New Standard Model

Deokjin Kim
EnTEs Institute, Korea. E-mail: entes@outlook.kr

November 16, 2022

Keywords: Dark energy, Dark matter, Origin of mass, Standard model, Theory of everything

Abstract All things are composed of six fundamental particles: electron neutrino 0.1524 eV, muon neutrino 169.06 keV, tau neutrino 15.408 MeV, graviton 2.506E-10 eV, photon 0.1609 eV, and gluon 115.32 eV. All the other particles are the combined particles. They operate as logarithmic elliptic equations, which satisfy super symmetry, gauge symmetry, renormalization, spontaneous symmetry breaking, hierarchical problem, and fine-tuning universe. From this, a new standard model is drawn. In this paper, the core of previous research is summarized, previous errors are corrected, and new contents are described. The language of physics should be drawing. Various unsolved problems can be solved when the shape of every particle is accurately drawn. The core is two. 1) The compressive strength of three-dimensional quantum space formed as log-elliptic equation gives the particle mass. 2) The brane of quantum space is composed of dipoles of a total of 6 components: three generation neutrinos, graviton, photon, and gluon. Based on this, all problems in physics will be solved.

1. Introduction

In the previous study [1], the shape and mass of various particles were calculated in detail. The study was calculated with a total of 8 input variables. This study is calculated with a total of 6 input variables. In the previous study [2], a new diagram of standard model was proposed. Such as in previous studies [3], the calculation scope of this content is very wide. Therefore, the purpose of this study is to summarize the core of the above extensive research, to fix previous errors, and to add new important contents.

2. New Standard Model

2.1 Current Standard Model

The standard model of particle physics is shown in Fig. 1. It consists of a total of 17 elementary particles and graviton.

2.2 New Standard Model

A new standard model is proposed in Fig. 2. This is some improved in Fig. 2 of Ref [2].

2.3 Six fundamental particles

In Fig. 2, all things are composed of six fundamental particles: electron neutrino v^e, muon neutrino v^μ, tau neutrino v^τ, graviton g, photon γ, and gluon g^*. Their shapes are shown in Fig. 3(a).

2.4 Combined particles

All the other particles are the combined particles. Fig. 3(b) is the shape of weak force, electromagnetic force, and strong force, and Fig. 3(d) is the shape of electron, muon, and tau.

2.5 Log-elliptic equation

The mass of particles and the change of the universe follow logarithmic elliptic equation with midpoint 6.00107D and vertex 0D. Since two of the four variables for solving elliptic equation have been identified, given two unknowns, the elliptic equation is drawn.

2.6 Kinetic state, Steady state, Combined state

Particle has the kinetic state rest mass of Fig. 4 and 5 and the steady state rest mass of Fig. 6 and 7. The change of the universe operates as the combined state of Fig. 8 and 9.

2.7 Particle and Antiparticle

Particle is red n and anti-particle is blue n. In fermion, the mass of antiparticle n^* is 2π times heavier than that of particle n. In boson, the mass of n^* is $(1+2\pi)^2 \cdot \sqrt{n}$. That is, if the mass of particle n is known, the mass of antiparticle n^* is automatically calculated.

2.8 Normal and Oscillation

Lowercase n and s means normal mass, and uppercase N and S means oscillating mass. In Figs. 4-9, (a) is normal mass, and (b-d) is oscillating mass. The shape of the oscillating particle is shown in Fig. 3(c), and its oscillating mass is calculated in Figs. 4-9(e).
Fig. 1 Current Standard Model

Fig. 2 New Standard Model
Fig. 3 Particle shape and log-mass
Fig. 4 Mass of neutrinos – Kinetic state

(a) Normal mass

(b) 4D oscillation mass

(c) 5D oscillation mass

(d) 6D oscillation mass

<table>
<thead>
<tr>
<th>Kinetic</th>
<th>(a) 7.1877</th>
<th>(b) 7.1877</th>
<th>(c) 6.95193</th>
<th>(d) 7.1877</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>7.13127</td>
<td>7.12792</td>
<td>7.13127</td>
<td>7.13127</td>
</tr>
<tr>
<td>middle</td>
<td>5.22080</td>
<td>5.22080</td>
<td>5.21081</td>
<td>5.22080</td>
</tr>
<tr>
<td>low</td>
<td>-0.81691</td>
<td>-0.81691</td>
<td>-0.81691-0.99499-1.05273</td>
<td>-0.81691-0.95237-0.99629</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neutrino</th>
<th>electron</th>
<th>muon</th>
<th>tau</th>
</tr>
</thead>
</table>

-6.93658 6.74666 6.20098
6.13899 5.34598 3.06751
5.46538 5.65530 6.20098

\[\alpha_{56} = \left(\alpha_5^0 + \alpha_6^5 + \alpha_6^6 \right) / 3 \]
\[\beta_{56} = \left(\beta_5^5 + \beta_6^5 + \beta_6^6 + \beta_6^6 \right) / 4 \]
\[\gamma_{56} = \left(\gamma_5^5 + \gamma_6^5 + \gamma_6^6 \right) / 3 \]
\[\alpha \beta \gamma_{56} = \left(\alpha_5^0 \beta_5^5 + \alpha_5^0 \gamma_5^5 \right) / 3 = \frac{5.74648 \left(\beta_5^5 + \gamma_5^5 \right)}{2} \]
\[\gamma_{56} = \left(\gamma_5^5 \right) / 1 = 7.18775 \]

(e) Oscillating Particle Mass

- 4 -
Fig. 5 Mass of graviton, photon, gluon – Kinetic state

(a) Normal mass
(b) 4D oscillation mass
(c) 5D oscillation mass
(d) 6D oscillation mass

<table>
<thead>
<tr>
<th>Kinetic</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>2.06190</td>
<td>1.178311.97778</td>
<td>2.06190</td>
<td>2.06190</td>
</tr>
<tr>
<td>middle</td>
<td>-0.79343</td>
<td>-0.73129</td>
<td>-0.81358</td>
<td>-0.79343</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gravino</th>
<th>graviton</th>
<th>photon</th>
<th>gluon</th>
<th>graviton</th>
<th>photon</th>
<th>gluon</th>
<th>graviton</th>
<th>photon</th>
<th>gluon</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>1.69594</td>
<td>1.41922</td>
<td>0.62416</td>
<td>1.69594</td>
<td>1.41922</td>
<td>0.62416</td>
<td>1.69594</td>
<td>1.41922</td>
<td>0.62416</td>
</tr>
<tr>
<td>middle</td>
<td>-0.44762</td>
<td>-0.17090</td>
<td>0.62416</td>
<td>-0.44762</td>
<td>-0.17090</td>
<td>0.62416</td>
<td>-0.44762</td>
<td>-0.17090</td>
<td>0.62416</td>
</tr>
</tbody>
</table>

\[\alpha_{G^6} = \frac{\alpha_g^4 + \alpha_g^5 + \alpha_g^6}{3} = \frac{-9.60100 - 0.73129 + 1.97961}{3} = -2.78423 \text{ 1.64351 meV} \]

\[\beta_{G^6} = \frac{\beta_g^5 + \beta_g^6 + \beta_g^7 + \beta_g^8}{4} = \frac{-0.79343 + 1.97778 + 2.04175 + 0.79343}{4} = 0.60817 \text{ 4.05663 eV} \]

\[\gamma_{G^6} = \frac{\gamma_g^5 + \gamma_g^6 + \gamma_g^7}{3} = \frac{-2.06190 + 2.06190 + 2.06190}{3} = 2.06190 \text{ 115.318 eV} \]

\[\alpha\beta\gamma_{G^6} = \frac{\alpha_{G^6} + \beta_{G^6} + \gamma_{G^6}}{3} = \frac{-0.03896}{3} \text{ 2.13503} \]

\[\beta\gamma_{G^6} = \frac{\beta_{G^6} + \gamma_{G^6}}{2} = 2.13503 \text{ 115.318 eV} \]

\[\gamma_{G^6} = \frac{\gamma_{G^6}}{1} = 2.06190 \]
Fig. 6 Mass of neutrinos – Steady state

