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Abstracts 

 

In this paper, we are going to prove Legendre’s Conjecture: There is a prime number between 

𝑛2 and (𝑛 + 1)2 for every positive integer 𝑛. We will also prove three related conjectures. The 

method that we use is to analyze a binomial coefficient. It has been developed from the method 

of analyzing a central binomial coefficient that was used by Paul Erdős to prove Bertrand’s 

postulate - Chebyshev’s theorem. 
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1. Introduction 
 
Legendre’s Conjecture was proposed by Andrien-Marie Legendre [1]. The conjecture is one of 

Legendre’s problems (1912) on prime numbers. It states that there is a prime number between 

𝑛2 and (𝑛 + 1)2  for every positive integer 𝑛.  

In this paper, we will prove Legendre’s Conjecture by analyzing the binomial coefficient (𝜆𝑛
𝑛

) 

where 𝜆 is an integer and 𝜆 ≥ 3. It is developed from the method that was used by Paul Erdős [2]  

to prove Bertrand’s postulate - Chebyshev’s theorem [3].  

In Section 1, we will define the prime number factorization operator and clarify some terms 

and concepts. In Section 2, we will derive some lemmas. In Section 3, we will develop a 

theorem to be used in the proofs of the conjectures in the later sections. In Section 4, we will 

prove Legendre’s conjecture, and in Section 5, we will prove Oppermann’s conjecture [4], 

Brocard's conjecture [5], and Andrica’s conjecture [6].  

Definition:  Γ𝑎≥𝑝˃𝑏{(𝜆𝑛

𝑛
)} denotes the prime number factorization operator of (𝜆𝑛

𝑛
), an integer 

expression. It is the product of the prime numbers in the decomposition of (𝜆𝑛
𝑛

) in the range of 

𝑎 ≥ 𝑝 ˃ 𝑏. In this operator, 𝑝 is a prime number,  𝑎 and 𝑏 are real numbers, 𝜆𝑛 ≥ 𝑎 ≥ 𝑝 ˃ 𝑏 ≥ 1.  

It has some properties:  

It is always true that Γ𝑎≥𝑝˃𝑏{(𝜆𝑛

𝑛
)} ≥ 1                    — (1.1) 

If there is no prime number in (𝜆𝑛
𝑛

) within the range of 𝑎 ≥ 𝑝 ˃ 𝑏, then Γ𝑎≥𝑝˃𝑏{(𝜆𝑛

𝑛
)} = 1,  

or vice versa, if Γ𝑎≥𝑝˃𝑏{(𝜆𝑛
𝑛

)} = 1, then there is no prime number in (𝜆𝑛
𝑛

) within the range of 

𝑎 ≥ 𝑝 ˃ 𝑏.                       — (1.2) 

For example, when 𝜆 = 5 and 𝑛 = 4,  Γ16≥𝑝˃10{(20

4
)} = 130 · 110 = 1. No prime number 13 or 11 

is in (20
4

) in the range of 16 ≥ 𝑝 ˃ 10.  

If there is at least one prime number in (𝜆𝑛
𝑛

) in the range of 𝑎 ≥ 𝑝 ˃ 𝑏, then Γ𝑎≥𝑝˃𝑏{(𝜆𝑛

𝑛
)} ˃ 1, 

or vice versa, if Γ𝑎≥𝑝˃𝑏{(𝜆𝑛

𝑛
)} ˃ 1, then there is at least one prime number in (𝜆𝑛

𝑛
) within the 

range of 𝑎 ≥ 𝑝 ˃ 𝑏.                   — (1.3) 

For example, when 𝜆 = 5 and 𝑛 = 4,  Γ18≥𝑝˃16{(20

4
)} = 17 ˃ 1. A prime number 17 is in (20

4
) 

within the range of 18 ≥ 𝑝 ˃ 16. 

Let 𝑣𝑝(𝑛) be the 𝑝-𝑎𝑑𝑖𝑐 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 of 𝑛, the exponent of the highest power of 𝑝 that divides 𝑛. 

Similar to Paul Erdős’ paper [2], we define R(𝑝) by the inequalities  𝑝𝑅(𝑝) ≤ 𝜆𝑛 ˂  𝑝𝑅(𝑝)+1, and 

determine the 𝑝-𝑎𝑑𝑖𝑐 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 of (𝜆𝑛
𝑛

) . 

𝑣𝑝 ((𝜆𝑛
𝑛

)) = 𝑣𝑝((𝜆𝑛)!) − 𝑣𝑝(((𝜆 − 1)𝑛)!) − 𝑣𝑝(𝑛!) = ∑ (⌊
𝜆𝑛

𝑝𝑖
⌋ − ⌊

(𝜆−1)𝑛

𝑝𝑖
⌋ − ⌊

𝑛

𝑝𝑖
⌋)

𝑅(𝑝)
𝑖=1  ≤ R(𝑝)  

because for any real numbers 𝑎 and b, the expression of ⌊𝑎 + b⌋ − ⌊𝑎⌋ − ⌊ b⌋ is 0 or 1.  
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Thus, if 𝑝 divides (𝜆𝑛
𝑛

), then 𝑣𝑝 ((𝜆𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ log𝑝(𝜆𝑛), or 𝑝
𝑣𝑝((𝜆𝑛

𝑛 ))
 ≤ 𝑝𝑅(𝑝) ≤ 𝜆𝑛           — (1.4) 

And if 𝜆𝑛 ≥ 𝑝 ˃ ⌊√𝜆𝑛⌋, then 0 ≤ 𝑣𝑝 ((𝜆𝑛
𝑛

)) ≤ 𝑅(𝑝) ≤ 1                 — (1.5) 

Let π(𝑛) be the number of distinct prime numbers less than or equal to 𝑛. Among the first six 

consecutive natural numbers are three prime numbers 2, 3 and 5. Then, for each additional  

six consecutive natural numbers, at most one can add two prime numbers, 𝑝 ≡ 1 (MOD 6) and  

𝑝 ≡ 5 (MOD 6). Thus, π(𝑛) ≤ ⌊
𝑛

3
⌋+2 ≤  

𝑛

3
 +2.                   — (1.6) 

From the prime number decomposition,  

when 𝑛 ˃ ⌊√𝜆𝑛⌋,  (𝜆𝑛
𝑛

) = Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} ·Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋ {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} ·Γ⌊√𝜆𝑛⌋≥𝑝 {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
}   

when 𝑛 ≤ ⌊√𝜆𝑛⌋,  (𝜆𝑛
𝑛

) ≤ Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} · Γ⌊√𝜆𝑛⌋≥𝑝 {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
}   

Thus,  (𝜆𝑛
𝑛

) ≤ Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} · Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋ {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} · Γ⌊√𝜆𝑛⌋≥𝑝 {

(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} 

Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
}  = Γ𝜆𝑛≥𝑝˃𝑛 {

(𝜆𝑛)!

