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Abstract

This monograph presents the last version (4.) of the proofs of 4 important conjectures in
the field of the number theory, namely:
- Beal’s conjecture.
- The Riemann Hypothesis.
- The c < R1.63 conjecture is true.
- The abc conjecture is true.

We give the details of the different proofs.

Résumé

Cette monographie présente la dernière version (4.) des preuves des 4 conjectures impor-
tantes dans le domaine de la théorie des nombres à savoir:
- La conjecture de Beal.
- L’Hypothèse de Riemann.
- La conjecture c < R1.63 est vraie.
- La conjecture abc est vraie.

Nous donnons les détails des différentes démonstrations.
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Preface

This booklet is the fruit of ten years on working on four important conjectures in number
theory:
- Beal’s conjecture.
- The Riemann Hypothesis.
- The c < R1.63 conjecture is true.
- The abc conjecture is true.

It is an update of the last edition (December 2022) with many modifications added. I
had used elementary mathematics that can be understood by graduate and undergraduate
students. All the conjectures are under review by mathematical journals.

Tunis, Abdelmajid
July 2024 Ben Hadj Salem, Dipl.-Ing.

Ingénieur Général Géographe
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Chapter 1

A Complete Proof of Beal’s Conjecture

Abstract

In 1997, Andrew Beal announced the following conjecture: Let A, B, C, m, n, and l be positive
integers with m, n, l > 2. If Am + Bn = Cl then A, B, and C have a common factor. We begin to
construct the polynomial P(x) = (x − Am)(x − Bn)(x +Cl) = x3 − px + q with p, q integers
depending of Am, Bn and Cl. We resolve x3 − px + q = 0 and we obtain the three roots
x1, x2, x3 as functions of p, q and a parameter θ. Since Am, Bn,−Cl are the only roots of
x3 − px + q = 0, we discuss the conditions that x1, x2, x3 are integers and have or not a
common factor. Three numerical examples are given.

Résumé

En 1997, Andrew Beal avait annoncé la conjecture suivante: Soient A, B, C, m, n, et l des
entiers positifs avec m, n, l > 2. Si Am + Bn = Cl alors A, B, et C ont un facteur commun.
Je commence par construire le polynôme P(x) = (x − Am)(x − Bn)(x + Cl) = x3 − px + q
avec p, q des entiers qui dépendent de Am, Bn et Cl. Nous résolvons x3 − px + q = 0 et
nous obtenons les trois racines x1, x2, x3 comme fonctions de p, q et d’un paramètre θ.
Comme Am, Bn,−Cl sont les seules racines de x3 − px + q = 0, nous discutons les
conditions pourque x1, x2, x3 soient des entiers. Trois exemples numériques sont présentés.
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1.1 Introduction

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 1.1.1. Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If:

Am + Bn = Cl (1.1.1)

then A, B, and C have a common factor.

The purpose of this paper is to give a complete proof of Beal’s conjecture. Our idea is
to construct a polynomial P(x) of order three having as roots Am, Bn and −Cl with the
condition (1.1.1). We obtain P(x) = x3 − px + q where p, q are depending of Am, Bn and Cl.
Then we express Am, Bn,−Cl the roots of P(x) = 0 in function of p and a parameter θ that

depends of the A, B, C. The calculations give that A2m =
4p
3

cos2 θ

3
. As A2m is an integer, it

follows that cos2 θ

3
must be written as

a
b

where a, b are two positive coprime integers. Beside
the trivial cases, there are two main hypothesis to study:
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Chapter 1 A Complete Proof of Beal’s Conjecture

- the first hypothesis is: 3 | a and b | 4p,
- the second hypothesis is: 3 | p and b | 4p.

We discuss the conditions of divisibility of p, a, b so that the expression of A2m is an
integer. Depending of each individual case, we obtain that A, B, C have or do have not a
common factor. Our proof of the conjecture contains many cases to study. there are many
cases where we use elementary number theory and some cases need more research to ob-
tain finally the solution. I think that my new idea detailed above overcomes the apparent
limitations of the methods I am using.

The paper is organized as follows. In section 1, it is an introduction of the paper. The
trivial case, where Am = Bn, is studied in section 2. The preliminaries needed for the proof
are given in section 3 where we consider the polynomial P(x) = (x − Am)(x − Bn)(x +
Cl) = x3 − px + q. The section 4 is the preamble of the proof of the main theorem. Section
5 treats the cases of the first hypothesis 3 | a and b | 4p. We study the cases of the second
hypothesis 3 | p and b | 4p in section 6. Finally, we present three numerical examples and
the conclusion in section 7.

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 1.1.2. Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If:

Am + Bn = Cl (1.1.2)

then A, B, and C have a common factor.

1.2 Trivial Case

We consider the trivial case when Am = Bn. The equation (1.1.2) becomes:

2Am = Cl (1.2.1)

then 2 | Cl =⇒ 2 | C =⇒ C = 2q.C1 with q ≥ 1, 2 ∤ C1 and 2Am = 2qlCl
1 =⇒ Am = 2ql−1Cl

1.
As l > 2, q ≥ 1, then 2 | Am =⇒ 2 | A =⇒ A = 2r A1 with r ≥ 1 and 2 ∤ A1. The equation
(1.2.1),becomes:

2 × 2rm Am
1 = 2qlCl

1 (1.2.2)

As 2 ∤ A1 and 2 ∤ C1, we obtain the first condition :

There exists two positive integers r, q with r.q ≥ 1 so that ql = mr + 1 (1.2.3)

Then from (1.2.2):
Am

1 = Cl
1 (1.2.4)

1.2.1 Case 1 A1 = 1 =⇒ C1 = 1

Using the condition (1.2.3) above, we obtain 2.(2r)m = (2q)l and the Beal conjecture is veri-
fied.
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Chapter 1 A Complete Proof of Beal’s Conjecture

1.2.2 Case 2 A1 > 1 =⇒ C1 > 1

From the fundamental theorem of the arithmetic, we can write:

A1 = aα1
1 . . . aαI

I , a1 < a2 < · · · < aI =⇒ Am
1 = amα1

1 . . . amαI
I (1.2.5)

C1 = cβ1
1 . . . cβ J

J , c1 < c2 < · · · < cJ =⇒ Cl
1 = clβ1

1 . . . clβ J
J (1.2.6)

where ai (respectively cj) are distinct positive prime numbers and αi (respectively β j) are
integers > 0.

From (1.2.4) and using the uniqueness of the factorization of Am
1 and Cl

1, we obtain neces-
sary: 

I = J

ai = ci, i = 1, 2, . . . , I

mαi = lβi

(1.2.7)

As one ai | Am =⇒ ai | Bm =⇒ ai | B and ai = ci =⇒ ai | Cl =⇒ ai | C, in this case, the Beal
conjecture is verified.

We suppose in the following that Am > Bn.

1.3 Preliminaries

Let m, n, l ∈ N∗ > 2 and A, B, C ∈ N∗ such:

Am + Bn = Cl (1.3.1)

We call:

P(x) = (x − Am)(x − Bn)(x + Cl) = x3 − x2(Am + Bn − Cl)

+x[AmBn − Cl(Am + Bn)] + Cl AmBn (1.3.2)

Using the equation (1.3.1), P(x) can be written as:

P(x) = x3 + x[AmBn − (Am + Bn)2] + AmBn(Am + Bn) (1.3.3)

We introduce the notations:

p = (Am + Bn)2 − AmBn = A2m + AmBn + B2n

q = AmBn(Am + Bn)

As Am ̸= Bn, we have p > (Am − Bn)2 > 0. Equation (1.3.3) becomes:

P(x) = x3 − px + q

Using the equation (1.3.2), P(x) = 0 has three different real roots : Am, Bn and −Cl.