<table>
<thead>
<tr>
<th>Steady</th>
<th>(a) 7.19065</th>
<th>(b) 7.13386</th>
<th>(c) 7.19065</th>
<th>(d) 7.19065</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>6.95354</td>
<td>7.13260</td>
<td>6.95354</td>
<td>6.95354</td>
</tr>
<tr>
<td>middle</td>
<td>5.22020</td>
<td>5.22020</td>
<td>5.22020</td>
<td>5.22020</td>
</tr>
<tr>
<td>low</td>
<td>5.22020</td>
<td>5.22020</td>
<td>5.22020</td>
<td>5.22020</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\alpha_{45}^{56} &= \frac{\alpha_4 + \alpha_5 + \alpha_6}{3} = \frac{-0.85787 + 5.26308 + 7.13386}{3} = 3.84636 \\
\beta_{56}^{56} &= \frac{\beta_5 + \beta_5 + \beta_6 + \beta_6}{4} = \frac{5.22020 + 7.13260 + 7.17674 + 5.22021}{4} = 6.18743 \\
\gamma_{56}^{56} &= \frac{\gamma_5 + \gamma_5 + \gamma_6 + \gamma_6}{3} = \frac{7.19065 + 7.19065 + 7.19065}{3} = 7.19065 \\
\alpha_{56}^{56} &= \frac{\alpha_5 + \beta_5 + \gamma_5}{3} = \frac{5.74148}{3} = 1.9148 \\
\end{align*}
\]

\[
\begin{align*}
\beta_{56}^{56} &= \frac{\beta_5 + \beta_5 + \gamma_5}{2} = \frac{6.18743}{2} = 3.09371 \\
\gamma_{56}^{56} &= \frac{\gamma_5}{1} = 7.19065 \\
\end{align*}
\]
Fig. 7 Mass of graviton, photon, gluon – Steady state
Fig. 8 Mass of neutrinos – Combined state
Fig. 9 Mass of graviton, photon, gluon – Combined state
2.9 Three generation dark forces

There is dark time, not dark energy, and it causes the three generation dark forces. The red arrow is 4D dark force, the orange arrow is 5D dark force, and the green arrow is 6D dark force. They are calculated from the four forces in Fig. 16. At the chart, 2.6922 is calculated. The value of 2.6922 / (1 + 2.6922) is 72.916% and the value of 1 / 2.6922 is 37.144%. These values are very important.

2.10 Weak, Electromagnetic, Strong forces, Time

Gravino is a word coined by author, and it means graviton, photon, and gluon. The shapes of forces in Fig. 2 are shown in Fig. 3(b). Force is the combination particle of one normal neutrino and one oscillating gravino. They are always kinetic state particle forces. Weak force causes gravity. Here, weak force acts on quantum space, but gravitational force acts toward 4D empty space. Three generation dark forces are affecting above particle forces. The result is the four fundamental physical forces. The first-generation dark force is dark energy, from which current time is calculated.

2.11 Electron, Muon, Tau

The shapes of electron, muon, and tau in Fig. 2 are shown in Fig. 3(d). They are the combination particle of oscillating neutrinos and oscillating gravinos.

2.12 Fermion and Boson

Fermion particles located on the left side of Figs. 4-9 make up our universe, and boson particles located on the right side are hidden in quarks. When the masses of fermion particles are known, the masses of boson particles are calculated with the super-gauge symmetry of the elliptic equation. The fermion branes constitute dimensional multiverse with a size close to infinity, and the boson branes are a near-zero universe hidden in quarks. After 1.89E111 years, this reverse.

2.13 W, Z, H Bosons

The shapes of W, Z, and H bosons are equal to Fig. 3(a). Here, the masses of the normal bosons are calculated from super-gauge symmetry of oscillating fermions. When Z boson is 91.1876 GeV, from Fig. 10, W and H bosons are calculated as 80.376 GeV and 125.06 GeV. In Fig. 11, the w, z, h bosons are hidden in quarks. When the quark collapses, a boson pops out into the 5D quantum space of our world. It is Z boson. Fig. 8.2 of the previous study [1] was changed to above Fig. 11.

2.14 Down, Strange, Bottom

In Fig. 12, the shell of down, strange, and bottom quarks is the oscillating neutrinos of steady state, and the inside is the particle and anti-particle normal neutrino and gravino
bosons of combined state. The boson particle in quark is lowercase w, z, or h with very little mass of Fig. 11. When the quark collapse, the w, z, h boson of the combined state change to kinetic state of Fig. 11 (See Table 5), and they transform into uppercase W, Z, or H with very large mass. The color of down, strange, and bottom is red. Therefore, they are matter.

2.15 Up, Charm, Top

In Fig. 12, the shell of up, charm, and top quarks is the normal anti-neutrinos of steady state, and the inside is the particle and antiparticle normal neutrino bosons of steady state. The boson mass of lowercase is located in quark. When a quark collapse, it transforms into uppercase with large mass. The color of up, charm, top is blue. Therefore, they are anti-matter.

3. New Interpretation

3.1 Too many input constants

As shown in Fig. 2, a total of 10 variables are needed to solve the problem. Here, 4 variables are resolved internally. Therefore, the total independent variables are 6. If six exact values are given, everything is calculated accurately as shown in Fig. 26. In Fig. 3(a), the n + g mass in kinetic state and the n + g mass in steady state are the same. From this, two masses are calculated internally. In Ref. [1], the following calculations are not explained. In the W Z H mass of Fig. 10, the value of B/H is 2.0030 and the value of Hu is 133.23 GeV. Fig. 13 shows the combined state mass of Fig. 8(a). Two internal variables can be calculated from the E 2.0030 and the Bu 133.23 GeV.

3.2 Why are particles three generations?

As shown in Fig. 14, all particles are classified into three generations because three generation quantum spaces of a, b, and c dimensions exist. The calculated quantum dimensions are 4D, 5D and 6.00107D. In Fig. 15, (a) is the shape of dimension defined in classical mechanics. The space in quantum mechanics has the shape of (b). Quantum space is extremely compressed region due to dimensional collapse.

3.3 What is Gravity?

![Fig. 14 Shape of quantum space of universe](image)

![Fig. 13 Supergauge symmetry of combined Neutrinos](image)

![Fig. 15 Relation of Dimension and Space](image)
Gravity is easily calculated from Fig. 16. (a) is the relative mass of the force particles, and (b) is the physical force affected by the dark force. Strong force is on 6D, electromagnetic force is on 5D, weak force is on 4D, and gravitational force is on 0D. The 0D is empty, not quantum space. The 3D position is the space that we usually perceive.

3.4 What is the origin of mass?

As shown in Fig. 14, the compressive strength of three generation quantum space imparts a mass to quantum particle. That is, quantum particles do not have proper mass. In Fig. 17, the combination of 3 kg and 4 kg in quantum space is not addition 7 kg but multiplication 12 kg. In muon of Fig. 2 or Fig. 3(d), the value of 4.8852 MeV x 21.628 eV is the muon mass of 105.658 MeV. There is a photon in the shape of muon. This is the cause of muon g-2 problem.

3.5 Is the mass of neutrino 0 eV?

There masses are calculated in Fig. 4, 6, 8(a).

3.6 Is the mass of gravino 0 eV?

There masses are calculated in Fig. 5, 7, 9(a).

3.7 What is Oscillation?

Three generation neutrinos and three generation gravinos constantly jump through three generation quantum space of Fig. 14. Due to this, their masses always change to three generation masses. This is oscillation phenomenon. The oscillating masses are calculated in Figs. 4-9(b-c).

3.8 Does antineutrino also oscillate?

In Fig. 12, the red neutrino has oscillation, and the blue anti-neutrino has no oscillation.

3.9 Why is everything a particle?

The origin of particle is an extremely compressed universal brane. Part of brane breaks and turns into particle. Therefore, a particle is a very long line. When the line is placed in quantum space, it turns into a particle that has heavy mass.

3.10 Is particle correct? Is wave correct?

From the quantum space abc of Fig. 14, when the particle appears on our space XYZ, it turns into a wave line that has almost close 0 eV. This is because the compressive strength of our linear space is almost 0 eV. The mass of photon located in quantum space is 0.1609 eV. However, when it appears on our space, it turns into light with almost close 0 eV. See Fig. 3. Not particle, not wave, open particle is the correct answer.

3.11 Do hypothetical particles exist?

All particles are a combination of six fundamental particles. The mass of all particles can be calculated with the values in Figs. 4-9 and the dark forces in Fig. 16.

3.12 Is super-symmetry correct?

In Fig. 4, the left side of ellipse is the real fermion universe,
and the right side is the imaginary boson universe. The upper part is a positive universe, and the lower part is a negative universe. They have perfect super-gauge symmetry.

3.13 Will proton decay?

The three generation quantum spaces of Fig. 14 dominate everything. If quantum space were forever stable, proton would not decay by themselves.

3.14 Where is antimatter?

In Fig. 12, down, strange, and bottom are matter, and up, charm, and top are anti-matter. That is, they exist exactly in equal numbers in the universe. The below of Fig. 2 is hydrogen. The red particles and blue antiparticles are equal numbers, and only the red monopole force particles remain. The force particles cause various chemical reactions.

3.15 What is consciousness?

In the below of Fig. 2, there is only the red forces. The red and blue forces must be equal numbers. Where is the blue force? There is no blue force in inanimate objects.

3.16 Where is Dark Matter?

In Fig. 18, the object inside of the 3D universe is dark matter or Planck star. The object is composed of antiparticles, and antiparticle is 2π times more massive than particle. That is, dark matter cannot be observed in space.

3.17 Is Bing Bang theory correct?

In Fig. 18, (a) is Big Bang time, (b) is cosmological constant time, (c) is Hubble time, and (d) is double cosmological constant time. The standard for the interpretation of the universe is not Planck time 5.4E-44 seconds, but the cosmological constant time of 10.050 billion years. Big bang theory adopts the value on 0D in Fig. 3. The Big Bang, past, present, and future of our universe are all in 3D.