((𝜆−1)𝑛)! 
}  since all prime numbers in 𝑛! do not appear in the 

range of 𝜆𝑛 ≥ 𝑝 ˃ 𝑛. 

Referring to (1.5), Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋ {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} ≤ ∏ 𝑝𝑛≥𝑝 .  It has been proved [7] that for 𝑛 ≥ 3, 

∏ 𝑝𝑛≥𝑝  ˂ 22𝑛−3. Thus, for 𝑛 ≥ 3,  Γ𝑛≥𝑝˃⌊√𝜆𝑛⌋ {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} ≤  ∏ 𝑝𝑛≥𝑝  ˂ 22𝑛−3 .  

Referred to (1.4) and (1.6), Γ⌊√𝜆𝑛⌋≥𝑝 {
(𝜆𝑛)!

𝑛!·((𝜆−1)𝑛)! 
} ≤ (𝜆𝑛)

√𝜆𝑛

3
 +2.  

Thus, for 𝑛 ≥ 3, (𝜆𝑛
𝑛

) ˂ Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · 22𝑛−3·(𝜆𝑛)

√𝜆𝑛

3
 +2             — (1.7)   

  

2. Lemmas   
 

Lemma 1: If a real number 𝑥 ≥ 3, then 
2(2𝑥−1)

𝑥−1
  ˃ (

𝑥

𝑥−1
)

𝑥
                — (2.1) 

Proof:  

Let 𝑓1(𝑥) = 
2(2𝑥−1)

𝑥−1
 ,  then 𝑓1

′(𝑥) = 
2(𝑥−1)(2𝑥−1)′−2(2𝑥−1)(𝑥−1)′

(𝑥−1)2
 = 

−2

(𝑥−1)2
 ˂ 0. 

Thus, 𝑓1(𝑥) is a strictly decreasing function for 𝑥 ˃ 1.  

Since  𝑓1(3) = 5 and lim
𝑥→∞

𝑓1(𝑥) = 4, for 𝑥 ≥ 3, we have 5 ≥ 𝑓1(𝑥) = 
2(2𝑥−1)

𝑥−1
 ≥ 4. 

Let 𝑓2(𝑥) = (
𝑥

𝑥−1
)

𝑥
, then 𝑓2

′(𝑥) = ((
𝑥

𝑥−1
)

𝑥

)
′

= (𝑒𝑥·𝑙𝑛
𝑥

𝑥−1)
′

= 𝑒𝑥·𝑙𝑛
𝑥

𝑥−1 ·(𝑥 · 𝑙𝑛
𝑥

𝑥−1
)

′
 

𝑓2
′(𝑥) = (

𝑥

𝑥−1
)

𝑥

· (𝑙𝑛
𝑥

𝑥−1
+ 𝑥 · (𝑙𝑛

𝑥

𝑥−1
)

′

) = (
𝑥

𝑥−1
)

𝑥

· (𝑙𝑛
𝑥

𝑥−1
+ 𝑥 ·

𝑥−1

𝑥
·

𝑥−1−𝑥

(𝑥−1)2)  
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𝑓2
′(𝑥) = (

𝑥

𝑥−1
)

𝑥

· (𝑙𝑛
𝑥

𝑥−1
−  

1

𝑥−1
)               — (2.1.1)  

In (2.1.1),   
1

𝑥−1
 = 

1

𝑥
+

1

𝑥2
+

1

𝑥3
+

1

𝑥4
+

1

𝑥5
+

1

𝑥6
+ · · ·   

Using the formula: 𝑙𝑛(1 + 𝑥) = 𝑥 − 
𝑥2

2
 + 

𝑥3

3
 − 

𝑥4

4
 + 

𝑥5

5
 − 

𝑥6

6
 + ··· , we have 

𝑙𝑛
𝑥

𝑥−1
 = 𝑙𝑛 

1

1+ 
−1

𝑥

 = − 𝑙𝑛 (1 +
−1

𝑥
) = 

1

𝑥
+

1

2𝑥2
+

1

3𝑥3
+

1

4𝑥4
+

1

5𝑥5
 + 

1

6𝑥6
+ · · ·     

Thus for 𝑥 ≥ 3,   𝑙𝑛
𝑥

𝑥−1
−  

1

𝑥−1
  ˂ 0 

Since (
𝑥

𝑥−1
)

𝑥

is a positive number for 𝑥 ≥ 3,  𝑓2
′(𝑥) = (

𝑥

𝑥−1
)

𝑥

· (𝑙𝑛
𝑥

𝑥−1
−  

1

𝑥−1
) ˂ 0.  

Thus 𝑓2(𝑥) is a strictly deceasing function for 𝑥 ≥ 3.  

Since 𝑓2(3) = 3.375 and lim
𝑥→∞

𝑓2(𝑥) = e ≈ 2.718, for 𝑥 ≥ 3,  3.375 ≥ 𝑓2(𝑥) = (
𝑥

𝑥−1
)

𝑥

≥ e        — (2.1.2) 

Since for 𝑥 ≥ 3,   𝑓1(𝑥) has a lower bound of 4 and 𝑓2(𝑥) has an upper bound of 3.375,  

𝑓1(𝑥) = 
2(2𝑥−1)

𝑥−1
 ˃ 𝑓2(𝑥) = (

𝑥

𝑥−1
)

𝑥
is proven.              — (2.1.3) 

 

Lemma 2: For 𝑛 ≥ 2 and 𝜆 ≥ 3,  (𝜆𝑛
𝑛

) ˃ 
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
                   — (2.2) 

Proof:  

When  𝜆 ≥ 3 and 𝑛 = 2,  (𝜆𝑛
𝑛

) = (2𝜆
2

) = 
2𝜆(2𝜆−1)(2𝜆−2)!