Now, let us resolve the equation:

P(x) = x3 − px + q = 0 (1.3.4)

6



Chapter 1 A Complete Proof of Beal’s Conjecture

To resolve (1.3.4) let:
x = u + v

Then P(x) = 0 gives:

P(x) = P(u + v) = (u + v)3 − p(u + v) + q = 0 =⇒ u3 + v3 + (u + v)(3uv − p) + q = 0
(1.3.5)

To determine u and v, we obtain the conditions:

u3 + v3 = −q
uv = p/3 > 0

Then u3 and v3 are solutions of the second order equation:

X2 + qX + p3/27 = 0 (1.3.6)

Its discriminant ∆ is written as :

∆ = q2 − 4p3/27 =
27q2 − 4p3

27
=

∆̄
27

Let:

∆̄ = 27q2 − 4p3 = 27(AmBn(Am + Bn))2 − 4[(Am + Bn)2 − AmBn]3

= 27A2mB2n(Am + Bn)2 − 4[(Am + Bn)2 − AmBn]3 (1.3.7)

Denoting :

α = AmBn > 0
β = (Am + Bn)2

we can write (1.3.7) as:
∆̄ = 27α2β − 4(β − α)3 (1.3.8)

As α ̸= 0, we can also rewrite (1.3.8) as :

∆̄ = α3

(
27

β

α
− 4

(
β

α
− 1
)3
)

We call t the parameter :

t =
β

α
∆̄ becomes :

∆̄ = α3(27t − 4(t − 1)3)

Let us calling :
y = y(t) = 27t − 4(t − 1)3

Since α > 0, the sign of ∆̄ is also the sign of y(t). Let us study the sign of y. We obtain
y′(t):

y′(t) = y′ = 3(1 + 2t)(5 − 2t)
y′ = 0 =⇒ t1 = −1/2 and t2 = 5/2, then the table of variations of y is given below:
The table of the variations of the function y shows that y < 0 for t > 4. In our case, we are
interested for t > 0. For t = 4 we obtain y(4) = 0 and for t ∈]0, 4[=⇒ y > 0. As we have
t = β

α > 4 as Am ̸= Bn:

(Am − Bn)2 > 0 =⇒ β = (Am + Bn)2 > 4α = 4AmBn

Then y < 0 =⇒ ∆̄ < 0 =⇒ ∆ < 0. Then, the equation (1.3.6) does not have real solutions
u3 and v3. Let us find the solutions u and v with x = u + v is a positive or a negative real
and u.v = p/3.
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Chapter 1 A Complete Proof of Beal’s Conjecture

Figure 1.1: The table of variations

1.3.1 Expressions of the roots

Proof. The solutions of (1.3.6) are:

X1 =
−q + i

√
−∆

2

X2 = X1 =
−q − i

√
−∆

2

We may resolve:

u3 =
−q + i

√
−∆

2

v3 =
−q − i

√
−∆

2

Writing X1 in the form:
X1 = ρeiθ

with:

ρ =

√
q2 − ∆

2
=

p
√

p

3
√

3

and sinθ =

√
−∆
2ρ

> 0

cosθ = − q
2ρ

< 0

Then θ [2π] ∈ ] +
π

2
,+π[, let:

π

2
< θ < +π ⇒ π

6
<

θ

3
<

π

3
⇒ 1

2
< cos

θ

3
<

√
3

2
(1.3.9)

and:
1
4
< cos2 θ

3
<

3
4

(1.3.10)
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hence the expression of X2:
X2 = ρe−iθ (1.3.11)

Let:

u = reiψ (1.3.12)

and j =
−1 + i

√
3

2
= ei 2π

3 (1.3.13)

j2 = ei 4π
3 = −1 + i

√
3

2
= j̄ (1.3.14)

j is a complex cubic root of the unity ⇐⇒ j3 = 1. Then, the solutions u and v are:

u1 = reiψ1 = 3
√

ρei θ
3 (1.3.15)

u2 = reiψ2 = 3
√

ρjei θ
3 = 3

√
ρei θ+2π

3 (1.3.16)

u3 = reiψ3 = 3
√

ρj2ei θ
3 = 3

√
ρei 4π

3 e+i θ
3 = 3

√
ρei θ+4π

3 (1.3.17)

and similarly:

v1 = re−iψ1 = 3
√

ρe−i θ
3 (1.3.18)

v2 = re−iψ2 = 3
√

ρj2e−i θ
3 = 3

√
ρei 4π

3 e−i θ
3 = 3

√
ρei 4π−θ

3 (1.3.19)

v3 = re−iψ3 = 3
√

ρje−i θ
3 = 3

√
ρei 2π−θ

3 (1.3.20)

We may now choose uk and vh so that uk + vh will be real. In this case, we have necessary :

v1 = u1 (1.3.21)
v2 = u2 (1.3.22)
v3 = u3 (1.3.23)

We obtain as real solutions of the equation (1.3.5):

x1 = u1 + v1 = 2 3
√

ρcos
θ

3
> 0 (1.3.24)

x2 = u2 + v2 = 2 3
√

ρcos θ+2π
3 = − 3

√
ρ
(

cos θ
3 +

√
3sin θ

3

)
< 0 (1.3.25)

x3 = u3 + v3 = 2 3
√

ρcos θ+4π
3 = 3

√
ρ
(
−cos θ

3 +
√

3sin θ
3

)
> 0 (1.3.26)

We compare the expressions of x1 and x3, we obtain:

2 3
√

pcos θ
3

?︷︸︸︷
> 3

√
p
(
−cos θ

3 +
√

3sin θ
3

)
3cos θ

3

?︷︸︸︷
>

√
3sin θ

3 (1.3.27)

As
θ

3
∈ ] +

π

6
,+

π

3
[, then sin

θ

3
and cos

θ

3
are > 0. Taking the square of the two members of

the last equation, we get:
1
4
< cos2 θ

3
(1.3.28)

9



Chapter 1 A Complete Proof of Beal’s Conjecture

which is true since
θ

3
∈ ] +

π

6
,+

π

3
[ then x1 > x3. As Am, Bn and −Cl are the only real

solutions of (1.3.4), we consider, as Am is supposed great than Bn, the expressions:

Am = x1 = u1 + v1 = 2 3
√

ρcos
θ

3

Bn = x3 = u3 + v3 = 2 3
√

ρcos
θ + 4π

3
= 3

√
ρ

(
−cos

θ

3
+
√

3sin
θ

3

)

−Cl = x2 = u2 + v2 = 2 3
√

ρcos
θ + 2π

3
= − 3

√
ρ

(
cos

θ

3
+
√

3sin
θ

3

)
(1.3.29)

1.4 Preamble of the Proof of the Main Theorem

Theorem 1.4.1. Let A, B, C, m, n, and l be positive integers with m, n, l > 2. If:

Am + Bn = Cl (1.4.1)

then A, B, and C have a common factor.

Proof. Am = 2 3
√

ρcos
θ

3
is an integer ⇒ A2m = 4 3

√
ρ2cos2 θ

3
is also an integer. But :

3
√

ρ2 =
p
3

(1.4.2)

Then:
A2m = 4 3

√
ρ2cos2 θ

3
= 4

p
3

.cos2 θ

3
= p.

4
3

.cos2 θ

3
(1.4.3)

As A2m is an integer and p is an integer, then cos2 θ

3
must be written under the form:

cos2 θ

3
=

1
b

or cos2 θ

3
=

a
b

(1.4.4)

with b ∈ N∗; for the last condition a ∈ N∗ and a, b coprime.

Notations: In the following of the paper, the scalars a, b, ..., z, α, β, ..., A, B, C, ... and
∆, Φ, ... represent positive integers except the parameters θ, ρ, or others cited in the text, are
reals.

1.4.1 Case cos2 θ

3
=

1
b

We obtain:
A2m = p.

4
3

.cos2 θ

3
=

4.p
3.b

(1.4.5)

As
1
4
< cos2 θ

3
<

3
4
⇒ 1

4
<

1
b
<

3
4
⇒ b < 4 < 3b ⇒ b = 1, 2, 3.

10



Chapter 1 A Complete Proof of Beal’s Conjecture

b = 1

b = 1 ⇒ 4 < 3 which is impossible.

b = 2

b = 2 ⇒ A2m = p.
4
3

.
1
2
=

2.p
3

⇒ 3 | p ⇒ p = 3p′ with p′ ̸= 1 because 3 ≪ p, we obtain:

A2m = (Am)2 =
2p
3

= 2.p′ =⇒ 2 | p′ =⇒ p′ = 2α p2
1

with 2 ∤ p1, α + 1 = 2β

Am = 2β p1 (1.4.6)

BnCl = 3
√

ρ2
(

3 − 4cos2 θ

3

)
= p′ = 2α p2

1 (1.4.7)

From the equation (1.4.6), it follows that 2 | Am =⇒ A = 2i A1, i ≥ 1 and 2 ∤ A1. Then, we
have β = i.m = im. The equation (1.4.7) implies that 2 | (BnCl) =⇒ 2 | Bn or 2 | Cl.

