), (n) <Dinzpon {((/1—1)n)! 2 (An)3 7
Applying this inequality to (2.2),

An—21+1 Vin

whenn2>(1-2)23, 1) —Dn-A+1 < (n) <inspsn {((A_l)n)!} $22"73 . (An) 3 T,

Van

qAn—1+1 Vin Van
} . 2273 . (An)3 2. Since (An) 3 T2>1and 22773 > 1,

r { (An)!
n(A-1)A-Dn-2+1 < Lanzp>n (G 1y

-1 A\ (n=1)
2, ) Y A
r { (An)! } AAn-1+1 _ 24 (( 4 ) (/1—1) )
Anzp>n (G=Dyn)! > n = A,

(An) 3 t2.22n-3 . p(1-1)A-Dn-1+1 (An) 3
1
Referring to (2.1.2), when 4 > 3, (ﬁ) >e. Thus, whenn>(1-2) >3,

oy }J”'((%'(fjf)“'” e (2

((A-Dn)! Van 2 Van = f3(n, 1) —(3.3)

+3

I-‘/17121)>n {

Let x 23 and y 25 both be real numbers.

2(x+2)? ((XTH) . e)(x_l)

(An) 3 (An) 3 *3

2642 (22) )

Whenx =y -2, f3(x,y) = oD > fo(x) = T >0 —(3.4)
((x+2)x) 3 3 ((x+2)x) 3
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f4’(x)=f4(x)'(—+ln(%1)+4§—ﬁ—1§ln((x+2)-x —%—3(“2)) £,00) - fo(x)
where f5(x) = 2=+ In (57) + 5 - 5 - S in((r +2) %) —5- — 5

,( ) _ 4x+6 x%+2x-2 i 8
fs () = (c+1)2-(x+2)2 = 3x(x+1)(x+2)  3x2 = 3(x+2)2
Thus, f5(x) is a strictly increasing function for x > 3.

>0 when x 2 3.

When x =9, fy(x) = o=+ In (22 + 5 = 2= — ZIn(9)— In(9+2)— 5> — =>0. Thus,

forx>9, fs(x)>0.Then, f,'(x) = f,(x) - fs(x) > 0.
Thus, f,(x) is a strictly increasing function for x > 9.

Let x;=9 and y;=11. From (3.4), when x =y =2, f53(x,y) > fo(x) >0. Thus, whenx =y -2 >9,

then xy > x;y,=99, f3(x,y) is an increasing function respect to the product of xy. — (3.5)
of (xy)
L= fy) (I (E) +1-2Z ) - 22 -2 = f0y)  firy)  —(3.6)
vy Vy 3
wheref6(x V) —ln( ) 1 B A ln(yx —?—;

When x =y -2, then fg(x,y) = f,(x) = In (x+1)
Vx+2 1 ln(x+2)+ln(x)+2 3
()t e G T x

x+2 | x
’ (1 1 In(x+2)+in(x) 3
fr () = <x+1 3 x(x+2)) + 6x/x(x+2) + x2 >0.

Thus, when x > 3, f5(x) is a strictly increasing function.

When x > 3, f7 (X)—m— ovx

When x =y —2 2 3, since fi(x,y) = f,(x), f¢(x,y) is an increasing function respect to xy.

Whenx=y-2=9, fy(x,y) =In () + 1—% In (99)—3—“?—3?0.

6f66(;cy) 12{;/_ In(y) + 12\/_\/_ In(x) +— \/_+ 6:5_ =>0whenx>(y-2)>3.

Thus, when x > (y —2) 29, fs(x,y) >0, and it is an increasing function with respect to x and to
the product of xy, then, M = fa(x,y) * fo(x,y) >0.

Thus, whenx >y —-22>9, f3 (x, y) is an increasing function with respect to x. —(3.7)

Referring to (3.5) and (3.7), when x >y — 2 > 9, then xy > x;y,=99, f3(x, y) is an increasing
function respect to the product of xy. — (3.8)

Letx=nand y = A. Then whenn > (1 —2) 29, f3(n, 1) is an increasing function respect to the

product of An and respect to n. — (3.9)
(n-1) (25-1)
222 ((A;l) e 2272 (%) e) 1.249E+33
Whenn =(1-2)=25, f3(n,2) = 4m ) - ( 4m ~ 978aE432
(An) 3 3 (27-25) 3 13 '

Since f3(n, 1) is an increasing function to the product of An, whenn = (1 —2) > 25, f5(n, 1)> 1.
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Since f3(n, A) is an increasing function respect to n, whenn > (4 —2) 225, f3(n, 1) > 1.