2(2𝜆−2)!
 = 𝜆(2𝜆 −1)          — (2.2.1) 

𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
  = 

𝜆2𝜆−𝜆+1

2(𝜆−1)2(𝜆−1)−𝜆+1
  = 

𝜆(𝜆−1)

2
 · (

𝜆

𝜆−1
)

𝜆
           — (2.2.2) 

 In (2.1) when 𝑥 = 𝜆 ≥ 3, we have  
2(2𝜆−1)

𝜆−1
 ˃  (

𝜆

𝜆−1
)

𝜆
           — (2.2.3) 

Since  
𝜆(𝜆−1)

2
  is a positive number for 𝜆 ≥ 3, referring to (2.2.1) and (2.2.2), when 

𝜆(𝜆−1)

2
 

multiplies to both sides of (2.2.3), we have 

(
𝜆(𝜆−1)

2
) (

2(2𝜆−1)

𝜆−1
) =  𝜆(2𝜆 −1) = (𝜆𝑛

𝑛
) ˃ (

𝜆(𝜆−1)

2
) (

𝜆

𝜆−1
)

𝜆
=  

𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1    

Thus,  (𝜆𝑛
𝑛

) ˃  
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1 when 𝜆 ≥ 3 and 𝑛 = 2.            — (2.2.4) 

By induction on 𝑛, when λ ≥ 3, if (𝜆𝑛
𝑛

) ˃ 
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1 is true for 𝑛, then for 𝑛+1, we have  

(𝜆(𝑛+1)
𝑛+1

) = (𝜆𝑛+𝜆
𝑛+1

) = 
(𝜆𝑛+𝜆)(𝜆𝑛+𝜆−1)···(𝜆𝑛+2)(𝜆𝑛+1)

(𝜆𝑛+𝜆−𝑛−1)(𝜆𝑛+𝜆−𝑛−2)···(𝜆𝑛−𝑛+1)(𝑛+1)
 · (𝜆𝑛

𝑛
)  

(𝜆(𝑛+1)
𝑛+1

) ˃ 
(𝜆𝑛+𝜆)(𝜆𝑛+𝜆−1)···(𝜆𝑛+2)(𝜆𝑛+1)

(𝜆𝑛+𝜆−𝑛−1)(𝜆𝑛+𝜆−𝑛−2)···(𝜆𝑛−𝑛+1)(𝑛+1)
 · 

𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1  

(𝜆(𝑛+1)
𝑛+1

) ˃ 
(𝜆𝑛+𝜆)(𝜆𝑛+𝜆−1)···(𝜆𝑛+2)

(𝜆𝑛+𝜆−𝑛−1)(𝜆𝑛+𝜆−𝑛−2)···(𝜆𝑛−𝑛+1)
 · 

𝜆𝑛+1

𝑛
 · 

1

(𝑛+1)
 · 

𝜆𝜆𝑛−𝜆+1

(𝜆−1)(𝜆−1)𝑛−𝜆+1 
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Notice 
𝜆𝑛+1

𝑛
 ˃ 𝜆, and  

(𝜆𝑛+𝜆)(𝜆𝑛+𝜆−1)···(𝜆𝑛+2)

(𝜆𝑛+𝜆−𝑛−1)(𝜆𝑛+𝜆−𝑛−2)···(𝜆𝑛−𝑛+1)
 ˃ (

𝜆

𝜆−1
)

(𝜆−1)

 

because  
𝜆𝑛+𝜆

𝜆𝑛+𝜆−𝑛−1
 = 

𝜆

𝜆−1
 ;  

𝜆𝑛+𝜆−1

𝜆𝑛+𝜆−𝑛−2
 ˃ 

𝜆

𝜆−1
 ;  ··· 

𝜆𝑛+2

𝜆𝑛−𝑛+1
 ˃ 

𝜆

𝜆−1
 .            

Thus (𝜆(𝑛+1)
𝑛+1

)˃ 
𝜆𝜆−1

(𝜆−1)(𝜆−1) · 
𝜆

1
 · 

1

(𝑛+1)
 · 

𝜆𝜆𝑛−𝜆+1

(𝜆−1)(𝜆−1)𝑛−𝜆+1
 = 

𝜆𝜆(𝑛+1)−𝜆+1

(𝑛+1)(𝜆−1)(𝜆−1)(𝑛+1)−𝜆+1
   — (2.2.5) 

From (2.2.4) and (2.2.5), we have for 𝑛 ≥ 2 and λ ≥ 3,  (𝜆𝑛
𝑛

) ˃ 
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1    

Thus, Lemma 2 is proven.  

 

3. A Prime Number between (𝝀 – 1)𝒏 and 𝝀𝒏 when 𝒏 ≥ (𝝀 – 2) ≥ 25 
 
Proposition:  

For 𝑛 ≥ 𝜆 −2 ≥ 25, there exists at least a prime number 𝑝 such that (𝜆 −1)𝑛 < 𝑝 ≤ 𝜆𝑛.      — (3.1) 

Proof:  

Referring to (1.7), when 𝑛 ≥ (𝜆 – 2) ≥ 3, if there is a prime number 𝑝 in Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
},  

then 𝑝 ≥ 𝑛 + 1 = √(𝑛 + 2)𝑛 + 1 ˃ √𝜆𝑛. From (1.5), 0 ≤ 𝑣𝑝 (Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
}) ≤ 𝑅(𝑝) ≤ 1.  

Then every prime number in Γ𝜆𝑛≥𝑝˃𝑛{
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} has the power of 0 or 1.             — (3.2) 

From (1.7),  (𝜆𝑛
𝑛

) ˂ Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ·22𝑛−3·(𝜆𝑛)

√𝜆𝑛

3
 +2.  