Case 2 | Bn: - If 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with 2 ∤ B1. The expression of BnCl

becomes:
Bn

1 Cl = 22im−1−jn p2
1

- If 2im − 1 − jn ≥ 1, 2 | Cl =⇒ 2 | C according to Cl = 2im Am
1 + 2jnBn

1 and the conjecture
(3.1.1) is verified.
- If 2im − 1 − jn ≤ 0 =⇒ 2 ∤ Cl, then the contradiction with Cl = 2im Am

1 + 2jnBn
1 .

Case 2 | Cl: If 2 | Cl: with the same method used above, we obtain the identical results.

b = 3

b = 3 ⇒ A2m = p.
4
3

.
1
3
=

4p
9

⇒ 9 | p ⇒ p = 9p′ with p′ ̸= 1, as 9 ≪ p then A2m = 4p′. If p′

is prime, it is impossible. We suppose that p′ is not a prime, as m ≥ 3, it follows that 2 | p′,
then 2 | Am. But BnCl = 5p′ and 2 | (BnCl). Using the same method for the case b = 2, we
obtain the identical results.

1.4.2 Case a > 1, cos2 θ

3
=

a
b

We have:
cos2 θ

3
=

a
b

; A2m = p.
4
3

.cos2 θ

3
=

4.p.a
3.b

(1.4.8)

where a, b verify one of the two conditions:

{3 | a and b | 4p} or {3 | p and b | 4p} (1.4.9)

and using the equation (1.3.10), we obtain a third condition:

b < 4a < 3b (1.4.10)

For these conditions, A2m = 4 3
√

ρ2cos2 θ
3 = 4

p
3

.cos2 θ

3
is an integer.

Let us study the conditions given by the equation (1.4.9) in the following two sections.

11
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1.5 Hypothesis : {3 | a and b | 4p}
We obtain :

3 | a =⇒ ∃a′ ∈ N∗ / a = 3a′ (1.5.1)

1.5.1 Case b = 2 and 3 | a

A2m is written as:
A2m =

4p
3

.cos2 θ

3
=

4p
3

.
a
b
=

4p
3

.
a
2
=

2.p.a
3

(1.5.2)

Using the equation (1.5.1), A2m becomes :

A2m =
2.p.3a′

3
= 2.p.a′ (1.5.3)

but cos2 θ

3
=

a
b
=

3a′

2
> 1 which is impossible, then b ̸= 2.

1.5.2 Case b = 4 and 3 | a

A2m is written :

A2m =
4.p
3

cos2 θ

3
=

4.p
3

.
a
b
=

4.p
3

.
a
4
=

p.a
3

=
p.3a′

3
= p.a′ (1.5.4)

and cos2 θ

3
=

a
b
=

3.a′

4
<

(√
3

2

)2

=
3
4
=⇒ a′ < 1 (1.5.5)

which is impossible. Then the case b = 4 is impossible.

1.5.3 Case b = p and 3 | a

We have :

cos2 θ

3
=

a
b
=

3a′

p
(1.5.6)

and:

A2m =
4p
3

.cos2 θ

3
=

4p
3

.
3a′

p
= 4a′ = (Am)2 (1.5.7)

∃a” / a′ = a”2 (1.5.8)
and BnCl = p − A2m = b − 4a′ = b − 4a”2 (1.5.9)

The calculation of AmBn gives :

AmBn = p.

√
3

3
sin

2θ

3
− 2a′

or AmBn + 2a′ = p.

√
3

3
sin

2θ

3
(1.5.10)

The left member of (1.5.10) is an integer and p also, then 2

√
3

3
sin

2θ

3
is written under the

form :

2

√
3

3
sin

2θ

3
=

k1

k2
(1.5.11)

where k1, k2 are two coprime integers and k2 | p =⇒ p = b = k2.k3, k3 ∈ N∗.

12
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We suppose that k3 ̸= 1

We obtain :
Am(Am + 2Bn) = k1.k3 (1.5.12)

Let µ be a prime integer with µ | k3, then µ | b and µ | Am(Am + 2Bn) =⇒ µ | Am or
µ | (Am + 2Bn).

** A-1-1- If µ | Am =⇒ µ | A and µ | A2m, but A2m = 4a′ =⇒ µ | 4a′ =⇒ (µ = 2, but 2 | a′)
or (µ | a′). Then µ | a it follows the contradiction with a, b coprime.

** A-1-2- If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn then µ ̸= 2 and µ ∤ Bn. We write
µ | (Am + 2Bn) as:

Am + 2Bn = µ.t′ (1.5.13)

It follows :

Am + Bn = µt′ − Bn =⇒ A2m + B2n + 2AmBn = µ2t′2 − 2t′µBn + B2n

Using the expression of p:

p = t′2µ2 − 2t′Bnµ + Bn(Bn − Am) (1.5.14)

As p = b = k2.k3 and µ | k3 then µ | b =⇒ ∃µ′ and b = µµ′, so we can write:

µ′µ = µ(µt′2 − 2t′Bn) + Bn(Bn − Am) (1.5.15)

From the last equation, we obtain µ | Bn(Bn − Am) =⇒ µ | Bn or µ | (Bn − Am).

** A-1-2-1- If µ | Bn which is in contradiction with µ ∤ Bn.

** A-1-2-2- If µ | (Bn − Am) and using that µ | (Am + 2Bn), we arrive to :

µ | 3Bn


µ | Bn

or

µ = 3

(1.5.16)

** A-1-2-2-1- If µ | Bn =⇒ µ | B, it is the contradiction with µ ∤ B cited above.

** A-1-2-2-2- If µ = 3, then 3 | b, but 3 | a then the contradiction with a, b coprime.

We assume now k3 = 1

Then :

A2m + 2AmBn = k1 (1.5.17)
b = k2 (1.5.18)

2
√

3
3

sin
2θ

3
=

k1

b
(1.5.19)

Taking the square of the last equation, we obtain:

4
3

sin2 2θ

3
=

k2
1

b2

13



Chapter 1 A Complete Proof of Beal’s Conjecture

16
3

sin2 θ

3
cos2 θ

3
=

k2
1

b2

16
3

sin2 θ

3
.
3a′

b
=

k2
1

b2

Finally:
42a′(p − a) = k2

1 (1.5.20)

but a′ = a”2, then p − a is a square. Let:

λ2 = p − a = b − a = b − 3a”2 =⇒ λ2 + 3a”2 = b (1.5.21)

The equation (1.5.20) becomes:

42a”2λ2 = k2
1 =⇒ k1 = 4a”λ (1.5.22)

taking the positive root, but k1 = Am(Am + 2Bn) = 2a”(Am + 2Bn), then :

Am + 2Bn = 2λ =⇒ λ = a” + Bn (1.5.23)

** A-2-1- As Am = 2a” =⇒ 2 | Am =⇒ 2 | A =⇒ A = 2i A1, with i ≥ 1 and 2 ∤ A1,
then Am = 2a” = 2im Am

1 =⇒ a” = 2im−1Am
1 , but im ≥ 3 =⇒ 4 | a”. As λ = a” + Bn,

taking its square, we obtain λ2 = a”2 + 2a”.Bn + B2n =⇒ λ2 ≡ B2n(mod 4) =⇒ λ2 ≡ B2n ≡
0(mod 4) or λ2 ≡ B2n ≡ 1(mod 4).

** A-2-1-1- We suppose that λ2 ≡ B2n ≡ 0(mod 4) =⇒ 4 | λ2 =⇒ 2 | (b − a). But 2 | a be-
cause a = 3a′ = 3a”2 = 3 × 22(im−1)A2m

1 and im ≥ 3. Then 2 | b, it follows the contradiction
with a, b coprime.

** A-2-1-2- We suppose now that λ2 ≡ B2n ≡ 1(mod 4). As Am = 2im−1Am
1 and im − 1 ≥ 2,

then Am ≡ 0(mod 4). As B2n ≡ 1(mod 4), then Bn verifies Bn ≡ 1(mod 4) or Bn ≡
3(mod 4) which gives for the two cases BnCl ≡ 1(mod 4).