3.18 Why is it inconsistent with $ΛCDM$ model?

Planck length l_p is 1.61626E-35m, and the cosmological constant $Λ$ in Planck 2018 data is 1.1056E-52/m2. Therefore, the value of $Λ/Λ_{Planck} = 1E-121.5394$. In Fig. 8(a), the value of v_{th}/v_{Bz} is 1E-121.5327. This means that l_p is 0D value and $Λ$ is 3D value. It can be understood that there are N-D Planck length l_{Planck} and N-D cosmological constant $Λ_N$.

3.19 What is dark energy?

The value of $Λ/Λ_{Planck} = 1$. Therefore, the 3D Planck time t_{Planck} is $1/c/Λ = 1/(2.9979E8 \cdot 60 \cdot 60 \cdot 24 \cdot 365.24 \cdot \sqrt{Λ}) = 10.053$ BY. In Fig. 18(b), the calculated value of this paper is 10.048 BY. In Plank 2018 data, the current time is 13.787 BY. The value of 10.053 / (13.787 – 10.053) is 2.6923. In Fig. 16(b), the calculated value of this paper is 2.6922. The value of 10.053 / 13.787 is 72.915%, and this value is not dark energy but time ratio. In Plank 2018 data, the ratio of dark energy, dark matter, and ordinary matter is 68.89% : 26.19% : 4.92%. In Fig. 18, our universe is an absolute 4D sphere. Its overall shape has nothing to do with the amount of ordinary matter.

3.20 What is the origin of force?

The shapes of force are drawn in Fig. 3(b). From Fig. 16(a), electromagnetic force is $10^{-1.7067} / 2.6922 = 1/137.036$, and weak force is $10^{-6.4254} \times 2.6922 = 1.01093E6$. When plotting log parabola, the value of OD is 2.1937E-39, and multiplying 2.6922, the value is calculated as 5.90595E-39. The 2.6922 is equally affecting above three forces. The 2.6922 is 10.050 / (13.783 - 10.050). Here 10.050 BY is constant and 13.783 is time flow variable. When time is around 10.050 BY, its value becomes infinity. This is very difficult to understand.

3.21 Arrow of time

In Fig. 4(a), our universe is on 3D. The change goes towards 2D. The reverse is impossible.

3.22 Dimensionless physical constant

Dimensionless constants are relative values. Absolute values have been calculated for all of this paper.

3.23 Fine-tuned universe
Everything is calculated from 6 input variables. It is the dark matter in Fig. 18 that fine-tunes our universe.

3.24 Cosmic inflation

In Fig. 18, (b) is the 3D cosmological constant time, which is 3D Planck unit. Big Bang must be reinterpreted.

3.25 Supermassive black hole

The universe of 2D physics is spread out in it.

3.26 Galaxy rotation problem

Supermassive black hole is rotating galactic space and swallowing it. Against swallowing is Newton's law. The rotating galactic space is compressed such as convex lens, and it causes gravitational lensing.

3.27 Void, Filament, Supercluster, Great wall

As shown in Fig. 18(c), universe is a supergiant monopole superconductor. This forms the peculiar structure of galaxies.

3.28 Distinction between past and future

In Fig. 18(c), the left side is the past of kinetic state, and the right side is the future of steady state. (c) itself is the mixture of past 37.144% and future 62.856%. This is present.

3.29 Generation of hydrogen

Particles that did not exist are being generated in galaxies. All universes are open system.

3.30 Parallel universe, Holographic universe, Etc.

In Fig. 3(a), our universe is located on 3D. After countless times, our universe turns into unimaginable strange universe.

3.31 Hubble Tension

In Planck 2018 Result, as shown in Fig. 19, the cosmological constant Λ and the universe age are given as $1.10560E-52$ m2 and 13.787 BY. From the universe age, in case of constant velocity expansion universe, H is calculated as $70.92 \text{ km/s/Mpc} = 3.08568E19 / (60 \cdot 60 \cdot 24 \cdot 365.24) / 13.787 \text{ BY}$. The cosmological constant time $1 / c \sqrt{\Lambda}$ is calculated as $10.053 \text{ BY} = 1 / (2.9979E8 \cdot 60 \cdot 60 \cdot 24 \cdot 365.24 \cdot /1.10560E-52)$. The kinetic state time is calculated as 37.143% = (13.787 - 10.053) / 10.053, and the steady state time is calculated as 62.857% = (10.053 \cdot 2 - 13.787) / 10.053. The H of ΛCDM is 67.66 km/s/Mpc, and the average H of Astronomical observations since 2016 is about 72.86 km/s/Mpc. Therefore, the combined Hubble constant is calculated as 70.93 km/s/Mpc = 67.66 \cdot 37.143\% + 72.86 \cdot 62.857\%.

3.32 Expansion velocity of the universe

The constant velocity expansion H is 70.92 km/s/Mpc, and the combined H is 70.93 km/s/Mpc. This means that the universe is expanding at constant velocity, and it is the speed of light toward 4D direction as shown in Fig. 18.

3.33 Proton radius puzzle

0.8751 fm is the radius in steady state, and 0.8409 fm is the radius in kinetic state.

3.34 Neutron lifetime puzzle

The 888 seconds of beam is the neutron in kinetic state, and the 879.4 seconds of bottle is the neutron in steady state.
If these values are 887.7s and 877.75s, the neutron lifetime of universe is \(881.4s = 887.7 \cdot 37.143\% + 877.75 \cdot 62.857\%\).

3.35 Yang–Mills existence and mass gap

The ellipse of infinity size is parabola. Since ellipse is necessarily less than infinity, it has a mass larger than zero.

3.36 Black hole information paradox

First generation is star, second generation is neutron star, and third generation is stellar black hole. Its constituent particles are shown in Fig. 12. In stellar black hole, tau neutrino and gluon are ejected. There is a fake 2D universe in medium-mass black hole, and a real 2D universe spreads in super-massive black hole.

3.37 Three Problems of Big Bang Theory

The fundamental reason why this occurs is that the calculation of physics starts from (a) of Fig. 18. Based on cosmological constant time (b), the big bang (a) and present (c) should be calculated.

3.38 Planck particles

The Planck particles of physical formula are located at 0D of ellipse, and the shape of universe is shown in Fig. 27(h). However, everything on ellipse is N-dimensional Planck particles. The result of multiplying the 0D Planck length by the 3D cosmological constant is the cosmological constant problem. Our entire universe is a 3D Planck particle. In Fig. 16, the gravitational force located on 0D is parabola. Therefore, it means empty space, not particle.

3.39 Superstring theory

The interpretation of 0D Planck particles is superstring theory. Because of 0D, all results of string theory are either extremely small or extremely large. Our universe is composed of a total of six dimensions: linear space X Y Z and quantum space a, b, and c.

3.40 Quantum chromodynamics

According to this paper, quantum chromodynamics can only calculate 90% of proton mass. It can never calculate the remaining 10%.

3.41 Great Unification Theory

In the force chart of the Great Unification Theory, we should consider why the energy eV on the horizontal axis is on logarithmic scale. All calculations in this paper are logarithmic values.

3.42 Lagrangian of Standard Model

Einstein said you do not really know what you know unless you explain it to your grandmother so that she can understand it. Grandmother never understands the Lagrangian of Standard Model. What high school students can calculate is the truth of the universe.

3.43 Theory of Everything

The integration of four fundamental forces is only a part in Fig. 3. It is the true theory of everything that can prove the existence of God with one line.

4. Logarithmic Elliptic Equation

4.1 Normal distribution equation

Normal distribution diagram and equation are shown in the upper of Fig. 20(a).

4.2 Log-parabolic equation

As shown in the left middle of (a), the value of log-parabolic equation is the normal distribution equation.

4.3 Value scale and Log scale

(a) is value scale, and (b) is log scale. They are the same.

4.4 Log-elliptic equation

Log-elliptic equation is drawn in (b).

4.5 Dirac delta function

If the log-ellipse of (b) is again plotted as values, it is (a). That is, log-ellipse satisfies Dirac delta function.

4.6 Super symmetry

In (b), the left and right sides of elliptic equation are symmetrical. The left side is fermion real number universe, and the right side is boson imaginary number universe.

4.7 Gauge symmetry

In (b), the upper and lower sides of elliptic equation are symmetrical. The upper is particle positive universe, and the lower is anti-particle negative universe.

4.8 Renormalization

In (b), the left side of parabola towards \(-\infty\), and the right side towards \(+\infty\). Eventually, the extreme value become exactly 0 eV. The left end of the ellipse is \(-a\) (0D) and the right end is \(+a\) (12D).

4.9 Spontaneous symmetry breaking

In (b), elliptic equation has vertices at \(-a\) and \(+b\).
4.10 Hierarchical problem

In (b), the minimum value of the ellipse is $1/E^{273}$. This is an extremely small value, but not 0 eV.

4.11 Super-gauge symmetry

The combination of supersymmetry and gauge symmetry is super-gauge symmetry. However, this is not correct.