Applying this inequality to (2.2),  

when 𝑛 ≥ (𝜆 – 2) ≥ 3,  
𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
 < (𝜆𝑛

𝑛
) ˂ Γ𝜆𝑛≥𝑝˃𝑛 {

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · 22𝑛−3 · (𝜆𝑛)

√𝜆𝑛

3
 +2

.  

𝜆𝜆𝑛−𝜆+1

𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1
  < Γ𝜆𝑛≥𝑝˃𝑛 {

(𝜆𝑛)!

((𝜆−1)𝑛)! 
} · 22𝑛−3 · (𝜆𝑛)

√𝜆𝑛

3
 +2

. Since (𝜆𝑛)
√𝜆𝑛

3
 +2˃ 1 and 22𝑛−3 ˃ 1, 

Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 

𝜆𝜆𝑛−𝜆+1

(𝜆𝑛)
√𝜆𝑛

3  +2
· 22𝑛−3 · 𝑛(𝜆−1)(𝜆−1)𝑛−𝜆+1

 = 
2𝜆2· ((

𝜆−1

4
) ·(

𝜆

𝜆−1
)

𝜆

)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3 +3
  

Referring to (2.1.2), when 𝜆 ≥ 3,  (
𝜆

𝜆−1
)

𝜆
≥ e. Thus, when 𝑛 ≥ (𝜆 – 2) ≥ 3,   

Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 

2𝜆2· ((
𝜆−1

4
) ·(

𝜆

𝜆−1
)

𝜆
)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

 ≥ 
2𝜆2· ((

𝜆−1

4
) · 𝑒)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

 = 𝑓3(𝑛, 𝜆)               — (3.3) 

Let 𝑥 ≥ 3 and 𝑦 ≥ 5 both be real numbers.  

When 𝑥 = 𝑦 – 2, 𝑓3(𝑥, 𝑦) = 
2(𝑥+2)2· ((

𝑥+1

4
) · 𝑒)

(𝑥−1)

((𝑥+2)·𝑥)
√𝑥·(𝑥+2)

3
+3

 > 𝑓4(𝑥) = 
2(𝑥+2)2· ((

𝑥+1

4
) · 𝑒)

(𝑥−1)

((𝑥+2)·𝑥)
𝑥+1

3
+3

 > 0        — (3.4) 
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𝑓4
′(𝑥) = 𝑓4(𝑥) · ( 

2

𝑥+2
+ 𝑙𝑛 (

𝑥+1

4
) +

4 

3
−

2

𝑥+1
−

1 

3
𝑙𝑛((𝑥 + 2) · 𝑥) −

10 

3𝑥
−

8 

3(𝑥+2)
) = 𝑓4(𝑥) · 𝑓5(𝑥)  

where 𝑓5(𝑥) = 
2

𝑥+2
+ 𝑙𝑛 (

𝑥+1

4
) +

4 

3
−

2

𝑥+1
−

1 

3
𝑙𝑛((𝑥 + 2) · 𝑥) −

10 

3𝑥
−

8 

3(𝑥+2)
  

𝑓5
′(𝑥) = 

4𝑥+6

(𝑥+1)2·(𝑥+2)2
+

𝑥2+2𝑥−2 

3𝑥(𝑥+1)(𝑥+2)
+

10

3𝑥2
+

8

3(𝑥+2)2
 > 0 when 𝑥 ≥ 3. 

Thus, 𝑓5(𝑥) is a strictly increasing function for 𝑥 ≥ 3.  

When 𝑥 = 9,  𝑓5(𝑥) = 
2

9+2
+ 𝑙𝑛 (

9+1

4
) +

4 

3
−

2

9+1
−

1 

3
𝑙𝑛(9)− 

1 

3
𝑙𝑛(9+2)−

10 

27
−

8 

33
 > 0. Thus,  

for 𝑥 ≥ 9,  𝑓5(𝑥) > 0. Then, 𝑓4
′(𝑥) = 𝑓4(𝑥) · 𝑓5(𝑥) > 0.  

Thus, 𝑓4(𝑥) is a strictly increasing function for 𝑥 ≥ 9. 

Let 𝑥1= 9 and 𝑦1= 11. From (3.4), when 𝑥 = 𝑦 –2,  𝑓3(𝑥, 𝑦) > 𝑓4(𝑥) > 0. Thus, when 𝑥 = 𝑦 – 2 ≥ 9,  

then 𝑥𝑦 ≥ 𝑥1𝑦1= 99, 𝑓3(𝑥, 𝑦) is an increasing function respect to the product of 𝑥𝑦.          — (3.5) 

∂𝑓3
(𝑥,𝑦)

∂𝑥
 = 𝑓3(𝑥, 𝑦) · ( 𝑙𝑛 (

𝑦−1

4
) + 1 − √𝑦

6√𝑥
· 𝑙𝑛(𝑦𝑥) − √𝑦

3√𝑥
−

3 

𝑥
) = 𝑓3(𝑥, 𝑦) · 𝑓6(𝑥, 𝑦)            — (3.6) 

where 𝑓6(𝑥, 𝑦) = 𝑙𝑛 (
𝑦−1

4
) + 1 − √𝑦

6√𝑥
· 𝑙𝑛(𝑦𝑥) − √𝑦

3√𝑥
−

3 

𝑥
  

When 𝑥 = 𝑦 – 2, then 𝑓6(𝑥, 𝑦) = 𝑓7(𝑥) = 𝑙𝑛 (
𝑥+1

4
) + 1 −

√𝑥+2

6√𝑥
· (𝑙𝑛(𝑥 + 2) + 𝑙𝑛(𝑥) + 2) − 

3 

𝑥
 

When 𝑥 ≥ 3,  𝑓7
′(𝑥) = 

1 

𝑥+1
− 

√𝑥+2

6√𝑥
 · (

1

𝑥+2
+

1

𝑥
) + 

𝑙𝑛(𝑥+2)+𝑙𝑛(𝑥)+2

6𝑥√𝑥(𝑥+2)
+

3 

𝑥2  

 𝑓7
′(𝑥) = ( 

1 

𝑥+1
−

1

3√𝑥(𝑥+2)
) + 

𝑙𝑛(𝑥+2)+𝑙𝑛(𝑥)

6𝑥√𝑥(𝑥+2)
+

3 

𝑥2 > 0.  