We have also p = b = A2m + AmBn + B2n = 4a′ + Bn.Cl = 4a”2 + BnCl =⇒ BnCl =
λ2 − a”2 = Bn.Cl, then λ, a” ∈ N∗ are solutions of the Diophantine equation :

x2 − y2 = N (1.5.24)

with N = BnCl > 0. Let Q(N) be the number of the solutions of (1.5.24) and τ(N) is the
number of suitable factorization of N, then we announce the following result concerning
the solutions of the equation (1.5.24) (see theorem 27.3 in [2]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

In our case, we have N = Bn.Cl ≡ 1(mod 4), then Q(N) = [τ(N)/2]. As λ, a” is a
couple of solutions of the Diophantine equation (1.5.24), then ∃ d, d′ positive integers with
d > d′ and N = d.d′ so that :

d + d′ = 2λ (1.5.25)
d − d′ = 2a” (1.5.26)

14
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** A-2-1-2-1- As Cl > Bn, we take d = Cl and d′ = Bn. It follows:

Cl + Bn = 2λ = Am + 2Bn (1.5.27)
Cl − Bn = 2a” = Am (1.5.28)

Then the case d = Cl and d′ = Bn gives a priory no contradictions.

** A-2-1-2-2- Now, we consider the case d = BnC1 and d′ = 1. We rewrite the equations
(1.5.25-1.5.26):

BnCl + 1 = 2λ (1.5.29)
BnCl − 1 = 2a” (1.5.30)

We obtain 1 = λ − a”, but from (1.5.23), we have λ = a” + Bn, it follows Bn = 1 and
Cl − Am = 1, we know [?] that the only positive solution of the last equation is C = 3, A =
2, m = 3 and l = 2 < 3, then the contradiction.

** A-2-1-2-3- Now, we consider the case d = clr−1
1 Cl

1 where c1 is a prime integer with c1 ∤ C1
and C = cr

1C1, r ≥ 1. It follows that d′ = c1.Bn. We rewrite the equations (1.5.25-1.5.26):

clr−1
1 Cl

1 + c1.Bn = 2λ (1.5.31)

clr−1
1 Cl

1 − c1.Bn = 2a” (1.5.32)

As l ≥ 3, from the last two equations above, it follows that c1 | (2λ) and c1 | (2a”). Then
c1 = 2, or c1 | λ and c1 | a”.

** A-2-1-2-3-1- We suppose c1 = 2. As 2 | Am and 2 | Cl because l ≥ 3, it follows 2 | Bn,
then 2 | (p = b). Then the contradiction with a, b coprime.

** A-2-1-2-3-2- We suppose c1 ̸= 2 and c1 | a” and c1 | λ. c1 | a” =⇒ c1 | a and
c1 | (Am = 2a”). Bn = Cl − Am =⇒ c1 | Bn. It follows that c1 | (p = b). Then the
contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime so that N = BnCl =
d.d′ give also contradictions.

** A-2-1-2-4- Now, let C = cr
1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider the case

d = Cl
1 and d′ = crl

1 Bn so that d > d′. We rewrite the equations (1.5.25-1.5.26):

Cl
1 + crl

1 Bn = 2λ (1.5.33)

Cl
1 − crl

1 Bn = 2a” (1.5.34)

We obtain crl
1 Bn = λ − a” = Bn =⇒ crl

1 = 1, then the contradiction.

** A-2-1-2-5- Now, let C = cr
1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider the case

d = Cl
1Bn and d′ = crl

1 so that d > d′. We rewrite the equations (1.5.25-1.5.26):

Cl
1Bl + crl

1 = 2λ (1.5.35)

Cl
1Bl − crl

1 = 2a” (1.5.36)

We obtain crl
1 = λ − a” = Bn =⇒ c1 | Bn, then c1 | Am = 2a”. If c1 = 2, the contradiction

with BnCl ≡ 1(mod 4). Then c1 | a” =⇒ c1 | a =⇒ c1 | (p = b), it follows a, b are not
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coprime, then the contradiction.

Cases like d′ < Cl a divisor of Cl or d′ < Bl a divisor of Bn with d′ < d and d.d′ = N =
BnCl give contradictions.

** A-2-1-2-6- Now, we consider the case d = b1.Cl where b1 is a prime integer with b1 ∤ B1
and B = br

1B1, r ≥ 1. It follows that d′ = bnr−1
1 Bn

1 . We rewrite the equations (1.5.25-1.5.26):

b1Cl + bnr−1
1 Bn

1 = 2λ (1.5.37)

b1Cl − bnr−1
1 Bn

1 = 2a” (1.5.38)

As n ≥ 3, from the last two equations above, it follows that b1 | 2λ and b1 | (2a”). Then
b1 = 2, or b1 | λ and b1 | a”.

** A-2-1-2-6-1- We suppose b1 = 2 =⇒ 2 | Bn. As 2 | (Am = 2a” =⇒ 2 | a” =⇒ 2 | a, but
2 | Bn and 2 | Am then 2 | (p = b). It follows the contradiction with a, b coprime.

** A-2-1-2-6-2- We suppose b1 ̸= 2, then b1 | λ and b1 | a” =⇒ b1 | Am and b1 | a” =⇒ b1 | a,
but b1 | Bn and b1 | Am then b1 | (p = b). It follows the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′ so that
N = ClBm = d.d′ give also contradictions.

Finally, from the cases studied in the above paragraph A-2-1-2, we have found one suit-
able factorization of N that gives a priory no contradictions, it is the case N = Bn.Cl = d.d′

with d = Cl, d′ = Bn but 1 ≪ τ(N), it follows the contradiction with Q(N) = [τ(N)/2] ≤ 1.
We conclude that the case A-2-1-2 is to reject.

Hence, the case k3 = 1 is impossible.

Let us verify the condition (1.4.10) given by b < 4a < 3b. In our case, the condition becomes
:

p < 3A2m < 3p with p = A2m + B2n + AmBn (1.5.39)

and 3A2m < 3p =⇒ A2m < p that is verified. If :

p < 3A2m =⇒ 2A2m − AmBn − B2n
?︷︸︸︷
> 0

Studying the sign of the polynomial Q(Y) = 2Y2 − BnY − B2n and taking Y = Am > Bn,
the condition 2A2m − AmBn − B2n > 0 is verified, then the condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b implies to
verify that Am > Bn which is true.

1.5.4 Case b | p ⇒ p = b.p′, p′ > 1, b ̸= 2, b ̸= 4 and 3 | a

A2m =
4.p
3

.
a
b
=

4.b.p′.3.a′

3.b
= 4.p′a′ (1.5.40)

We calculate BnCl:

BnCl = 3
√

ρ2
(

3sin2 θ

3
− cos2 θ

3

)
= 3
√

ρ2
(

3 − 4cos2 θ

3

)
(1.5.41)
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but 3
√

ρ2 =
p
3

, using cos2 θ

3
=

3.a′

b
, we obtain:

BnCl = 3
√

ρ2
(

3 − 4cos2 θ

3

)
=

p
3

(
3 − 4

3.a′

b

)
= p.

(
1 − 4.a′

b

)
= p′(b − 4a′) (1.5.42)

As p = b.p′, and p′ > 1, so we have :

BnCl = p′(b − 4a′) (1.5.43)
and A2m = 4.p′.a′ (1.5.44)

** B-1- We suppose that p′ is prime, then A2m = 4a′p′ = (Am)2 =⇒ p′ | a′. But BnCl =
p′(b − 4a′) =⇒ p′ | Bn or p′ | Cl.

** B-1-1- If p′ | Bn =⇒ p′ | B =⇒ B = p′B1 with B1 ∈ N∗. Hence : p′n−1Bn
1 Cl = b − 4a′.

But n > 2 ⇒ (n − 1) > 1 and p′ | a′, then p′ | b =⇒ a and b are not coprime, then the
contradiction.

** B-1-2- If p′ | Cl =⇒ p′ | C. The same method used above, we obtain the same results.

** B-2- We consider that p′ is not a prime integer.

** B-2-1- p′, a are supposed coprime: A2m = 4a′p′ =⇒ Am = 2a”.p1 with a′ = a”2 and
p′ = p2

1, then a”, p1 are also coprime. As Am = 2a”.p1 then 2 | a” or 2 | p1.