4.12 Dimension-mass symmetry

In Fig. 4, the values on the upper left are symmetrical to those on the lower right. In Fig. 10, the parabola and the inverse parabola are dimension-mass symmetry. That is, this means that dimension and mass are the same.

4.13 Fine-tuning universe

In (b), the lower part of parabola and the right side of inverse parabola cannot be calculated. However, ellipse can calculate all area.

4.14 Anthropic principle

In (b), our universe is located on upper 3D. Therefore, it can be understood that 6D multiverses exist. The 6D/12D universes of down ellipse are the super-gauge symmetry of 0D/6D universes of upper ellipse.

4.15 Lagrangian of Standard Model

Loose combination, such as electron and proton, must be calculated as the sum of their masses. However, tight combination such as proton must be calculated as the sum of log masses. The Lagrangian of standard model cannot calculate the above.

Table 1 Mass calculation of electron, muon, and tau.

<table>
<thead>
<tr>
<th>Term</th>
<th>Fig.</th>
<th>Kinetic State</th>
<th>Steady State</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUTRINO</td>
<td></td>
<td>4D</td>
<td>5D</td>
<td>6.001D</td>
<td>(\alpha \beta_{N}^{456}) (\beta_{N}^{56}) (\gamma_{N}^{6})</td>
</tr>
<tr>
<td>Combine</td>
<td>4(e), 6(e)</td>
<td>5.7465</td>
<td>6.6889</td>
<td>7.1878</td>
<td>5.7415</td>
</tr>
<tr>
<td>Mass</td>
<td>N</td>
<td>557.8k</td>
<td>4.885M</td>
<td>15.41M</td>
<td>551.4k</td>
</tr>
<tr>
<td>GRAVINO</td>
<td></td>
<td>4D</td>
<td>5D</td>
<td>6.001D</td>
<td>(\alpha \beta_{G}^{456}) (\beta_{G}^{56}) (\gamma_{G}^{6})</td>
</tr>
<tr>
<td>Combine</td>
<td>5(e), 7(e)</td>
<td>-0.0381</td>
<td>1.3350</td>
<td>2.0619</td>
<td>-0.0331</td>
</tr>
<tr>
<td>Mass</td>
<td>G</td>
<td>0.9161</td>
<td>21.63</td>
<td>115.3</td>
<td>0.9267</td>
</tr>
<tr>
<td>LEPTON</td>
<td></td>
<td>Electron</td>
<td>Muon</td>
<td>Tau</td>
<td>Electron</td>
</tr>
<tr>
<td>Combine</td>
<td>N + G</td>
<td>5.7084</td>
<td>8.0239</td>
<td>9.2496</td>
<td>5.7084</td>
</tr>
<tr>
<td>Mass</td>
<td>510.999k</td>
<td>105.658M</td>
<td>1776.82M</td>
<td>510.999k</td>
<td>105.658M</td>
</tr>
</tbody>
</table>

Physics: \(\tau \) 1776.86 ± 0.12 MeV
5. Result of calculation

5.1 Six input conditions

In Fig. 2, there are a total of 10 independent variables, but 4 are calculated from internal equations. Therefore, there are 6 independent variables. The following six input conditions were substituted. Electromagnetic force 1/137.036, gravitational force 5.90595E-39, proton 938.272 MeV, electron 510.999 keV, muon 105.658 MeV, Z boson 91.1876 GeV.

5.2 Neutrinos and Gravinos

From the six-variable root finding, the masses of neutrinos and gravinos are calculated as Figs. 4-9(a). In Fig. 4(a), the kinetic neutrino mass is 0.15 eV. In (b-d), the average value of 0.1524, 0.1524, 0.1012, 0.0886, 0.1524, 0.01116, and 0.1009 is 0.12 eV. However, 0.12 eV is a meaningless value.

5.3 Oscillation phenomenon

The oscillation masses are calculated as Figs. 4-9(b-d).

5.4 Electron, Muon, Tau

The shapes of electron, muon, and tau are shown in Fig. 3(d), and their masses are calculated in Table 1. Here, electron 510.999 keV and tau 105.658 MeV are the measured input values of this calculation, and tau 1776.82 MeV is calculated value.

5.5 Four forces

Table 2 shows the calculations of particle masses and coupling constants for weak, electromagnetic, and strong forces. The mass of force particle is weak 15.828 meV, electromagnetic 828.13 eV, and strong 42.152 keV. The log value of the calculated electromagnetic force is -1.70672, but the log value of physics is -2.13683. The difference is +0.43011. Adding 0.43011 to the log value of the calculated weak force -6.42539, the value is calculated as -5.99528, which is 1.01093E-6. This is the weak force coupling constant. See log-parabolic line of Fig. 16(b). The value on OD is calculated as 2.1937E-39. Gravitational force coupling constant is calculated as 5.90595E-39 = 2.1937E-39 \times 2.6922. It can be seen that 2.6922 or log value 0.4301 is connected with four fundamental forces. This value is calculated as 72.916%.

Table 2 Calculation for the mass and coupling constant of weak, electromagnetic, and strong forces

<table>
<thead>
<tr>
<th>Term</th>
<th>Sub.</th>
<th>Kinetic State</th>
<th>Steady State</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUTRINO</td>
<td>normal n</td>
<td>Fig. 4, 6(e)</td>
<td>-0.81691</td>
<td>5.22803</td>
<td>7.18775</td>
</tr>
<tr>
<td>GRAVINO</td>
<td>oscillating G</td>
<td>Graviton</td>
<td>Photon</td>
<td>Gluon</td>
<td>Graviton</td>
</tr>
<tr>
<td>FORCE</td>
<td>(n + G) / 2</td>
<td>Particle</td>
<td>-1.80057</td>
<td>2.91810</td>
<td>4.62482</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.828m</td>
<td></td>
<td>828.13</td>
<td>42.152k</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6.42539</td>
<td></td>
<td>-1.70672</td>
<td></td>
</tr>
<tr>
<td>DAEK</td>
<td></td>
<td>-0.43011</td>
<td></td>
<td>1.01093E-6</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Muon g-2 problem

<table>
<thead>
<tr>
<th>Case</th>
<th>Term</th>
<th>Muon</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Model</td>
<td>g-factor 2.0023318 3604 g_E</td>
<td>3620</td>
<td>a-value 0.0011659 1802 a_E = ((g_E - 2) / 2) 1810</td>
</tr>
<tr>
<td>Experiment</td>
<td>g-factor 2.0023318 4122 g_E</td>
<td>a-value 0.0011659 2061 a_E = ((g_E - 2) / 2)</td>
<td></td>
</tr>
<tr>
<td>Our Calculation</td>
<td>Muon 105.658 MeV m_\mu Given</td>
<td>Neutrino 4.88517 MeV m_N = Fig. 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gravino 21.6284 eV m_G = Fig. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ratio 0.0004427% r = m_G / m_N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a-value 0.0011659 2060 a_E = a_s (2 + r) / 2 2068</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>g-factor 2.0023318 4120 g_E = 2 + 2 \cdot a_E 4136</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 Mass calculation of Up, Charm, Top quark

<table>
<thead>
<tr>
<th>Term</th>
<th>Fig.</th>
<th>Kinetic State</th>
<th>Steady State</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>4D</td>
<td>5D</td>
<td>6.001D</td>
<td>4D</td>
<td>5D</td>
</tr>
<tr>
<td>n Neutrino</td>
<td>4, 6(a)</td>
<td>0.15244</td>
<td>169.06k</td>
<td>15.408M</td>
<td>0.13872</td>
</tr>
<tr>
<td>s Neutrino</td>
<td>0.95778</td>
<td>1062.2k</td>
<td>96.812M</td>
<td>0.87158</td>
<td>1043.2k</td>
</tr>
<tr>
<td></td>
<td>-0.0187</td>
<td>6.0262</td>
<td>7.9859</td>
<td>-0.0597</td>
<td>6.0184</td>
</tr>
<tr>
<td>Shell Fermion</td>
<td>(1)</td>
<td>4.6645</td>
<td>7.0061</td>
<td>7.9859</td>
<td>4.6492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46.182k</td>
<td>10.141M</td>
<td>96.812M</td>
<td>44.583k</td>
</tr>
<tr>
<td>Dimension</td>
<td></td>
<td>10.001D</td>
<td>11.001D</td>
<td>12.002D</td>
<td>10.001D</td>
</tr>
<tr>
<td>n Neutrino</td>
<td>4, 6(c)</td>
<td>0.9909</td>
<td>6.1523</td>
<td>1168.2</td>
<td>0.9110</td>
</tr>
<tr>
<td>ns Neutrino</td>
<td>(2)</td>
<td>52.803</td>
<td>131.57</td>
<td>1813.0</td>
<td>50.630</td>
</tr>
<tr>
<td>Inside Boson</td>
<td></td>
<td>1.7227</td>
<td>2.1192</td>
<td>3.2584</td>
<td>1.7044</td>
</tr>
<tr>
<td>Quarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4385M</td>
<td>133.2M</td>
<td>175.52G</td>
<td>2.2572M</td>
</tr>
</tbody>
</table>