Thus, when 𝑥 ≥ 3,  𝑓7(𝑥) is a strictly increasing function.  

When 𝑥 = 𝑦 – 2 ≥ 3, since 𝑓6(𝑥, 𝑦) = 𝑓7(𝑥),  𝑓6(𝑥, 𝑦) is an increasing function respect to 𝑥𝑦.   

When 𝑥 = 𝑦 – 2 = 9,  𝑓6(𝑥, 𝑦) = 𝑙𝑛 (
11−1

4
) + 1 −

√11

6√9
· 𝑙𝑛(99) −

√11

3√9
−

3 

9
 ˃ 0. 

∂𝑓6
(𝑥,𝑦)

∂𝑥
 = √𝑦

12𝑥√𝑥
· 𝑙𝑛(𝑦) + √𝑦

12𝑥√𝑥
· 𝑙𝑛(𝑥) + √𝑦

6𝑥√𝑥
+ √𝑦

6𝑥√𝑥
+

3 

𝑥2 ˃ 0 when 𝑥 ≥ (𝑦 – 2) ≥ 3. 

Thus, when 𝑥 ≥ (𝑦 – 2) ≥ 9, 𝑓6(𝑥, 𝑦) ˃ 0, and it is an increasing function with respect to 𝑥 and to 

the product of 𝑥𝑦, then, 
∂𝑓3(𝑥,𝑦)

∂𝑥
 = 𝑓3(𝑥, 𝑦) · 𝑓6(𝑥, 𝑦) ˃ 0.  

Thus, when 𝑥 ≥ 𝑦 – 2 ≥ 9,  𝑓3(𝑥, 𝑦) is an increasing function with respect to 𝑥.               — (3.7) 

Referring to (3.5) and (3.7), when 𝑥 ≥ 𝑦 – 2 ≥ 9, then 𝑥𝑦 ≥ 𝑥1𝑦1= 99, 𝑓3(𝑥, 𝑦) is an increasing  

function respect to the product of 𝑥𝑦.                    — (3.8) 

Let 𝑥 = 𝑛 and 𝑦 = 𝜆. Then when 𝑛 ≥ (𝜆 −2) ≥ 9,  𝑓3(𝑛, 𝜆) is an increasing function respect to the 

product of 𝜆𝑛 and respect to 𝑛.                     — (3.9)  

When 𝑛 = (𝜆 – 2) = 25,  𝑓3(𝑛, 𝜆) = 
2𝜆2· ((

𝜆−1

4
) · 𝑒)

(𝑛−1)

(𝜆𝑛)
√𝜆𝑛

3
+3

 = 
2·272· ((

27−1

4
) · 𝑒)

(25−1)

(27 · 25)
√27 · 25

3
+3

 ≈ 
1.249E+33

9.784E+32
 > 1.  

Since 𝑓3(𝑛, 𝜆) is an increasing function to the product of 𝜆𝑛, when 𝑛 = (𝜆 −2) ≥ 25, 𝑓3(𝑛, 𝜆)> 1.  
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Since  𝑓3(𝑛, 𝜆) is an increasing function respect to 𝑛, when 𝑛 ≥ (𝜆 −2) ≥ 25,  𝑓3(𝑛, 𝜆) > 1.   

Thus, referring to (3.3), when 𝑛 ≥ (𝜆 −2) ≥ 25, Γ𝜆𝑛≥𝑝˃𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} > 𝑓3(𝑛, 𝜆) > 1.  

Let integer 𝑚 ≥ 𝑛. When 𝑚 ≥ 𝑛 ≥ (𝜆 −2) ≥ 25, Γ𝜆𝑚≥𝑝˃𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
}> 𝑓3(𝑚 , 𝜆) > 1.         — (3.10) 

Γ𝜆𝑚≥𝑝˃𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} = 

=  Γ𝜆𝑚≥𝑝˃(𝜆−1)𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} · ∏ (Γ(𝜆−1)𝑚

𝑖
≥𝑝˃

𝜆𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} · Γ𝜆𝑚

𝑖+1
≥𝑝˃

(𝜆−1)𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−2

𝑖=1   

In ∏ (Γ(𝜆−1)𝑚

𝑖
≥𝑝˃

𝜆𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝜆−2

𝑖=1 ,  for every distinct prime number 𝑝 in these ranges, the  

numerator (𝜆𝑚)! has the product of 𝑝 · 2𝑝 · 3𝑝 … 𝑖𝑝 = (𝑖)! · 𝑝𝑖. The denominator ((𝜆 − 1)𝑚)!   

also has the same product of (𝑖)! · 𝑝𝑖. Thus, they cancel to each other in 
(𝜆𝑚)!

((𝜆−1)𝑚)! 
 . 

Referring to (1.2),  ∏ (Γ(𝜆−1)𝑚

𝑖
≥𝑝˃

𝜆𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝜆−2

𝑖=1  = 1. 

Thus,  Γ𝜆𝑚≥𝑝˃𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} = Γ𝜆𝑚≥𝑝˃(𝜆−1)𝑚 {

(𝜆𝑚)!

((𝜆−1)𝑚)! 
} · ∏ (Γ𝜆𝑚

𝑖+1
≥𝑝˃

(𝜆−1)𝑚

𝑖+1

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−2

𝑖=1   

Γ𝜆𝑚≥𝑝˃𝑚 {
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} = ∏ (Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−1

𝑖=1 .              — (3.11) 

∏ (Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−1

𝑖=1  is the product of (𝜆 –1) sectors from 𝑖 = 1 to 𝑖 = (𝜆 –1).  

Each of these sectors is the prime number factorization of the product of the consecutive 

integers between  
(𝜆 –1)𝑚

𝑖
  and  

𝜆𝑚

𝑖
 .  