** B-2-1-1- 2 | a”, then 2 ∤ p1. But p′ = p2
1.

** B-2-1-1-1- If p1 is prime, it is impossible with Am = 2a”.p1.

** B-2-1-1-2- We suppose that p1 is not prime, we can write it as p1 = ωm =⇒ p′ = ω2m,
then: BnCl = ω2m(b − 4a′).

** B-2-1-1-2-1- If ω is prime, it is different of 2, then ω | (BnCl) =⇒ ω | Bn or ω | Cl.

** B-2-1-1-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ω jB1 with ω ∤ B1, then Bn
1 .Cl = ω2m−nj(b −

4a′).

** B-2-1-1-2-1-1-1- If 2m − n.j = 0, we obtain Bn
1 .Cl = b − 4a′. As Cl = Am + Bn =⇒ ω |

Cl =⇒ ω | C, and ω | (b − 4a′). But ω ̸= 2 and ω is coprime with a′ then coprime with a,
then ω ∤ b. The conjecture (3.1.1) is verified.

** B-2-1-1-2-1-1-2- If 2m − nj ≥ 1, in this case with the same method, we obtain ω | Cl =⇒
ω | C and ω | (b − 4a′) and ω ∤ a and ω ∤ b. The conjecture (3.1.1) is verified.

** B-2-1-1-2-1-1-3- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .Cl = b − 4a′. As ω | C using Cl = Am + Bn

then C = ωh.C1 =⇒ ωn.j−2m+h.lBn
1 .Cl

1 = b − 4a′. If n.j − 2m + h.l < 0 =⇒ ω | Bn
1 Cl

1, it
follows the contradiction that ω ∤ B1 or ω ∤ C1. Then if n.j − 2m + h.l > 0 and ω | (b − 4a′)
with ω, a, b coprime and the conjecture (3.1.1) is verified.

** B-2-1-1-2-1-2- We obtain the same results if ω | Cl.
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** B-2-1-1-2-2- Now, p′ = ω2m and ω not prime, we write ω = ω
f
1 .Ω with ω1 prime ∤ Ω and

f ≥ 1 an integer, and ω1 | A. Then BnCl = ω
2 f .m
1 Ω2m(b − 4a′) =⇒ ω1 | (BnCl) =⇒ ω1 | Bn

or ω1 | Cl.

** B-2-1-1-2-2-1- If ω1 | Bn =⇒ ω1 | B =⇒ B = ω
j
1B1 with ω1 ∤ B1, then Bn

1 .Cl =

ω
2m f−nj
1 Ω2m(b − 4a′):

** B-2-1-1-2-2-1-1- If 2 f .m − n.j = 0, we obtain Bn
1 .Cl = Ω2m(b − 4a′). As Cl = Am + Bn =⇒

ω1 | Cl =⇒ ω1 | C =⇒ ω1 | (b − 4a′). But ω1 ̸= 2 and ω1 is coprime with a′, then coprime
with a, we deduce ω1 ∤ b. Then the conjecture (3.1.1) is verified.

** B-2-1-1-2-2-1-2- If 2 f .m − n.j ≥ 1, we have ω1 | Cl =⇒ ω1 | C =⇒ ω1 | (b − 4a′) and
ω1 ∤ a and ω1 ∤ b. The conjecture (3.1.1) is verified.

** B-2-1-1-2-2-1-3- If 2 f .m − n.j < 0 =⇒ ω
n.j−2m. f
1 Bn

1 .Cl = Ω2m(b − 4a′). As ω1 | C using
Cl = Am + Bn, then C = ωh

1 .C1 =⇒ ωn.j−2m. f+h.lBn
1 .Cl

1 = Ω2m(b − 4a′). If n.j − 2m. f +
h.l < 0 =⇒ ω1 | Bn

1 Cl
1, it follows the contradiction with ω1 ∤ B1 and ω1 ∤ C1. Then if

n.j − 2m. f + h.l > 0 and ω1 | (b − 4a′) with ω1, a, b coprime and the conjecture (3.1.1) is
verified.

** B-2-1-1-2-2-2- We obtain the same results if ω1 | Cl.

** B-2-1-2- If 2 | p1, then 2 | p1 =⇒ 2 ∤ a′ =⇒ 2 ∤ a. But p′ = p2
1.

** B-2-1-2-1- If p1 = 2, we obtain Am = 4a” =⇒ 2 | a” as m ≥ 3, then the contradiction with
a, b coprime.

** B-2-1-2-2- We suppose that p1 is not prime and 2 | p1, as Am = 2a”p1, p1 is written as
p1 = 2m−1ωm =⇒ p′ = 22m−2ω2m. It follows BnCl = 22m−2ω2m(b − 4a′) =⇒ 2 | Bn or 2 | Cl.

** B-2-1-2-2-1- If 2 | Bn =⇒ 2 | B, as 2 | A, then 2 | C. From BnCl = 22m−2ω2m(b − 4a′), it
follows if 2 | (b − 4a′) =⇒ 2 | b but as 2 ∤ a′, there is no contradiction with a, b coprime and
the conjecture (3.1.1) is verified.

** B-2-1-2-2-2- If 2 | Cl, using the same method as above, we obtain the identical results.

** B-2-2- p′, a′ are supposed not coprime. Let ω be a prime integer so that ω | a′ and ω | p′.

** B-2-2-1- We suppose firstly ω = 3. As A2m = 4a′p′ =⇒ 3 | A, but 3 | p′ =⇒ 3 | p, as
p = A2m + B2n + AmBn =⇒ 3 | B2n =⇒ 3 | B, then 3 | Cl =⇒ 3 | C. We write A = 3i A1,
B = 3jB1, C = 3hC1 and 3 coprime with A1, B1 and C1 and p = 32im A2m

1 + 32njB2n
1 +

3im+jn Am
1 Bn

1 = 3k.g with k = min(2im, 2jn, im + jn) and 3 ∤ g. We have also (ω = 3) | a
and (ω = 3) | p′ that gives a = 3αa1 = 3a′ =⇒ a′ = 3α−1a1, 3 ∤ a1 and p′ = 3µ p1, 3 ∤ p1
with A2m = 4a′p′ = 32im A2m

1 = 4 × 3α−1+µ.a1.p1 =⇒ α + µ − 1 = 2im. As p = bp′ =
b.3µ p1 = 3µ.b.p1. The exponent of the term 3 of p is k, the exponent of the term 3 of the left
member of the last equation is µ. If 3 | b it is a contradiction with a, b coprime. Then, we
suppose that 3 ∤ b, and the equality of the exponents: min(2im, 2jn, im + jn) = µ, recall that
α + µ − 1 = 2im. But BnCl = p′(b − 4a′) that gives 3(nj+hl)Bn

1 Cl
1 = 3µ p1(b − 4 × 3(α−1)a1).

We have also Am + Bn = Cl gives 3im Am
1 + 3jnBn

1 = 3hlCl
1. Let ϵ = min(im, jn), we have
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Chapter 1 A Complete Proof of Beal’s Conjecture

ϵ = hl = min(im, jn). Then, we obtain the conditions:

k = min(2im, 2jn, im + jn) = µ (1.5.45)
α + µ − 1 = 2im (1.5.46)

ϵ = hl = min(im, jn) (1.5.47)

3(nj+hl)Bn
1 Cl

1 = 3µ p1(b − 4 × 3(α−1)a1) (1.5.48)

** B-2-2-1-1- α = 1 =⇒ a = 3a1 = 3a′ and 3 ∤ a1, the equation (1.5.46) becomes:

µ = 2im

and the first equation (1.5.45) is written as:

k = min(2im, 2jn, im + jn) = 2im

- If k = 2im, then 2im ≤ 2jn =⇒ im ≤ jn =⇒ hl = im, and (1.5.48) gives µ = 2im =
nj + hl = im + nj =⇒ im = jn = hl. Hence 3 | A, 3 | B and 3 | C and the conjecture (3.1.1)
is verified.
- If k = 2jn =⇒ 2jn = 2im =⇒ im = jn = hl. Hence 3 | A, 3 | B and 3 | C and the conjecture
(3.1.1) is verified.
- If k = im + jn = 2im =⇒ im = jn =⇒ ϵ = hl = im = jn case that is seen above and we
deduce that 3 | A, 3 | B and 3 | C, and the conjecture (3.1.1) is verified.