1. \(a\gamma_f = (a_{\uparrow} + a_{\downarrow} + a_{\uparrow\downarrow})/3 \)
2. \(\beta\gamma_f = (\beta_{\uparrow} + \gamma_{\uparrow})/2 \)
3. \(\gamma_f = \gamma_{\uparrow}/1 \)
4. \(m_{n_{\text{ns}}} = (1 + 2\pi)^2 \cdot \sqrt{m_{n_{\text{ns}}}} \)
5. \(m_{n_{\text{ns}}} = (1 + 2\pi)^2 \cdot \sqrt{m_{n_{\text{ns}}}} \)
6. \(m_{n_{\text{ns}}} = (1 + 2\pi)^2 \cdot \sqrt{m_{n_{\text{ns}}}} \)

Table 5 Mass calculation of Down, Strange, Bottom

<table>
<thead>
<tr>
<th>Term</th>
<th>Fig.</th>
<th>Kinetic State</th>
<th>Steady State</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>FERMION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimension</td>
<td>4D</td>
<td>5D</td>
<td>6.001D</td>
<td>4D</td>
<td>5D</td>
</tr>
<tr>
<td>Shell</td>
<td>4, 6(e)</td>
<td>5.7465</td>
<td>6.6889</td>
<td>7.1877</td>
<td>5.7415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>557.80k</td>
<td>4.8851M</td>
<td>15.408M</td>
<td>551.41k</td>
</tr>
<tr>
<td>BOSON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimension</td>
<td>10.001D</td>
<td>11.001D</td>
<td>12.002D</td>
<td>10.001D</td>
<td>11.001D</td>
</tr>
<tr>
<td>n</td>
<td>4, 8(b)</td>
<td>292.0k</td>
<td>452.2k</td>
<td>1.588M</td>
<td>289.2k</td>
</tr>
<tr>
<td>ns</td>
<td>(1)</td>
<td>28.66k</td>
<td>35.67k</td>
<td>66.85k</td>
<td>28.53k</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4573</td>
<td>4.5523</td>
<td>4.8251</td>
<td>4.4553</td>
</tr>
<tr>
<td>g</td>
<td>5, 9(d)</td>
<td>1.995E-09</td>
<td>1.510E-08</td>
<td>5.059E-06</td>
<td>2.107E-9</td>
</tr>
<tr>
<td>gt</td>
<td>(1)</td>
<td>2.369E-03</td>
<td>6.517E-03</td>
<td>1.193E-01</td>
<td>2.435E-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.6254</td>
<td>-2.1859</td>
<td>-0.9233</td>
<td>-2.6136</td>
</tr>
<tr>
<td>Inside</td>
<td>(ns+gt)/2</td>
<td>0.9160</td>
<td>1.1832</td>
<td>1.9509</td>
<td>0.9209</td>
</tr>
<tr>
<td>Dark</td>
<td>16(a)</td>
<td>0.0065</td>
<td>0.0395</td>
<td>0.3841</td>
<td>0.0065</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>0.0129</td>
<td>0.0919</td>
<td>0.4761</td>
<td>0.0129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9289</td>
<td>1.2751</td>
<td>2.4270</td>
<td>0.9338</td>
</tr>
<tr>
<td>Force</td>
<td></td>
<td>w8.490</td>
<td>z18.84</td>
<td>h267.3</td>
<td>w8.586</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>4.7355M</td>
<td>92.045M</td>
<td>4.1185G</td>
<td>4.7342M</td>
</tr>
</tbody>
</table>

1. \(m_{n_{\text{ns}}} = (1 + 2\pi)^2 \cdot \sqrt{m_{n_{\text{ns}}}} \)
2. \(\xi_{10} = \xi_{6} \cdot 2 \)
3. \(\xi_{11} = \xi_{6} \cdot 2 + \xi_{5} \cdot 2 \)
4. \(\xi_{12} = \xi_{6} \cdot 2 + \xi_{5} \cdot 2 + \xi_{4} \cdot 1 \)

* [KK] 4.7355M [KC] 5.7465 Fig. 4(e) + w0.9338 = 6.6802 → 4.7890M
* [SC] 4.7342M [CC] 5.7433 Fig. 8(e) + w0.9338 = 6.6771 → 4.7545M
5.6 Three generation dark forces

See Fig. 16. ξ_6 is 0.00645, ξ_W is 0.38414 = $\xi_4 + \xi_5 + \xi_6$, and $\xi_W + \xi_5$ is 0.46963. Therefore, ξ_4, ξ_5, ξ_6 is 0.38414, 0.03952, 0.00645. Therefore, ξ_W and ξ_5 are influencing the masses of weak, electromagnetic, and strong force particles.

5.7 Electron, Muon, Tau

See Fig. 2. Electron mass is 510.999 keV = $(7.27258 \text{ keV} \cdot 1.54884 \text{ MeV} \cdot 15.4082 \text{ MeV})^{1/3} x (1.64348 \text{ meV} \cdot 4.05657 \text{ eV} \cdot 115.316 \text{ eV})^{1/3}$. Muon mass is 105.658 MeV = $(1.54884 \text{ MeV} \cdot 15.4082 \text{ MeV})^{1/2} x (4.05657 \text{ eV} \cdot 115.316 \text{ eV})^{1/2}$. Tau mass is 1176.82 MeV = $(15.4082 \text{ MeV})^{1/1} x (115.316 \text{ eV})^{1/1}$.

5.8 Muon g-2 2.0023318

In Table 3, the value of muon g-2 is 2.0023318. In Fig. 10, the ratio of B/g^2 is 125.10 (=250.49 / 2.0023318). Currently, the average measured H boson is 125.25 GeV.

5.9 Muon g-2 problem

In Table 3, the standard model calculation of g-factor is ...3604 or ...3620, and the measured value is ...4122. In Fig. 2, the mass of muon 105.658 MeV is the product of neutrinos 4.88517 MeV and gravinos 21.6284 eV. The ratio of the above two is 0.00000 4427. Therefore, the g-factor is calculated as ...4120 or ...4136. In Fig. 2, electron and gluon in muon affect the magnetic field as 0.0004427%. The same logic occurs at electron and tau.

5.10 W Z H bosons

W and H boson masses are easily calculated in Fig. 10.

Table 6 Calculation of proton mass 938.272 MeV

<table>
<thead>
<tr>
<th>Particle Term</th>
<th>Symbol</th>
<th>Case</th>
<th>1) eV</th>
<th>2) Log</th>
<th>3) $\Sigma/4$</th>
<th>4) $\Sigma/4$</th>
<th>5) $\Sigma/4$</th>
<th>6) $\Sigma/4$</th>
<th>7) $\Sigma/4$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.F.</td>
<td>γ_{mg}</td>
<td>42.15k</td>
<td>4.6248</td>
<td>4.6248</td>
<td>4.6248</td>
<td>4.6248</td>
<td>4.6248</td>
<td>4.6248</td>
<td>4.6248</td>
<td>Table 2</td>
</tr>
<tr>
<td>Avg.</td>
<td>$\Sigma/4$</td>
<td>6.0015</td>
<td>6.0015</td>
<td>6.0015</td>
<td>avg. 6.0186</td>
<td>6.0190</td>
<td>6.0190</td>
<td>6.0190</td>
<td>6.0190</td>
<td>Table 4</td>
</tr>
<tr>
<td>S.D.F.</td>
<td>ξ_e</td>
<td>log</td>
<td>-</td>
<td>-</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0065</td>
<td>Fig. 16(b)</td>
</tr>
<tr>
<td>E.F.</td>
<td>β_{mg}</td>
<td>828.1</td>
<td>2.9181</td>
<td>2.9181</td>
<td>2.9181</td>
<td>2.9181</td>
<td>2.9181</td>
<td>2.9181</td>
<td>2.9181</td>
<td>Table 2</td>
</tr>
<tr>
<td>E.D.F.</td>
<td>ξ_e</td>
<td>log</td>
<td>-</td>
<td>0.0460</td>
<td>0.0460</td>
<td>0.0460</td>
<td>0.0460</td>
<td>0.0460</td>
<td>0.0460</td>
<td>Fig. 16(b)</td>
</tr>
<tr>
<td>Sum</td>
<td>Σ</td>
<td>8.9196</td>
<td>8.9655</td>
<td>8.9720</td>
<td>8.9723</td>
<td>8.9891</td>
<td>8.9896</td>
<td>8.9904</td>
<td>8.9904</td>
<td>Table 4</td>
</tr>
<tr>
<td>Proton Mass</td>
<td>MeV</td>
<td>830.939</td>
<td>923.718</td>
<td>937.550</td>
<td>938.272</td>
<td>975.223</td>
<td>976.265</td>
<td>978.032</td>
<td>978.032</td>
<td>Table 4</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>88.56%</td>
<td>98.45%</td>
<td>99.92%</td>
<td>SS.SC</td>
<td>KK.SC</td>
<td>KK.CC</td>
<td>KK.KC</td>
<td>Table 4</td>
<td></td>
</tr>
</tbody>
</table>
5.13 Proton mass

The shape of proton is drawn in Fig. 21, and the mass of proton is calculated in Table 6. In Case 1), if up quark and down quark masses are 2.25 MeV and 4.75 MeV, the mass is calculated as 88.56% of 938.272 MeV. In Case 2), adding electromagnetic dark force 0.0460, its mass is calculated as 98.45%. In Case 3), adding strong dark force 0.0065, its mass is calculated to be 99.92%. Therefore, it can be understood that the proton mass calculation formula is Case 4). In Table 4, the mass of up quark is calculated as 2.2572 MeV (6.3536), so for the mass of proton as 938.272 MeV, down quark is calculated as 4.7342 MeV (6.6752). Such as Case 5-7), the mass of quarks changes according to the state as shown in Tables 3 and 4. The front of the symbol is the state of up quark, and the back of the symbol is the state of down quark.

