Quantum-Wave Theory of Light

Rajeev Kumar*

Abstract
Light generates interference pattern in ‘Young’s double-slit experiment’ which is possible only if light is wave in nature. Moreover, in photoelectric effect we observe that when light with frequency greater than threshold frequency strikes a metal, it ejects electrons. Such behaviour of light is possible only if light is particle in nature. In this paper a quantum-wave theory of light has been presented in order to explain the dual nature of light.

Keywords: ‘Young’s double-slit experiment’, Photoelectric effect, Dual nature of light.

1 QUANTUM-WAVE THEORY OF LIGHT
Let’s consider a monochromatic source of light which is steady with respect to an inertial frame of reference.
Let’s define a parameter ‘q’ termed as ‘quality of a photon’ as

$$ q = \sqrt{h \nu} \cos \left(\frac{2 \pi s}{\lambda} - 2 \pi \nu t + \phi \right) $$

where
- h = Planck’s constant
- ν = frequency of a ray of photons with respect to the source frame of reference
- s = distance along the ray
- λ = wavelength of the ray of photons
- t = time elapsed
- ϕ = initial phase

Let’s define the energy of a photon as

$$ E = q^2 = h \nu \cos^2 \left(\frac{2 \pi s}{\lambda} - 2 \pi \nu t + \phi \right) $$

So the average energy for photons is

$$ \langle E \rangle = \langle q^2 \rangle = \frac{h \nu}{2} $$

If multiple photons merge together, then the quality of the resultant photon will be

$$ q_{\text{res}} = \sum q_i $$

So the energy of the resultant photon will be

$$ E = (q_{\text{res}})^2 = \left(\sum q_i \right)^2 $$

*rajeevkumar620692@gmail.com
2 PROPOSITIONS ON PHOTON

- A photon has an extremely small mass.
- Velocity of a photon at emission will be the vector sum of the velocity of source at the instant of the photon emission and the velocity of photon from the same source at rest.
- Relative speed of approach and relative speed of separation of a photon with respect to the reflecting point of a reflecting surface will be equal along the normal and tangential directions of the reflecting surface at the point of reflection.
References