From (3.10) and (3.11), when 𝑚 ≥ 𝑛 ≥ 𝜆 –2 ≥ 25, ∏ (Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−1

𝑖=1  > 1. 

Referring to (1.1), Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} ≥ 1. Thus, when 𝑚 ≥ 𝑛 ≥ 𝜆 –2 ≥ 25, at least one of the 

sectors in ∏ (Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
})𝑖=𝜆−1

𝑖=1  > 1.    

Let Γ𝜆𝑚

𝑖
≥𝑝˃

(𝜆−1)𝑚

𝑖

{
(𝜆𝑚)!

((𝜆−1)𝑚)! 
} > 1 be such a sector and let 𝑚 = 𝑛𝑖 where (𝜆 – 1) ≥ 𝑖 ≥ 1 from (3.11). 

Thus, when 𝑚 = 𝑛𝑖 ≥ 𝑛 ≥ 𝜆 –2 ≥ 25,  Γ𝜆𝑛𝑖

𝑖
≥𝑝˃

(𝜆−1)𝑛𝑖

𝑖

{
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
} = Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {

(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
} > 1.  

                    — (3.12) 

Referring to (1.3), when 𝑚 = 𝑛𝑖 ≥ 𝑛 ≥ (𝜆 −2) ≥ 25, there exists at least a prime number 𝑝 such 

that (𝜆 – 1)𝑛 < 𝑝 ≤ 𝜆𝑛.                  — (3.13) 

There is another way to prove the results of (3.13). 



Page 8 
 

Referring to the definition, all prime numbers in 
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)!
 in the ranges of 𝜆𝑛𝑖 ≥ 𝑝 ˃ 𝜆𝑛 and  

(𝜆 – 1)𝑛 ˃ 𝑝 do not contribute to Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)!
}, nor does 𝑖 for (𝜆– 1)≥ 𝑖 ≥ 1. Only the  

prime numbers in the prime factorization of  
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)!
 in the range of  𝜆𝑛 ≥ 𝑝 ˃ (𝜆 – 1)𝑛 present 

in Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)!
}.   

(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
 = 

(𝝀𝒏𝒊)·(𝜆𝑛𝑖−1) ···(𝝀𝒏𝒊−𝒊) ···(𝝀𝒏𝒊−𝟐𝒊)···(𝝀𝒏𝒊−(𝒏−𝟏)𝒊) ··· (𝜆𝑛𝑖−𝑛𝑖+1)·((𝜆−1)𝑛𝑖)!

 ((𝜆−1)𝑛𝑖)!
 .  

(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
 = 

𝒊·(𝝀𝒏)·(𝜆𝑛𝑖−1) ···𝒊·(𝝀𝒏−𝟏) ···𝒊·(𝝀𝒏−𝟐)···𝒊·(𝝀𝒏−𝒏+𝟏) ··· (𝜆𝑛𝑖−𝑛𝑖+1)·((𝜆−1)𝑛𝑖)!

 ((𝜆−1)𝑛𝑖)!
 

Thus, 
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
 contains all the factors of (𝜆𝑛), (𝜆𝑛 – 1), (𝜆𝑛 – 2),… (𝜆𝑛 – 𝑛 + 1) in 

(𝜆𝑛)!

((𝜆−1)𝑛)! 
 .  

These factors make up of all the consecutive integers in the range of  𝜆𝑛 ≥ 𝑝 ˃ (𝜆 – 1)𝑛 in  

(𝜆𝑛)!

((𝜆−1)𝑛)! 
 . Thus, 

(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
 contains 

(𝜆𝑛)!

((𝜆−1)𝑛)! 
 .   

Referring to (3.12), when Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {
(𝜆𝑛𝑖)!

((𝜆−1)𝑛𝑖)! 
} > 1, then there exists at least one prime 

number 𝑝 in the range of 𝜆𝑛 ≥ 𝑝 ˃ (𝜆 – 1)𝑛. Since  
(𝜆𝑛)!

((𝜆−1)𝑛)! 
 is the product of all the consecutive  

integers in this range. These integers include all the possible prime numbers in this range.  

Thus, when 𝑛 ≥ 𝜆 –2 ≥ 25, Γ𝜆𝑛≥𝑝˃(𝜆−1)𝑛 {
(𝜆𝑛)!

((𝜆−1)𝑛)! 
} ˃ 1. Referring to (1.3), there exists at least a  

prime number 𝑝 such that (𝜆 – 1)𝑛 < 𝑝 ≤ 𝜆𝑛.                — (3.14) 

Referring to (3.13) or (3.14), Proposition (3.1) is proven. It becomes a theorem: Theorem (3.1).  

 

4. The Proof of Legendre’s Conjecture 

 
Legendre’s Conjecture states that there is a prime number between 𝑛2 and (𝑛 + 1)2  for every 

positive integer 𝑛.                     — (4.1) 

Proof: 
Referring to Theorem (3.1), for integers 𝑗 ≥ 𝑘 − 2 ≥ 25, there exists at least a prime number 𝑝 

such that  𝑗(𝑘 − 1) < 𝑝 ≤  𝑗𝑘.                     — (4.2) 

When  𝑘 = 𝑗 + 1 ≥ 27, then 𝑗 = 𝑘 −1 ≥ 26  

Applying  𝑘 = 𝑗 + 1 into (4.2), then 𝑗2 < 𝑝 ≤ 𝑗(𝑗 +1) < (𝑗 + 1)2 

Let 𝑛 = 𝑗 ≥ 26, then we have 𝑛2 < 𝑝 < (𝑛 + 1)2.                 — (4.3) 

For 1 ≤ 𝑛 ≤ 26, we have a table, Table 1, that shows Legendre’s conjecture valid.             — (4.4) 
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Table 1: For 1 ≤ 𝑛 ≤ 26, there is a prime number between 𝑛2 and (𝑛 + 1)2. 