5.14 Proton radius puzzle

As shown in Fig. 22(a), hydrogen radius is 52.918 pm, weak force is 1.019393×10^{-6}, and electromagnetic force is 8.7506×10^{-6}. From the equation, one proton radius and one quark radius are calculated as 0.47506 fm and 0.4401 am. Extending this logic, the acting radius of gravity is calculated as 12.70 BY. This is steady state radius. The mass of quarks in muonic hydrogen is changed. Substituting 975.223 MeV calculated in Table 6, 0.84190 fm and 0.4229 am is calculated, and substituting 976.265 MeV, it is calculated as 0.8410 fm and 0.4229. Since the measured radius is 0.8409±0.0004 fm, the mass of proton in muonic hydrogen is considered as 976.265 MeV.

5.15 Neutron mass

Neutron is composed of one proton, one electron, and one brane, and its shape is shown in Fig. 23. In Table 7, the mass of neutron is calculated. The mass of neutron A and proton B is measurements. K means kinetic state, and S means steady state. ① is the electron’s neutrino mass C, ② is the electron’s gravino mass D, and the product of the two is the electron’s mass E. Therefore, the mass F of the brane must be A – B – E. ③ is the neutrino mass G H I, ④ is the gravino mass J K L, and their average is M, so the brane mass is calculated as N. The electron’s graviton must go into 4D empty space. However, since the brane is a shell, the weak dark force O of electron’s graviton affects the brane by 0.4301. Therefore, the mass of the brane is calculated as P. In Table 2, the error of 438 eV (0.06%) of KS.SK was calculated as the smallest. In addition, SK.KS error was calculated as 2.17% and SK.SK error was calculated as 1.55%.

5.16 Negative beta decay

The graviton of electron continues to push the brane to fall into 4D empty space. This causes the brane to collapse.

5.17 Origin of life

The neutral brane is separated into electron and anti-electron of quantum entanglement. This is the origin of life. The electron constitutes the body of the living organism, and the anti-electron constitutes the information of the living organism. The electrons are moved by the command of the anti-electrons.

5.18 Anti-proton mass

The shape of antiproton is shown in Fig. 24. The difference with the proton in Fig. 21 is that the shell is a blue anti-electromagnetic force. Since antiparticle is 2π times heavier than...
particle, the mass of anti-electromagnetic force in Table 3 is calculated by Eq. (1). The mass of antiproton was calculated as 5.895 GeV. The minimum energy required to generate antiproton is 5.6 GeV, and antiproton was found as 6.2 GeV in the collision between proton and copper plate. The log average of above two values is 5.892 GeV.

5.19 Kaon \(K \) mass

In the proton in Fig. 21, the green strong force is holding the two blue up quarks and repelling the red down quark. So, when a proton collides, the red down quark is thrown away. Its shape is Kaon \(K^0 \) in Fig. 24. Due to this, the mass of the strong force changes as shown in Eq. (2) in Table 8, and the electromagnetic dark force \(A \) disappears. Its mass is calculated as 496.81 MeV, and the measured value is 497.61 MeV. The kinetic state electromagnetic force mass 2.9181 of \(K^0 \) is immediately changed to the steady state electromagnetic force mass 2.9155. This is \(K^\pm \); its mass is calculated as 493.80 MeV, and the measured value is 493.68 MeV.

The calculation should be accurate to within 0.02%. It is judged that there is an error in something.

5.20 Pion \(\pi \) mass

The strong force of \(K^\pm \) becomes very unstable, and its mass is calculated by Eq. (3). The mass of pion \(\pi^\pm \) is calculated as 139.57 MeV, and the measured value is 139.57 MeV. The mass of \(\pi^0 \) is calculated as 135.03 MeV, and the measured value is 134.97 MeV.

5.21 Delta \(\Delta \) mass

It is a delta particle made up of three down quarks. Its mass is calculated as 1232.9 MeV, and the measured value is 1232 MeV.

5.22 Various Hadron Particle Masses

<table>
<thead>
<tr>
<th>Table 7 Calculation of neutron mass. ①②③④ [K]inetic [S]teady</th>
<th>Term</th>
<th>KK.KK</th>
<th>SS.SS</th>
<th>KS.KS</th>
<th>KS.SK</th>
<th>Equation</th>
<th>Fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron</td>
<td>939,565,421 eV</td>
<td>A</td>
<td>Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton</td>
<td>938,272,088 eV</td>
<td>B</td>
<td>Measured</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a\gamma_{46})</td>
<td>557,797</td>
<td>5.7465</td>
<td>551,415</td>
<td>5.7415</td>
<td>557,797</td>
<td>5.7465</td>
<td>C</td>
</tr>
<tr>
<td>(a\gamma_{46})</td>
<td>0.91610</td>
<td>-0.0381</td>
<td>0.92670</td>
<td>-0.0331</td>
<td>0.92670</td>
<td>-0.0331</td>
<td>D</td>
</tr>
<tr>
<td>Electron</td>
<td>510,999</td>
<td>5.7084</td>
<td>510,999</td>
<td>5.7084</td>
<td>516,913</td>
<td>5.7134</td>
<td>516,913</td>
</tr>
<tr>
<td>What?</td>
<td>782,333</td>
<td>782,333</td>
<td>776,420</td>
<td>776,420</td>
<td>F=A-B-E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_{46})</td>
<td>13,529,171</td>
<td>7.1313</td>
<td>13,610,092</td>
<td>7.1339</td>
<td>13,529,171</td>
<td>7.1313</td>
<td>13,610,092</td>
</tr>
<tr>
<td>(\beta_{46})</td>
<td>14,925,215</td>
<td>7.1739</td>
<td>15,022,566</td>
<td>7.1767</td>
<td>14,925,215</td>
<td>7.1739</td>
<td>15,022,566</td>
</tr>
<tr>
<td>(\gamma_{46})</td>
<td>15,408,031</td>
<td>7.1877</td>
<td>15,511,237</td>
<td>7.1906</td>
<td>15,408,031</td>
<td>7.1877</td>
<td>15,511,237</td>
</tr>
<tr>
<td>(\alpha_{46})</td>
<td>95.41</td>
<td>1.9796</td>
<td>94.85</td>
<td>1.9770</td>
<td>94.85</td>
<td>1.9770</td>
<td>95.41</td>
</tr>
<tr>
<td>(\beta_{46})</td>
<td>110.0</td>
<td>2.0417</td>
<td>109.38</td>
<td>2.0389</td>
<td>109.38</td>
<td>2.0389</td>
<td>110.0</td>
</tr>
<tr>
<td>(\gamma_{46})</td>
<td>115.32</td>
<td>2.0619</td>
<td>114.55</td>
<td>2.0590</td>
<td>114.55</td>
<td>2.0590</td>
<td>115.32</td>
</tr>
<tr>
<td>(a\gamma_{46})</td>
<td>39,449</td>
<td>4.5960</td>
<td>39,449</td>
<td>4.5960</td>
<td>39,323</td>
<td>4.5946</td>
<td>39,575</td>
</tr>
<tr>
<td>(a\gamma_{46})</td>
<td>287,312</td>
<td>5.4584</td>
<td>287,312</td>
<td>5.4584</td>
<td>286,397</td>
<td>5.4570</td>
<td>288,230</td>
</tr>
<tr>
<td>(\xi_{46})</td>
<td>0.4301</td>
<td>0.4301</td>
<td>0.4301</td>
<td>0.4301</td>
<td>0.4301</td>
<td>O</td>
<td>o 16(b)</td>
</tr>
<tr>
<td>Brane</td>
<td>773,510</td>
<td>5.8885</td>
<td>773,510</td>
<td>5.8885</td>
<td>771,046</td>
<td>5.8871</td>
<td>775,982</td>
</tr>
<tr>
<td>Error</td>
<td>8,823</td>
<td>1.13%</td>
<td>8,823</td>
<td>1.13%</td>
<td>5,373</td>
<td>0.69%</td>
<td>438</td>
</tr>
</tbody>
</table>
Table 8 Mass calculation of antiprotons, kaon, and pion.