An)!
Thus, referring to (3.3), when n 2 (1 —2) 2 25, [5p0n {ﬁ} > fz(n, 1) > 1.
Letintegerm >n. Whenm 2n 2 (1 —=2) 225, [}nspom {%} fz(m, 1) > 1. — (3.10)

(Am)!
DGimzpsm {((,1 m)! }

_ (Am)! CTTi=A-2 (Am)! . (Am)!
B Fflmzf’>(’1—1)m{((,1—1)m)z} i=1 (F(’l L p> 2 {((/1 1)m)'} F.’l—'”zp>—(’1.‘1)’”{((,1—1)m)!})

+1 +1

A
In H (F(z O {(—m)'}) for every distinct prime number p in these ranges, the
Z l+1 ((A‘ 1) )l

numerator (Am)! has the product of p - 2p - 3p ... ip = (i)! - p*. The denominator ((1 — 1)m)!
also has the same product of (i)! - pi. Thus, they cancel to each other in % .

. 1-2 (Am)! } _
Referring to (1.2), []/Z; (F(A-:)m_ Am {—((A Y )_

(Am)! } _ { aAm)! } Ti=A-2 { (Aam)! }
Thusl Flm2p>m {((1_1)m)| - Flm2p>(l—1)m ((A—l)m)' i=1 (F% >p> (AH-ll)m (()l—l)m)'
(Am)! } i=1—1 { (Am)! } _

l—‘)Lm>p>m {((A 1)m)! i=1 (FleZp>(1—i1)m (—nm) )’ (3.11)

((A-1m)!
Each of these sectors is the prime number factorization of the product of the consecutive

52’}‘1 (FA_m 5 ps G 1)m {M}) is the product of (4 —1) sectors fromi=1toi=(A-1).

. 1-1
integers between % and Tm

l ,1 1 (Am)! }
From (3.10) and (3.11), whenm >2n > 41 -2 > 25, (Flm o> (/'l—il)m {—((l—l)m)! ) >1

. (Am)!
. - — 2 1. 2nz2A-22
Referring to (1.1), FaTmzww {((/1—1)m)!} 1. Thus, whenm >2n > 1 -2 > 25, at least one of the
i=A-1 am)!
sectors in [[;Z1 <FATm s psdim 1)m {—((A vy }) >1
(am)! . .
Let F)%Zp>m {(()l—l)m)!} > 1 be such a sector and let m = ni where (A-1) 2i > 1 from (3.11).

(Ani)! }_ { (Ani)! }
(A-D)ni)! = Dinzp>-1n (A-D)ni)! >1

— (3.12)

Thus, whenm=ni>n>1-2225, Fm>p>(/‘l—1)ni {
i - i

Referring to (1.3), when m =ni 2n 2 (1 —2) 2 25, there exists at least a prime number p such
that(A-1)n<p <in. — (3.13)

There is another way to prove the results of (3.13).
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Ani)!

. e ey . . n
Referring to the definition, all prime numbers in m

in the ranges of Ani 2 p > An and

(Ani)!
(A-D)ni)!
(Ani)!
(A-D)ni)!

(A—1)n > p do not contribute to [},5p.(1-1)n { } nor does i for (A-1)2i > 1. Only the

prime numbers in the prime factorization of in the range of An2p > (A - 1)n present

. (Ani)!
in F/lngp>(ﬂ.—1)n m .

(and)! _ (Ani)-(Ani-1) - (Ani—i) ---(Ani—2i)--(Ani—(n—1)i) - (Ani—ni+1)-((A-1)ni)!

(A-Dni)! ((A-1)ni)!
Gni)t_ i(n)-(Ani-1) i-(An-1) -i-(An—2)i-(An-n+1) - (Ani-ni+1)-((A-1)ni)!
(A-Dni)! ((A-1)ni)!
(Ani)! . , (An)!
Thus, O] contains all the factors of (An), (An-1), An-2),...(An-n+ 1) in T
These factors make up of all the consecutive integers in the range of An2p > (A - 1)nin
(An)! (Ani)! tai (An)!
((A-Dn)! Us (A-1D)ni)! contains ((A-Dn)!
. (And)! . .
Referring to (3.12), when [p5p.a—1)n {m} > 1, then there exists at least one prime

(An)!
((A-1)n)!
integers in this range. These integers include all the possible prime numbers in this range.