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 
𝑛2 1 4 9 16 25 36 49 64 81 100 121 144 169 
𝑝 3 5 11 19 29 41 53 67 83 103 127 149 173 

(𝑛 + 1)2 4 9 16 25 36 49 64 81 100 121 144 169 196 
 

𝑛 14 15 16 17 18 19 20 21 22 23 24 25 26 
𝑛2 196 225 256 289 324 361 400 441 484 529 576 625 676 
𝑝 199 229 263 307 331 373 409 449 491 541 587 641 683 

(𝑛 + 1)2 225 256 289 324 361 400 441 484 529 576 625 676 729 

Combining (4.3) and (4.4), we have proven Legendre’s conjecture.  
 
Extension of Legendre’s conjecture 

There are at least two prime numbers, 𝑝𝑛 and 𝑝𝑚 , between 𝑗2 and (𝑗 + 1)2  for every positive 
integer 𝑗 such that 𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗+1) and 𝑗(𝑗+1) < 𝑝𝑚 < (𝑗 + 1)2 where 𝑝𝑛 is the 𝑛𝑡ℎ prime number, 

𝑝𝑚 is the 𝑚𝑡ℎ prime number, and 𝑚 ≥ 𝑛 +1.                   — (4.5) 

Proof: 

Referring to Theorem (3.1), for integers 𝑗 ≥ 𝑘 − 2 ≥ 25, there exists at least a prime number 𝑝 
such that  𝑗(𝑘 − 1) < 𝑝 ≤  𝑗𝑘.    

When 𝑘 −1 = 𝑗 ≥ 26, then 𝑗(𝑘 − 1) = 𝑗2 < 𝑝𝑛 ≤ 𝑗𝑘 = 𝑗(𝑗+1). Thus, there is at least a prime number 
𝑝𝑛  such that 𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗+1) when 𝑗 = 𝑘 −1 ≥ 26. 

When 𝑗 = 𝑘 −2 ≥ 26, then 𝑘 = 𝑗 + 2. Thus, 𝑗(𝑘 −1) = 𝑗(𝑗+1) < 𝑝𝑚 ≤ 𝑗𝑘 = 𝑗 (𝑗+2) < (𝑗 + 1) 2. Thus,  

there is at least another prime number 𝑝𝑚 such that 𝑗(𝑗+1) < 𝑝𝑚 < (𝑗 + 1)2 when 𝑗 = 𝑘 −2 ≥ 26.  

Thus, when 𝑗 ≥ 26, there are at least two prime numbers 𝑝𝑛 and 𝑝𝑚 between 𝑗2 and (𝑗 + 1)2 
such that 𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗+1) < 𝑝𝑚 < (𝑗 + 1)2 where 𝑚 ≥ 𝑛 +1 for 𝑝𝑚 ˃ 𝑝𝑛 .              — (4.6) 

For 1 ≤ 𝑗 ≤ 26, we have a table, Table 2, that shows (4.5) valid.                — (4.7) 

Table 2: For 1 ≤ 𝑗 ≤ 26, there are 2 prime numbers such that 𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗+1) < 𝑝𝑚 < (𝑗 + 1)2. 

𝑗 1 2 3 4 5 6 7 8 9 10 11 12 13 

𝑗2 1 4 9 16 25 36 49 64 81 100 121 144 169 

𝑝𝑛 2 5  11 19 29 41 53 67 83 103 127 149 173 

𝑗(𝑗+1) 2 6 12 20 30 42 56 72 90 110 132 156 182 

𝑝𝑚 3 7 13 23 31 43 59 73 97 113 137 163 191 

(𝑗 + 1)2 4 9 16 25 36 49 64 81 100 121 144 169 196 
 

𝑗 14 15 16 17 18 19 20 21 22 23 24 25 26 
𝑗2 196 225 256 289 324 361 400 441 484 529 576 625 676 
𝑝𝑛 199 229 263 393 331 373 409 449 491 541 587 641 683 

𝑗(𝑗+1) 210 240 272 306 342 380 420 462 506 552 600 650 702 
𝑝𝑚 211 251 277 311 349 389 431 467 521 557 613 659 709 

(𝑗 + 1)2 225 256 289 324 361 400 441 484 529 576 625 676 729 

Combining (4.6) and (4.7), we have proven (4.5). It becomes a theorem: Theorem (4.5). 
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5. The Proofs of Three Related Conjectures 

 

Oppermann’s conjecture was proposed by Ludvig Oppermann [4] in March 1877. It states that 

for every integer 𝑥 ˃ 1, there is at least one prime number between 𝑥(𝑥 −1) and 𝑥2, and at 

least another prime between 𝑥2 and 𝑥(𝑥+ 1).                  — (5.1) 

Proof: 

Theorem (4.5) states there are at least two prime numbers, 𝑝𝑛 and 𝑝𝑚 , between 𝑗2 and 

(𝑗 + 1)2  for every positive integer 𝑗 such that 𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗+1) and 𝑗(𝑗+1) < 𝑝𝑚 < (𝑗 + 1)2 where 

𝑚 ≥ 𝑛 +1 for 𝑝𝑚 ˃ 𝑝𝑛.   

𝑗(𝑗+1) is a composite number except 𝑗 = 1. Since 𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗+1) is valid for every positive 

integer 𝑗, when we replace 𝑗 with 𝑗+1, we have  (𝑗 + 1)2 < 𝑝𝑣 < (𝑗+1)(𝑗+2).   

Thus, we have 𝑗(𝑗+1) < 𝑝𝑚 < (𝑗 + 1)2< 𝑝𝑣 < (𝑗+1)(𝑗+2).                  — (5.2) 

When 𝑥 ˃ 1, then (𝑥 – 1) ≥ 1. Substitute 𝑗 with (𝑥 − 1) in (5.2), we have 

𝑥(𝑥 − 1) < 𝑝𝑚 < 𝑥2 < 𝑝𝑣 < 𝑥(𝑥+ 1)                    — (5.3) 

Thus, we have proven Oppermann’s conjecture. 