<table>
<thead>
<tr>
<th>Term</th>
<th>Antiproton</th>
<th>Kaon K⁰</th>
<th>Kaon K¹</th>
<th>Pion π⁺</th>
<th>Pion π⁰</th>
<th>Delta Δ</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quark 1</td>
<td>u 6.3536</td>
<td>u 6.3536</td>
<td>u 6.3536</td>
<td>u 6.3536</td>
<td>u 6.3536</td>
<td>D 6.6752</td>
<td>Table 4</td>
</tr>
<tr>
<td>Quark 2</td>
<td>u 6.3536</td>
<td>u 6.3536</td>
<td>u 6.3536</td>
<td>u 6.3536</td>
<td>u 6.3536</td>
<td>D 6.6752</td>
<td>Table 4</td>
</tr>
<tr>
<td>Quark 3</td>
<td>D 6.6752</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>6.0018</td>
<td>5.7716</td>
<td>5.7716</td>
<td>5.2219</td>
<td>5.2075</td>
<td>6.1584</td>
<td></td>
</tr>
<tr>
<td>ξ_α</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0065</td>
<td></td>
</tr>
<tr>
<td>ξ_β</td>
<td>0.0460</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>MeV</td>
<td>5.895</td>
<td>496.81</td>
<td>493.80</td>
<td>139.57</td>
<td>135.03</td>
<td>1232.9</td>
<td></td>
</tr>
<tr>
<td>Measured</td>
<td>5.66.2</td>
<td>497.61</td>
<td>493.68</td>
<td>139.57</td>
<td>134.97</td>
<td>1232.0</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.05%</td>
<td>-0.16%</td>
<td>+0.03%</td>
<td>+0.00%</td>
<td>+0.04%</td>
<td>+0.07%</td>
<td></td>
</tr>
</tbody>
</table>

(1) $2.9181 + \log (2\pi) = 3.7163$
(2) $[\text{Fig. 4(e)} 7.1877 + \text{Fig. 5(e)} (2.0619 + 2.0417 + 1.9796) / 3] / 2 = 4.6077$
(3) $[\text{Fig. 4(e)} 5.2720 + \text{Fig. 5(e)} (2.0619 - 0.7295 + 2.0619 - 0.8136) / 4] / 2 = 2.9586$
(4) Kinetic 2.9161 x 37.144% + Steady 2.9155 x 62.856% = Combined 2.9164
(5) $[\text{Fig. 6(e)} 5.2202 + \text{Fig. 7(e)} (1.9752 + 0.7856 + 2.0389 + 0.7856) / 4] / 2 = 2.9155$
(6) $\frac{\text{Fig. 4(e)} 5.2280 + \text{Fig. 5(e)} [1.9796 + 0.7313]}{2} = 2.9261$
Fig. 25 Six-dimensional Planck Unit
<table>
<thead>
<tr>
<th>Case</th>
<th>Unit</th>
<th>Physics 1</th>
<th>2)</th>
<th>3)</th>
<th>4)</th>
<th>5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔD</td>
<td>-0.00044</td>
<td>0.0010734</td>
<td>0.00243</td>
<td>-0.00134</td>
<td>0.00046</td>
<td></td>
</tr>
<tr>
<td>4D</td>
<td>4.00000</td>
<td>4.00000000</td>
<td>4.00000</td>
<td>3.99866</td>
<td>4.00046</td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>5.00000</td>
<td>5.00000000</td>
<td>5.00243</td>
<td>5.00000</td>
<td>5.00046</td>
<td></td>
</tr>
<tr>
<td>6D</td>
<td>6.00000</td>
<td>6.0010734</td>
<td>6.00243</td>
<td>6.00000</td>
<td>6.00046</td>
<td></td>
</tr>
<tr>
<td>p left</td>
<td>5.99956</td>
<td>6.0010734</td>
<td>6.00243</td>
<td>6.00000</td>
<td>6.00000</td>
<td></td>
</tr>
<tr>
<td>11D</td>
<td>11.00000</td>
<td>11.0010734</td>
<td>11.00243</td>
<td>11.00046</td>
<td>11.00046</td>
<td></td>
</tr>
</tbody>
</table>

Kinetic n4 eV 0.12(0.15) 0.14311 0.15244(0.120) 0.13606 0.13608 0.14456

Kinetic n5 keV 0.16895 0.16090 0.16738 0.17128 0.16752

Kinetic n6 MeV 2.823E-10 2.754E-10 2.742E-10 2.803E-10 2.814E-10

Steady n4 eV -0.13425 0.13872 0.13676 0.13457 0.13466

Weak Force ≈1E-6 1.0085E-06 1.0109E-6 9.8633E-07 9.9396E-07

Proton Radius fm 0.8751,0.8409 0.8730,0.8691 0.8751,0.8410 0.8538,0.8575 0.8604,0.8758

Quark Radius am < 0.43 0.4390,0.4371 0.4401,0.4229 0.4294,0.4312 0.4327,0.4404 0.4394,0.4340

Hubble C. km/s/Mpc 67.66, ≈73 44.475 70.942 56.314 49.817 45.319

K0, K+ MeV | 497.61,493.68 | 492.68,488.98 | 496.81,493.80 | 493.98,493.98 | 492.51,490.48 | 492.96,489.41

π+ MeV | 139.57,134.98 | 138.46,133.90 | 139.57,135.03 | 139.60,135.33 | 138.73,134.30 | 138.58,134.02

- 25 -
Fig. 27 Comparison with the measured values of physics
Fig. 27 Comparison with the measured values of physics
From the collision of protons in the particle accelerator, various hadron particles are assembled. However, the combination is very unstable, and as can be seen in Table 7, the masses of the particles change depending on the situation. When the shapes of various hadron particles are accurately shown as shown in Fig. 24, the masses of each particle will be calculated as shown in Table 8.

5.23 Cosmological constant problem

The present universe is the mixture of kinetic state 37.144% and steady state 62.856%. The mass of the neutrino in the combined state is calculated in Fig. 8(a). The value of \(\nu_0 / \nu_3 = 7.0385 \times 10^{-134} / 2.3991 \times 10^{-12} = 1 \times 10^{-121.5326} \). The cosmological constant problem is \(l_p^2 \cdot \Lambda = 1.61626 \times 35 \times 1.1056 = 121.5394 \). Therefore, the Planck length of the mixture with

\[1.64865 \times 10^{-35} = 1.61626 \times 10^{-35} x \text{Fig. 22} \]

The kinetic state Planck length would be

\[\text{37.144\% and 62.856\% is combined state is calculated in Fig. 8(a).} \]

The mass of the neutrino in the steady state 62.856%. The mass of the neutrino in the

\[1 / c^6 \text{ is calculated as shown in Table 8.} \]

5.24 Planck length \(l_p \)

Planck length is 1.61626E-35 m. This is considered the steady state length. The kinetic state Planck length would be \(1.64865E-35 = 1.61626E-35 x \text{Fig. 22} \). Therefore, the Planck length of the mixture with

\[37.144\% and 62.856\% is \text{ calculated as } 1.62829 \times 35. \]

5.25 Cosmological constant \(\Lambda \)

The \(l_p^2 \cdot \Lambda = 121.5394 \). Therefore, the \(\Lambda \) is calculated as 1.61626E-52.

5.26 Cosmological constant time

The value of \(1 / c^6 \) is 10.050 BY = 1 / (2.9979E8 \times 60 \times 60 \times 24 \times 365.2422 \times \sqrt{\Lambda}).

5.27 Current Time

10.050 BY / 72.916% is 13.783 BY. If the Planck length is 1.61626E-35m, the current time is calculated as 13.681 BY.

5.28 Hubble constant \(H \)

977.813 / 13.783 is 70.942 km/s/Mpc.

5.29 Dimensional constant \(\Phi \)

Since \(\nu_0 / \nu_3 = l_p^2 \cdot \Lambda_3 \) has been proven, \(\nu_M / \nu_N = l_p^2 \cdot \Lambda_N \) according to the dimension is established. The value of \(\Phi = \nu_M / l_p^2 = \nu_N / \Lambda_N \) is calculated as 2.6536E-64 eV/m2.

5.30 Six-Dimensional Planck Unit

Therefore, \(\Lambda_N = \Phi / \nu_N \cdot l_p^2 = \sqrt{\nu_N / \Phi} \). These are six-dimensional Planck unit, and their values are calculated in Fig. 25.

5.31 Calculation flow

Fig. 26 shows the flow diagram for the overall calculation. A total of 14 input variables are needed to solve the calculation. Here, The \(11 \) \(12 \) \(13 \) \(14 \) is automatically calculated from the elliptic equation. The \(15 = 1 + 2 \cdot 7 \) and \(16 = 2 + 4 \cdot 8 \) are established. This means that as shown in Table 1, the kinetic state mass of electron muon tau is the same as the steady-state mass. The 7 and 8 are calculated from that B/H 2.0030 and Hu 133.23 GeV in Fig. 10 are the same as E and Bu in Fig. 13. Therefore, the input independent variables are six numbers. The calculation results are shown in Fig. 26. If six blue values are given, the calculation becomes very easy. But we don't know exactly the values. Therefore, from the six red values measured accurately, six blue values must be calculated inversely through numerical analysis.