** B-2-2-1-2- α > 1 =⇒ α ≥ 2 and a′ = 3α−1a1.
- If k = 2im =⇒ 2im = µ, but µ = 2im + 1 − α that is impossible.
- If k = 2jn = µ =⇒ 2jn = 2im + 1 − α. We obtain 2jn < 2im =⇒ jn < im =⇒ 2jn <

im + jn, k = 2jn is just the minimum of (2im, 2jn, im + jn). We obtain jn = hl < im and the
equation (1.5.48) becomes:

Bn
1 Cl

1 = p1(b − 4 × 3(α−1)a1)

The conjecture (3.1.1) is verified.

- If k = im + jn ≤ 2im =⇒ jn ≤ im and k = im + jn ≤ 2jn =⇒ im ≤ jn =⇒ im = jn =⇒
k = im + jn = 2im = µ but µ = 2im + 1 − α that is impossible.

- If k = im + jn < 2im =⇒ jn < im and 2jn < im + jn = k that is a contradiction with
k = min(2im, 2jn, im + jn).

** B-2-2-2- We suppose that ω ̸= 3. We write a = ωαa1 with ω ∤ a1 and p′ = ωµ p1
with ω ∤ p1. As A2m = 4a′p′ = 4ωα+µ.a1.p1 =⇒ ω | A =⇒ A = ωi A1, ω ∤ A1. But
BnCl = p′(b − 4a′) = ωµ p1(b − 4a′) =⇒ ω | BnCl =⇒ ω | Bn or ω | Cl.

** B-2-2-2-1- ω | Bn =⇒ ω | B =⇒ B = ω jB1 and ω ∤ B1. From Am + Bn = Cl =⇒ ω |
Cl =⇒ ω | C. As p = bp′ = ωµbp1 = ωk(ω2im−k A2m

1 + ω2jn−kB2n
1 + ωim+jn−k Am

1 Bn
1 ) with

k = min(2im, 2jn, im + jn). Then :
- If µ = k, then ω ∤ b and the conjecture (3.1.1) is verified.
- If k > µ, then ω | b, but ω | a we deduce the contradiction with a, b coprime.
- If k < µ, it follows from :

ωµbp1 = ωk(ω2im−k A2m
1 + ω2jn−kB2n

1 + ωim+jn−k Am
1 Bn

1 )

that ω | A1 or ω | B1 that is a contradiction with the hypothesis.

** B-2-2-2-2- If ω | Cl =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1. From Am + Bn = Cl =⇒ ω |
(Cl − Am) =⇒ ω | B. Then, we obtain the same results as B-2-2-2-1- above.
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1.5.5 Case b = 2p and 3 | a

We have :

cos2 θ

3
=

a
b
=

3a′

2p
=⇒ A2m =

4p.a
3b

=
4p
3

.
3a′

2p
= 2a′ = (Am)2 =⇒ 2 | a′ =⇒ 2 | a

Then 2 | a and 2 | b that is a contradiction with a, b coprime.

1.5.6 Case b = 4p and 3 | a

We have :

cos2 θ

3
=

a
b
=

3a′

4p
=⇒ A2m =

4p.a
3b

=
4p
3

.
3a′

4p
= a′ = (Am)2 = a”2

with Am = a”

Let us calculate AmBn, we obtain:

AmBn =
p
√

3
3

.sin
2θ

3
− 2p

3
cos2 θ

3
=

p
√

3
3

.sin
2θ

3
− a′

2
=⇒

AmBn +
A2m

2
=

p
√

3
3

.sin
2θ

3

Let:

A2m + 2AmBn =
2p

√
3

3
sin

2θ

3
(1.5.49)

The left member of (1.5.49) is an integer and p is an integer, then
2
√

3
3

sin
2θ

3
will be written

as :
2
√

3
3

sin
2θ

3
=

k1

k2

where k1, k2 are two integers coprime and k2 | p =⇒ p = k2.k3.

** C-1- Firstly, we suppose that k3 ̸= 1. Then :

A2m + 2AmBn = k3.k1

Let µ be a prime integer and µ | k3, then µ | Am(Am + 2Bn) =⇒ µ | Am or µ | (Am + 2Bn).

** C-1-1- If µ | (Am = a”) =⇒ µ | (a”2 = a′) =⇒ µ | (3a′ = a). As µ | k3 =⇒ µ | p =⇒ µ |
(4p = b), then the contradiction with a, b coprime.

** C-1-2- If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn, then:

µ ̸= 2 and µ ∤ Bn (1.5.50)

µ | (Am + 2Bn), we write:
Am + 2Bn = µ.t′

Then:

Am + Bn = µt′ − Bn =⇒ A2m + B2n + 2AmBn = µ2t′2 − 2t′µBn + B2n

=⇒ p = t′2µ2 − 2t′Bnµ + Bn(Bn − Am)
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As b = 4p = 4k2.k3 and µ | k3 then µ | b =⇒ ∃µ′ so that b = µ.µ′, we obtain:

µ′.µ = µ(4µt′2 − 8t′Bn) + 4Bn(Bn − Am)

The last equation implies µ | 4Bn(Bn − Am), but µ ̸= 2 then µ | Bn or µ | (Bn − Am).

** C-1-1-1- If µ | Bn =⇒ then the contradiction with (1.5.50).

** C-1-1-2- If µ | (Bn − Am) and using µ | (Am + 2Bn), we have :

µ | 3Bn =⇒


µ | Bn

or

µ = 3

** C-1-1-2-1- If µ | Bn then the contradiction with (1.5.50).

** C-1-1-2-2- If µ = 3, then 3 | b, but 3 | a then the contradiction with a, b coprime.

** C-2- We assume now that k3 = 1, then:

A2m + 2AmBn = k1 (1.5.51)
p = k2

2
√

3
3

sin
2θ

3
=

k1

p

We take the square of the last equation, we obtain :

4
3

sin2 2θ

3
=

k2
1

p2

16
3

sin2 θ

3
cos2 θ

3
=

k2
1

p2

16
3

sin2 θ

3
.
3a′

b
=

k2
1

p2

Finally:
a′(4p − 3a′) = k2

1 (1.5.52)

but a′ = a”2, then 4p − 3a′ is a square. Let :

λ2 = 4p − 3a′ = 4p − a = b − a

The equation (1.5.52) becomes :

a”2λ2 = k2
1 =⇒ k1 = a”λ (1.5.53)

taking the positive root. Using (1.5.51), we have:

k1 = Am(Am + 2Bn) = a”(Am + 2Bn)

Then :
Am + 2Bn = λ
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Now, we consider that b − a = λ2 =⇒ λ2 + 3a”2 = b, then the couple (λ, a”) is a solution
of the Diophantine equation:

X2 + 3Y2 = b (1.5.54)

with X = λ and Y = a”. But using one theorem on the solutions of the equation given by
(1.5.54), b is written under the form (see theorem 37.4 in [3]):

b = 22s × 3t.pt1
1 · · · ptg

g q2s1
1 · · · q2sr

r

where pi are prime integers so that pi ≡ 1(mod 6), the qj are also prime integers so that
qj ≡ 5(mod 6). Then, as b = 4p :

- If t ≥ 1 =⇒ 3 | b, but 3 | a, then the contradiction with a, b coprime.

** C-2-2-1- Hence, we suppose that p is written under the form:

p = pt1
1 · · · ptg

g q2s1
1 · · · q2sr

r

with pi ≡ 1(mod 6) and qj ≡ 5(mod 6). Finally, we obtain that :

p ≡ 1(mod 6) (1.5.55)

We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of p = A2m + AmBn + B2n in function of
the values of Am, Bn(mod 6). We obtain the table below:

Table 1.1: Table of p (mod 6)

Am , Bn 0 1 2 3 4 5

0 0 1 4 3 4 1

1 1 3 1 1 3 1

2 4 1 0 1 4 3

3 3 1 1 3 1 1

4 4 3 4 1 0 1

5 1 1 3 1 1 3

** C-2-2-1-1- Case Am ≡ 0(mod 6) =⇒ 2 | (Am = a”) =⇒ 2 | (a′ = a”2) =⇒ 2 | a, but 2 | b,
then the contradiction with a, b coprime. All the cases of the first line of the table 1.1 are to
reject.