(An)!
(A-1)n)!
prime number p such that (A —1)n < p < An. — (3.14)

number p in the range of An 2 p > (A — 1)n. Since is the product of all the consecutive

Thus, whenn 21 -2 > 25, F/lnzp>(,1—1)n { } > 1. Referring to (1.3), there exists at least a

Referring to (3.13) or (3.14), Proposition (3.1) is proven. It becomes a theorem: Theorem (3.1).

4. The Proof of Legendre’s Conjecture

Legendre’s Conjecture states that there is a prime number between n? and (n + 1)? for every

positive integer n. —(4.1)
Proof:

Referring to Theorem (3.1), for integers j > k — 2 > 25, there exists at least a prime number p
such that j(k —1)<p < jk. —(4.2)

When k=j+12>27,thenj=k —-12>26
Applying k =j + 1into (4.2), then j2<p <j(j +1) < (j + 1)?
Let n =j > 26, then we have n? <p < (n + 1)% — (4.3)

For 1 <n <26, we have a table, Table 1, that shows Legendre’s conjecture valid. — (4.4)
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Table 1: For 1 < n < 26, there is a prime number between n? and (n + 1)2.

n 1 2 | 3] 4| 5 6 | 7 | 8 | 9 [10] 11 ] 1213
n? 1 | 4 | 9 |16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169
p 3 | 5 |11 ] 19| 29| 41 | 53 | 67 | 83 | 103 | 127 | 149 | 173
m+1)? | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169 | 196
n 14 [ 15 [ 16 [ 17 [ 18 [ 19 [ 20 [ 21 | 22 | 23 | 24 | 25 | 26
n2 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576 | 625 | 676
p 199 | 229 | 263 | 307 | 331 | 373 | 409 | 449 | 491 | 541 | 587 | 641 | 683
(n+1)2 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576 | 625 | 676 | 729

Combining (4.3) and (4.4), we have proven Legendre’s conjecture.

Extension of Legendre’s conjecture

There are at least two prime numbers, p,, and p,,, , between j? and (j + 1)? for every positive
integer j such that j2 < p, <j(j+1) and j(j+1) < p,, < (j + 1)? where p,, is the n"* prime number,
Dm is the m™ prime number, and m > n +1. — (4.5)
Proof:

Referring to Theorem (3.1), for integers j > k — 2 > 25, there exists at least a prime number p
such that j(k —1)<p < jk.

When k —1 = > 26, then j(k — 1) = j? < p,, < jk = j(j+1). Thus, there is at least a prime number
p,, suchthatj% <p, <j(j+1) whenj=k —1> 26.

When j =k —2>26,then k =j + 2. Thus, j(k —1) = j(j+1) <p,, < jk =j (j+2) < (j + 1) 2. Thus,
there is at least another prime number p,, such that j(j+1) < p,, < (j + 1)? when j = k —2 > 26.
Thus, when j > 26, there are at least two prime numbers p,, and p,, between j? and (j + 1)?

such that j2 <p,, <j(j+1) <pn < (j + 1)®> where m 2 n +1 for p,, > p,, . — (4.6)
For 1<j <26, we have a table, Table 2, that shows (4.5) valid. — (4.7)
Table 2: For 1 < j < 26, there are 2 prime numbers such that j2 < p,, < j(j+1) < p, < (G + 1)2.
j 1 2 3 4 5 6 7 8 9 10 11 12 13
j2 1 4 9 16 25 36 49 64 81 100 | 121 | 144 | 169
Pn 2 5 11 19 29 | 41 53 67 83 [ 103 | 127 | 149 | 173
Jj(j+1) 2 6 12 20 30 | 42 56 72 90 | 110 | 132 | 156 | 182
Pm 3 7 13 23 31 | 43 59 73 97 | 113 | 137 | 163 | 191
G+ 1)2 4 9 16 25 36 49 64 81 100 | 121 | 144 | 169 | 196
J) 14 15 16 17 18 19 20 21 22 23 24 25 26
j? 196 | 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576 | 625 | 676
Dn 199 | 229 | 263 | 393 | 331 | 373 | 409 | 449 | 491 | 541 | 587 | 641 | 683
j(j+1) 210 | 240 | 272 | 306 | 342 | 380 | 420 | 462 | 506 | 552 | 600 | 650 | 702
Pm 211 | 251 | 277 | 311 | 349 | 389 | 431 | 467 | 521 | 557 | 613 | 659 | 709
G+ 1)2 225 | 256 | 289 | 324 | 361 | 400 | 441 | 484 | 529 | 576 | 625 | 676 | 729