6. Dimension 6.00107

6.1 Dimension 6.00000

The elliptic equation requires four conditions. Here the ellipse has a vertex at 0D. And in Table 1, the measured masses of electron and muon are given. The mass of tau is a calculated value and forms the vertex of the ellipse. Therefore, given the four conditions, the ellipse is drawn and its dimensions are calculated. If the calculation is performed with 6.00000D, the tau mass is calculated as 1771.71 MeV. This has an error of 0.29% from the measured value of 1776.68 ± 0.12 MeV.

6.2 Calculation according to dimension change

However, why 4D, 5D, 6.00107D? It may be 4.00XXD, 5D, 6D, or 4.00XXX, 5.00XXX, 6D, and so on. That is, combinations of various dimensions occur. In Table 9, the result values according to the change of dimension are presented. There are various combinations, but about 5 representatives are presented. ΔD is the calculated offset dimension value. p left means the midpoint of the left ellipse, and p right means the midpoint of the right ellipse. 4D to 12D are the input values of dimensional combination.

6.3 Correct answer 6.00107D

In Table 9, the minimum error is Case 2) of 4D, 5D, and 6.00107D. This is determined at the cosmological constant (Hubble constant, current time). In Fig. 27, the comparison between the measured values of physics and the calculated values is shown.

6.4 What does 6.00107D mean?

From 6.00107D, the shape of universe can be inferred. Six-dimensional space exists, and a strange phenomenon occurred in 6D as much as 0.00107D. Since this value is not
a special number, it changes according to time flow. However, since 6D space changes are nearly infinitely slower than our 3D space, it can be treated as a constant.

6.5 Our universe

As shown in Fig. 28(e), the space of our universe consists of three quantum spaces and three linear spaces. Our universe (e) changes from (d) to (f). This is the reason of the law of increasing entropy.

6.6 Dimensional multi-universe

Fig. 28 is dimensional multi-universe. (b) is one. (c) are born a few. (d) are born a lot. (e) are born very much. Therefore, (h) can be said to be an almost infinite number. The universe of (f) is spread out in the supermassive black hole at the center of galaxy.

6.7 Origin universe

Our universe (e) begins at (d) and ends at (f). However, in whole Fig. 28, since this rotates, there is no beginning and no ending. Here, (b) is the maximum universe and (h) is the minimum universe. The Planck unit system is the universe (h). Our universe is (e). The cosmological constant problem is the difference between (e) and (h). The beginning of the origin universe does not exist, but it can be called (b).

6.8 Super origin universe

The origin universe (b) is not 6D but 6.00107D. This means that something outside of (b) is affecting as much as 0.00107D. (a) is a super origin universe. To the beginning and ending of that do not exist, it must be a sphere such as (a). One of hexagons in (a) is (b). Let’s assume that a super origin universe occurred. Universes of unknown dimensions compete for power with each other. As time passes, all become six-dimensional universe that is fair to all. If everything turned into perfect 6D universes, then everything will no longer change. However, if (a) is a super-sphere, a five-dimensional universe must exist. It forever changes the super origin universe. Therefore, it can be understood that the universe of exactly 6D cannot exist.

6.9 Origin of particles

The outer shell of super-sphere (a) is fermion brane, and the inner particle is boson brane. They are unique brane in (b). 6D particles are born in (c), 5D particles are born in (d), and 4D particles are born in (e). This is the origin of particles. After 1.89E111 LY / 2 passes, the outside brane and the inside brane are turned into inside and outside. This is represented by thin color arrows. Fig. 28 is connected to the logarithmic ellipse of Fig. 4(a).

7. Universe change according to time flow

7.1 Total of 6 input variables

As explained in Fig. 2 and Fig. 26, if only 6 input variables are given, our universe is analyzed.

7.2 Time flow — Change of dark force

In Fig. 18, the current dark force \(\xi \) is 2.6922 = 10.050 / (13.783 - 10.050). Therefore, the dark force according to time flow is 10.050 / (time - 10.050). When time is near 10.050 BY, the dark force becomes infinity. It is an incomprehensible phenomenon.

7.3 Five absolute constants

Five absolute constants are required to perform calculations according to time flow. The cosmological constant is absolute constant. It is clear that the cosmological constant is absolute constant. However, it is included as 10.050 BY in the time variable. There are various combinations of five absolute constants. In this paper, \(\Delta D 0.00107 \), photon kg5 0.16090 eV of kinetic state, gluon kg6 115.32 eV of kinetic state, muon neutrino sn5 166.03 keV, and tau neutrino sn6 15.511 MeV were calculated as five constants.

7.4 Changes according to time flow

The changes of the universe are shown in Fig. 29. Its characteristics are that the values towards \(-\infty\) at 10.050 BY and the neutrino masses are reversed at 18.40 BY in (a). At 13.78 BY in (a), the masses of kinetic state and steady state are almost identical. However, it is completely different at other times. It may be wrong. In (h), it is found that the calculated Planck length is wrong. Therefore, Fig. 29 is judged to be incorrect. What are the five absolute constants that do not change according to time flow? Various combinations were
tried, but none of them yielded valid results.

7.5 Negative absolute temperature

In any combination, because of the dark force ξw formula, all values are directed towards $\rightarrow -\infty$ at 10.050 BY. Is this a possible phenomenon? Absolute temperature is 0K. It has been experimentally proven that there is negative absolute temperature, which is expressed as $T/K: +0 \rightarrow +\infty \rightarrow -\infty \rightarrow -0$. The above phenomenon is thought to occur at the cosmic age of 10.048 BY.

7.6 Birth of life

10.050 BY is 3.73 billion years ago. First fossils of life on Earth were proven 3.5 billion years ago, and fossils of life have been discovered 3.7 billion years ago. Is this a coincidence? Is it inevitable?

7.7 Reversal of neutrino masses

At 18.40 BY in (a), a reversal of the neutrino masses occurs. This is a phenomenon that the downward ellipse is compressed and suddenly upward. This may be a phenomenon that the neutral ns ellipse is separated into monopole n ellipse and monopole s ellipse when 18.40 BY.

7.8 What are the five absolute constants?

The results in Fig. 29 are clearly wrong. Five absolute constants are required. The cosmological constant problem is an absolute constant. The value is the neutrino mass ratio of 0D and 3D in Fig. 8(a). From the above idea, in Fig. 9(a), the
gravino mass ratio of 0D and 3D can be an absolute constant. Weak force coupling constant and electromagnetic force coupling constant will be absolute constants. The above values are ratio. One absolute mass is needed to solve the problem. It is assumed that Z boson is an absolute mass.

8. Check List

8.1 Dimension 6.00107D
What is the origin of the misaligned dimension 0.00107D?

8.2 $m_s = 2\pi \cdot m_n$
As calculated in Table 4, antiparticle mass m_s is 2π times

8.3 $m_{ns} = (1 + 2\pi) \cdot \sqrt{m_n}$, at boson
As calculated in Table 4, the particle & antiparticle combining mass of fermion is $m_{ns} = (1+2\pi) \cdot m_n$. However, the particle & antiparticle combining mass of boson is the above formula. Why?

8.4 $Z / H = 72.916\%$
As calculated in Fig.10, Z / H is 72.916%. This is dark energy ratio 72.916%. B / H is 2.0028, which is equivalent to g-2 factor of 2.0023. Why?

8.5 $W Z H$ and combined state neutrinos
Fig. 10 is the relationship between W Z H, and Fig. 13 is the relationship of combined state neutrinos. 2.0030 eV and 133.23 GeV are equal. Why?

8.6 State of Electron Muon Tau
As calculated in Table 1, the mass in kinetic state of electron, muon, and tau is equal to steady state mass. Why?

8.7 Dark forces inside quarks
In Table 5, the dark forces of Eq. (2) are established. The 2 can be understood that n particle and s particle are separated from each other, and the 1 can be understood that n particle and s particle are combined. Is the formula correct?

8.8 w z h and Z Boson
In Fig. 11, the w z h particles inside quark are connected with Z boson. Why?

8.9 Mixed Planck Length
It is judged that Planck unit also has kinetic state and steady state values. In Fig. 25, a combined Planck length is proposed. Is the formula correct?

8.10 Calculation error 0.1%
The overall calculation error in this document is about 0.1%. Why does that error occur? Although the accuracy of the gravitational binding constant and the Z boson mass was slightly lower, the effect on the calculation results was insignificant. It is considered that there are cases where 0.00107 should be applied and there are cases where it should not.

8.11 Five Absolute Constants
As described in Chapter 7, there must be five absolute constants that never change, even if the universe changes with time. What is that constant?

9. Conclusions
The language of physics should be drawing. After the drawing for phenomenon is shown correctly, mathematical formulas suitable for the drawing must be derived. The representative drawing example is standard model. The combination of quantum masses is multiplication, not addition. There is no quantum mechanics theory that can calculate the elementary school arithmetic. The key word in this paper is ellipse. From the hint of ellipse, any person can discover the results of this paper.

References