** C-2-2-1-2- Case Am ≡ 1(mod 6) and Bn ≡ 0(mod 6), then 2 | Bn =⇒ Bn = 2B′ and p is
written as p = (Am + B′)2 + 3B′2 with (p, 3) = 1, if not 3 | p, then 3 | b, but 3 | a, then the
contradiction with a, b coprime. Hence, the pair (Am + B′, B′) verifies the equation:

(Am + B′)2 + 3B′2 = p (1.5.56)

that we can write it as:

(Am + B′)2 − B′2 = p − 4B′2 = A2m + B2n + AmBn − B2n = Cl Am = N (1.5.57)
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Then (Am + B′, B′) is a solution of the Diophantine equation:

x2 − y2 = N (1.5.58)

where N = Cl Am ≡ 1(mod 6). Let Q(N) be the number of the solutions of (1.5.58) and
τ(N) is the number of suitable factorization of N, then we recall the following result con-
cerning the solutions of the equation (1.5.58) (see theorem 27.3 in [2]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
As N = Cl Am ≡ 1(mod 6) =⇒ N is odd, the cases Q(N) = 0 and Q(N) = [τ(N/4)/2]

are rejected, then N ≡ 1 or N ≡ 3(mod 4), it follows Q(N) = [τ(N)/2].

As Am + B′, B′ is a couple of solutions of the Diophantine equation (1.5.58), then ∃ d, d′

positive integers with d > d′ and N = d.d′ so that :

d + d′ = 2(Am + B′) (1.5.59)
d − d′ = 2B′ = Bn (1.5.60)

We will use the same method used for the paragraph above A-2-1-2-.

** C-2-2-1-2-1- As Cl > Am, we take d = Cl and d′ = Am. It follows:

Cl + Am = 2(Am + B′) = 2Am + Bn

Cl − Am = Bn = 2B′

Then the case d = Cl and d′ = Am gives a priory no contradictions.

** C-2-2-1-2-2- Now, we consider the case d = Cl Am and d′ = 1. We rewrite the equations
(1.5.59-1.5.60):

Cl Am + 1 = 2(Am + B′) (1.5.61)

Cl Am − 1 = 2B′ (1.5.62)

We obtain 1 = Am, it follows Cl − Bn = 1, we know [?] that the only positive solution of
the last equation is C = 3, B = 2, n = 3 and l = 2 < 3, then the contradiction.

** C-2-2-1-2-3- Now, we consider the case d = clr−1
1 Cl

1 where c1 is a prime integer with
c1 ∤ C1 and C = cr

1C1, r ≥ 1. It follows that d′ = c1.Am. We rewrite the equations (1.5.59-
1.5.60):

clr−1
1 Cl

1 + c1.Am = 2(Am + B′) (1.5.63)

clr−1
1 Cl

1 − c1.Am = 2B′ = Bn (1.5.64)

As l ≥ 3, from the last two equations above, it follows that c1 | 2(Am + B′) and c1 | (2B′).
Then c1 = 2, or c1 | (Am + B′) and c1 | B′.

** C-2-2-1-2-3-1- We suppose c1 = 2. As l ≥ 3, from the equation (1.5.64) it follows that
2 | Bn, then 2 | (Am = a”) =⇒ 2 | (a”2 = a′) =⇒ 2 | (a = 3a′), but b = 4p (see 1.5.6), then
the contradiction with a, b coprime.
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** C-2-2-1-2-3-2- We suppose c1 ̸= 2, then c1 | (Am + B′) and c1 | B′. It follows c1 | Am and
c1 | (Bn = 2B′) =⇒ c1 | p =⇒ c1 | b = 4p. From c1 | (Am = a”) =⇒ c1 | (a”2 = a′) =⇒ c1 |
(a = 3a′), then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′ so that
N = Cl Am = d.d′ give also contradictions.

** C-2-2-1-2-4- Now, we consider the case d = a1.Cl where a1 is a prime integer with a1 ∤ A1
and A = ar

1A1, r ≥ 1. It follows that d′ = amr−1
1 Am

1 . We rewrite the equations (1.5.59-1.5.60):

a1Cl + amr−1
1 Am

1 = 2(Am + B′) (1.5.65)

a1Cl − amr−1
1 Am

1 = 2B′ = Bn (1.5.66)

As m ≥ 3, from the last two equations above, it follows that a1 | 2(Am + B′) and a1 | (2B′).
Then a1 = 2, or a1 | (Am + B′) and a1 | B′.

** C-2-2-1-2-4-1- We suppose a1 = 2 =⇒ 2 | (Am = a′′) =⇒ a1 | (a′′2 = a′) =⇒ a1 | (a =
3a′). But b = 4p, then the contradiction with a, b coprime.

** C-2-2-1-2-4-2- We suppose a1 ̸= 2, then a1 | (Am + B′) and a1 | B′. It follows a1 | Am and
a1 | (Bn = 2B′) =⇒ a1 | p =⇒ a1 | b = 4p. From a1 | (Am = a′′) =⇒ a1 | (a′′2 = a′) =⇒ a1 |
(a = 3a′), then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′ so that
N = Cl Am = d.d′ give also contradictions.

** C-2-2-1-2-5- Now, let C = cr
1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider the case

d = Cl
1 and d′ = crl

1 Am so that d > d′. We rewrite the equations (1.5.59-1.5.60):

Cl
1 + crl

1 Am = 2(Am + B′) (1.5.67)

Cl
1 − crl

1 Am = 2B′ = Bn (1.5.68)

We obtain crl
1 Am = Am =⇒ crl

1 = 1, then the contradiction.

** C-2-2-1-2-6- Now, let C = cr
1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider the case

d = Cl
1Am and d′ = crl

1 so that d > d′. We rewrite the equations (1.5.59-1.5.60):

Cl
1Am + crl

1 = 2(Am + B′) (1.5.69)

Cl
1Am − crl

1 = 2B′ = Bn (1.5.70)

We obtain crl
1 = Am =⇒ c1 | Am, then c1 | Am = a” =⇒ c1 | (a”2 = a′) =⇒ c1 | (a = 3a′).

As c1 | C and c1 | Am =⇒ c1 | Bn, it follows c1 | (p = b), then the contradiction with a, b
coprime.

The other cases of the expressions of d and d′ with d, d′ coprime and d > d′ so that
N = Cl Am = d.d′ give also contradictions.

Finally, from the cases studied in the above paragraph C-2-2-1-2, we have found one
suitable factorization of N that gives a priory no contradictions, it is the case N = Cl.Am,
but 1 ≪ τ(N), it follows the contradiction with Q(N) = [τ(N)/2] ≤ 1. We conclude that
the case Am ≡ 1(mod 6) and Bn ≡ 0(mod 6) of the paragraph C-2-2-1-2 is to reject.
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** C-2-2-1-3- Case Am ≡ 1(mod 6) and Bn ≡ 2(mod 6), then Bn is even, see C-2-2-1-2-.

** C-2-2-1-4- Case Am ≡ 1(mod 6) and Bn ≡ 3(mod 6), then 3 | Bn =⇒ Bn = 3B′. As
p = A2m + AmBn + B2n =⇒ p ≡ 5(mod 6) ̸=≡ 1(mod 6) (see (1.5.55)), then the contradic-
tion and the case C-2-2-1-4- is to reject.

** C-2-2-1-5- Case Am ≡ 1(mod 6) and Bn ≡ 5(mod 6), then Cl ≡ 0(mod 6) =⇒ 2 | Cl, see
C-2-2-1-2-.

** C-2-2-1-6- Case Am ≡ 2(mod 6) =⇒ 2 | a” =⇒ 2 | a, but 2 | b, then the contradiction
with a, b coprime.

** C-2-2-1-7- Case Am ≡ 3(mod 6) and Bn ≡ 1(mod 6), then Cl ≡ 4(mod 6) =⇒ 2 | Cl =⇒
Cl = 2C′, and C is even, see C-2-2-1-2-.