Combining (4.6) and (4.7), we have proven (4.5). It becomes a theorem: Theorem (4.5).
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5. The Proofs of Three Related Conjectures

Oppermann’s conjecture was proposed by Ludvig Oppermann [4] in March 1877. It states that
for every integer x > 1, there is at least one prime number between x(x —1) and x?, and at
least another prime between x? and x(x+ 1). — (5.1)

Proof:

Theorem (4.5) states there are at least two prime numbers, p,, and p,,, , between j2 and

(j + 1)? for every positive integer j such that j2 < p, < j(j+1) and j(j+1) < p,, < (j + 1) where
m2n +1 for p,, > py,.

j(j+1) is a composite number except j = 1. Since j2 < p,, < j(j+1) is valid for every positive
integer j, when we replace j with j+1, we have (j + 1)? <p, < (j+1)(j+2).

Thus, we have j(j+1) < p,, < (j + 1)%< p, < (j+1)(j+2). —(5.2)
When x > 1, then (x — 1) 2 1. Substitute j with (x — 1) in (5.2), we have
x(x — 1) <pp <x?<p, <x(x+1) — (5.3)

Thus, we have proven Oppermann’s conjecture.

Brocard's conjecture is after Henri Brocard [5]. It states that there are at least 4 prime numbers
between (p,,)? and (p,4+1)?, where p,, is the n** prime number, for every n > 1. —(5.4)

Proof:

Theorem (4.5) states there are at least two prime numbers, p,, and p,,, , between j2 and

(j + 1)? for every positive integer j such that j2 < p,, <j(j+1) and j(j+1) < pp, < (G + 1)?
where m 2 n +1 for p,,, > p,,. When j > 1, j(j+1) is a composite number. Then Theorem (4.5)
can be written as j? < p,, < j(j+1) and j(j+1) < p,, < (j + 1)2.

In the series of prime numbers: p;=2, p,=3, pP3=5, p4=7, ps=11... all prime numbers except p;
are odd numbers. Their gaps are two or more. Thus whenn > 1, (p,41— Pn) 2 2.
Thus, we have p,, < (p, + 1) < P41 Whenn>1. — (5.5)

Applying Theorem (4.5) to (5.5), when n > 1, we have at least two prime numbers p,1, Pmz iN

between (p,)? and (p,, + 1)? such that (p,)? < pm1 < Pl Pu+l) < Pma < (P, + 1)?, and at least
two more prime numbers Pp,3, Pma in between (p, + 1)? and (p,41)? such that

(P, + D? <Pz < Pns1( Pntl) <ppa < (pn+1)2 .

Thus, there are at least 4 prime numbers between (p,,)? and (p,41)? for n > 1 such that

(Pn)? < Pm1 < Pa(Pn*1) <Pm2 < (P, + D* <Pz < Praa( Pr+l) <Pma < (P,44)° — (5.6)

Thus, Brocard's conjecture is proven.
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Andrica’s conjecture is named after Dorin Andrica [6]. It is a conjecture regarding the gaps
between prime numbers. The conjecture states that the inequality \/ pn+1 —+/ Pn <1 holds
for all n where p,, is the n* prime number. If g,= p,.1 - P, denotes the n** prime gap,

then Andrica’s conjecture can also be rewritten as g, <2,/ p, + 1. — (5.7)

Proof:

From Theorem (4.5), for every positive integer j, there are at least two prime numbers p,,

and p,, between j2 and (j + 1)? such that j2 < p,, < j(j+1) <Py < (j + 1)?> wherem 2n +1

for py, > pn-

Since m2n+1, we have p,, 2 Ppi1-

Thus, we have j% <p,, . — (5.8)
And ppi1 € P < (+ 1% — (5.9)
Since j, pn , Pny1 @and (j + 1) are positive integers,

j<yPn — (5.10)

And |/ ppi1<j+1 — (5.11)
Applying (5.10) to (5.11), we have \/ P41 <+/ Pn + 1. — (5.12)

Thus, \/m — \/E <1 holds for all n since in Theorem (4.5), j holds for all positive integers.
Using the prime gap to prove the conjecture, from (5.8) and (5.9), we have

Gn= Pn+1—Pn<(+1)?>—j%=2j+1 From(5.10), j<./p, .

Thus, gn = Pns1 — Pn <2/ Pn + 1. — (5.13)

Thus, Andrica’s conjecture is proven.
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