 

Brocard's conjecture is after Henri Brocard [5]. It states that there are at least 4 prime numbers 

between (𝑝𝑛)2 and (𝑝𝑛+1)2, where 𝑝𝑛 is the 𝑛𝑡ℎ prime number, for every 𝑛 ˃ 1.               — (5.4) 

Proof: 

Theorem (4.5) states there are at least two prime numbers, 𝑝𝑛 and 𝑝𝑚 , between 𝑗2 and  

(𝑗 + 1)2  for every positive integer 𝑗 such that 𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗+1) and 𝑗(𝑗+1) < 𝑝𝑚 < (𝑗 + 1)2      

where 𝑚 ≥ 𝑛 +1 for 𝑝𝑚 ˃ 𝑝𝑛. When 𝑗 ˃ 1, 𝑗(𝑗+1) is a composite number. Then Theorem (4.5)  

can be written as 𝑗2 < 𝑝𝑛 < 𝑗(𝑗+1) and 𝑗(𝑗+1) < 𝑝𝑚 < (𝑗 + 1)2. 

In the series of prime numbers: 𝑝1=2,  𝑝2=3,  𝑝3=5,  𝑝4=7,  𝑝5=11... all prime numbers except 𝑝1 

are odd numbers. Their gaps are two or more. Thus when 𝑛 ˃ 1, (𝑝𝑛+1− 𝑝𝑛) ≥ 2.  

Thus, we have  𝑝𝑛 ˂ (𝑝𝑛 + 1) ˂  𝑝𝑛+1 when 𝑛 ˃ 1.                  — (5.5) 

Applying Theorem (4.5) to (5.5), when 𝑛 ˃ 1, we have at least two prime numbers  𝑝𝑚1 ,  𝑝𝑚2 in  

between  (𝑝𝑛)2 and (𝑝𝑛 + 1)2 such that (𝑝𝑛)2 < 𝑝𝑚1 <  𝑝𝑛( 𝑝𝑛+1) < 𝑝𝑚2 < ( 𝑝𝑛 + 1)2, and at least  

two more prime numbers  𝑝𝑚3 ,  𝑝𝑚4 in between  (𝑝𝑛 + 1)2 and  (𝑝𝑛+1)2 such that  

( 𝑝𝑛 + 1)2 < 𝑝𝑚3 <  𝑝𝑛+1( 𝑝𝑛+1) < 𝑝𝑚4 < ( 𝑝𝑛+1)2 .  

Thus, there are at least 4 prime numbers between (𝑝𝑛)2 and (𝑝𝑛+1)2 for 𝑛 ˃ 1 such that  

(𝑝𝑛)2 < 𝑝𝑚1 <  𝑝𝑛( 𝑝𝑛+1) < 𝑝𝑚2 < ( 𝑝𝑛 + 1)2 < 𝑝𝑚3 <  𝑝𝑛+1( 𝑝𝑛+1) < 𝑝𝑚4 < ( 𝑝𝑛+1)2               — (5.6) 

Thus, Brocard's conjecture is proven. 
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Andrica’s conjecture is named after Dorin Andrica [6]. It is a conjecture regarding the gaps 

between prime numbers. The conjecture states that the inequality √ 𝑝𝑛+1  − √ 𝑝𝑛 < 1 holds  

for all 𝑛 where  𝑝𝑛 is the 𝑛𝑡ℎ prime number. If  𝑔𝑛=  𝑝𝑛+1 − 𝑝𝑛 denotes the 𝑛𝑡ℎ prime gap,  

then Andrica’s conjecture can also be rewritten as  𝑔𝑛 < 2√ 𝑝𝑛 + 1.               — (5.7)  

Proof: 

From Theorem (4.5), for every positive integer 𝑗, there are at least two prime numbers 𝑝𝑛  

and 𝑝𝑚 between 𝑗2 and (𝑗 + 1)2 such that 𝑗2 < 𝑝𝑛 ≤ 𝑗(𝑗+1) < 𝑝𝑚 < (𝑗 + 1)2 where 𝑚 ≥ 𝑛 +1  

for 𝑝𝑚 ˃ 𝑝𝑛.  

Since  𝑚 ≥ 𝑛 +1, we have 𝑝𝑚 ≥  𝑝𝑛+1.   
Thus, we have 𝑗2 < 𝑝𝑛 .                    — (5.8) 

And  𝑝𝑛+1 ≤  𝑝𝑚 < (𝑗 + 1)2.                      — (5.9) 

Since 𝑗, 𝑝𝑛 , 𝑝𝑛+1 and (𝑗 + 1) are positive integers,  

𝑗 < √ 𝑝𝑛                    — (5.10) 

And  √ 𝑝𝑛+1 < 𝑗 + 1                   — (5.11)  

Applying (5.10) to (5.11), we have √ 𝑝𝑛+1 < √ 𝑝𝑛 + 1.              — (5.12) 

Thus, √ 𝑝𝑛+1  − √ 𝑝𝑛 < 1 holds for all 𝑛 since in Theorem (4.5), 𝑗 holds for all positive integers. 

Using the prime gap to prove the conjecture, from (5.8) and (5.9), we have 

 𝑔𝑛 =   𝑝𝑛+1 − 𝑝𝑛 < (𝑗 + 1)2 − 𝑗2 = 2𝑗 + 1. From (5.10),  𝑗 < √ 𝑝𝑛 . 

Thus,  𝑔𝑛 =   𝑝𝑛+1 − 𝑝𝑛 < 2√ 𝑝𝑛 + 1.                 — (5.13) 

Thus, Andrica’s conjecture is proven.   

 

6. References 
 
[1] Wikipedia, https://en.wikipedia.org/wiki/Legendre%27s_conjecture 

[2] P. Erdős, Beweis eines Satzes von Tschebyschef, Acta Sci. Math. (Szeged) 5 (1930-1932),  
      194-198 

[3] M. Aigner and G. M. Ziegler, Proofs from THE BOOK (4th ed.), Chapter 2, Springer, 2010. 

[4] Wikipedia, https://en.wikipedia.org/wiki/Oppermann%27s_conjecture 

[5] Wikipedia, https://en.wikipedia.org/wiki/Brocard%27s_conjecture 

[6] Wikipedia, https://en.wikipedia.org/wiki/Andrica%27s_conjecture 
[7] Wikipedia, https://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate, Lemma 4. 
 