** C-2-2-1-8- Case Am ≡ 3(mod 6) and Bn ≡ 2(mod 6), then Bn is even, see C-2-2-1-2-.

** C-2-2-1-9- Case Am ≡ 3(mod 6) and Bn ≡ 4(mod 6), then Bn is even, see C-2-2-1-2-.

** C-2-2-1-10- Case Am ≡ 3(mod 6) and Bn ≡ 5(mod 6), then Cl ≡ 2(mod 6) =⇒ 2 | Cl,
and C is even, see C-2-2-1-2-.

** C-2-2-1-11- Case Am ≡ 4(mod 6) =⇒ 2 | a” =⇒ 2 | a, but 2 | b, then the contradiction
with a, b coprime.

** C-2-2-1-12- Case Am ≡ 5(mod 6) and Bn ≡ 0(mod 6), then Bn is even, see C-2-2-1-2-.

** C-2-2-1-13- Case Am ≡ 5(mod 6) and Bn ≡ 1(mod 6), then Cl ≡ 0(mod 6) =⇒ 2 | Cl, C
is even, see C-2-2-1-2-.

** C-2-2-1-14- Case Am ≡ 5(mod 6) and Bn ≡ 3(mod 6), then Cl ≡ 2(mod 6) =⇒ 2 |
Cl =⇒ Cl = 2C′, C is even, C-2-2-1-2-.

** C-2-2-1-15- Case Am ≡ 5(mod 6) and Bn ≡ 4(mod 6), then Bn is even, see C-2-2-1-2-.

We have achieved the study all the cases of the table 1.1 giving contradictions.

Then the case k3 = 1 is impossible.

1.5.7 Case 3 | a and b = 2p′, b ̸= 2 with p′ | p

3 | a =⇒ a = 3a′, b = 2p′ with p = k.p′, then:

A2m =
4.p
3

.
a
b
=

4.k.p′.3.a′

6p′
= 2.k.a′

We calculate BnCl:

BnCl = 3
√

ρ2
(

3sin2 θ

3
− cos2 θ

3

)
= 3
√

ρ2
(

3 − 4cos2 θ

3

)
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but 3
√

ρ2 =
p
3

, then using cos2 θ

3
=

3.a′

b
:

BnCl = 3
√

ρ2
(

3 − 4cos2 θ

3

)
=

p
3

(
3 − 4

3.a′

b

)
= p.

(
1 − 4.a′

b

)
= k(p′ − 2a′)

As p = b.p′, and p′ > 1, then we have:

BnCl = k(p′ − 2a′) (1.5.71)
and A2m = 2k.a′ (1.5.72)

** D-1- We suppose that k is prime.

** D-1-1- If k = 2, then we have p = 2p′ = b =⇒ 2 | b, but A2m = 4a′ = (Am)2 =⇒ Am =
2a” with a′ = a”2, then 2 | a” =⇒ 2 | (a = 3a”2), it follows the contradiction with a, b
coprime.

** D-1-2- We suppose k ̸= 2. From A2m = 2k.a′ = (Am)2 =⇒ k | a′ and 2 | a′ =⇒ a′ =
2.k.a”2 =⇒ Am = 2.k.a”. Then k | Am =⇒ k | A =⇒ A = ki.A1 with i ≥ 1 and k ∤ A1.
kim Am

1 = 2ka” =⇒ 2a” = kim−1Am
1 . From BnCl = k(p′ − 2a′) =⇒ k | (BnCl) =⇒ k | Bn or

k | Cl.

** D-1-2-1- We suppose that k | Bn =⇒ k | B =⇒ B = kj.B1 with j ≥ 1 and k ∤ B1. It
follows knj−1Bn

1 Cl = p′ − 2a′ = p′ − 4ka”2. As n ≥ 3 =⇒ nj − 1 ≥ 2, then k | p′ but
k ̸= 2 =⇒ k | (2p′ = b), but k | a′ =⇒ k | (3a′ = a). It follows the contradiction with a, b
coprime.

** D-1-2-2- If k | Cl we obtain the identical results.

** D-2- We suppose that k is not prime. Let ω be an integer prime so that k = ωs.k1, with
s ≥ 1, ω ∤ k1. The equations (1.5.71-1.5.72) become:

BnCl = ωs.k1(p′ − 2a′)
and A2m = 2ωs.k1.a′

** D-2-1- We suppose that ω = 2, then we have the equations:

A2m = 2s+1.k1.a′ (1.5.73)
BnCl = 2s.k1(p′ − 2a′) (1.5.74)

** D-2-1-1- Case: 2 | a′ =⇒ 2 | a, but 2 | b, then the contradiction with a, b coprime.

** D-2-1-2- Case: 2 ∤ a′. As 2 ∤ k1, the equation (1.5.73) gives 2 | A2m =⇒ A = 2i A1, with
i ≥ 1 and 2 ∤ A1. It follows that 2im = s + 1.

** D-2-1-2-1- We suppose that 2 ∤ (p′ − 2a′) =⇒ 2 ∤ p′. From the equation (1.5.74), we obtain
that 2 | BnCl =⇒ 2 | Bn or 2 | Cl.

** D-2-1-2-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with 2 ∤ B1 and j ≥ 1, then
Bn

1 Cl = 2s−jnk1(p′ − 2a′):
- If s − jn ≥ 1, then 2 | Cl =⇒ 2 | C, and no contradiction with Cl = 2im Am

1 + 2jnBn
1 , and

the conjecture (3.1.1) is verified.
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- If s − jn ≤ 0, from Bn
1 Cl = 2s−jnk1(p′ − 2a′) =⇒ 2 ∤ Cl, then the contradiction with

Cl = 2im Am
1 + 2jnBn

1 =⇒ 2 | Cl.

** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical results if
2 | Cl.

** D-2-1-2-2- We suppose now that 2 | (p′ − 2a′) =⇒ p′ − 2a′ = 2µ.Ω, with µ ≥ 1 and 2 ∤ Ω.
We recall that 2 ∤ a′. The equation (1.5.74) is written as:

BnCl = 2s+µ.k1.Ω

This last equation implies that 2 | (BnCl) =⇒ 2 | Bn or 2 | Cl.

** D-2-1-2-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with j ≥ 1 and 2 ∤ B1. Then
Bn

1 Cl = 2s+µ−jn.k1.Ω:
- If s + µ − jn ≥ 1, then 2 | Cl =⇒ 2 | C, no contradiction with Cl = 2im Am

1 + 2jnBn
1 , and

the conjecture (3.1.1) is verified.
- If s + µ − jn ≤ 0, from Bn

1 Cl = 2s+µ−jnk1.Ω =⇒ 2 ∤ Cl, then contradiction with
Cl = 2im Am

1 + 2jnBn
1 =⇒ 2 | Cl.

** D-2-1-2-2-2- We obtain the identical results if 2 | Cl.

** D-2-2- We suppose that ω ̸= 2. We have then the equations:

A2m = 2ωs.k1.a′ (1.5.75)
BnCl = ωs.k1.(p′ − 2a′) (1.5.76)

As ω ̸= 2, from the equation (1.5.75), we have 2 | (k1.a′). If 2 | a′ =⇒ 2 | a, but 2 | b, then
the contradiction with a, b coprime.

** D-2-2-1- Case: 2 ∤ a′ and 2 | k1 =⇒ k1 = 2µ.Ω with µ ≥ 1 and 2 ∤ Ω. From the equation
(1.5.75), we have 2 | A2m =⇒ 2 | A =⇒ A = 2i A1 with i ≥ 1 and 2 ∤ A1, then 2im = 1 + µ.
The equation (1.5.76) becomes:

BnCl = ωs.2µ.Ω.(p′ − 2a′) (1.5.77)

From the equation (1.5.77), we obtain 2 | (BnCl) =⇒ 2 | Bn or 2 | Cl.

** D-2-2-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1, with j ∈ N∗ and 2 ∤ B1.

** D-2-2-1-1-1- We suppose that 2 ∤ (p′ − 2a′), then we have Bn
1 Cl = ωs2µ−jnΩ(p′ − 2a′):

- If µ − jn ≥ 1 =⇒ 2 | Cl =⇒ 2 | C, no contradiction with Cl = 2im Am
1 + 2jnBn

1 and the
conjecture (3.1.1) is verified.

- If µ − jn ≤ 0 =⇒ 2 ∤ Cl then the contradiction with Cl = 2im Am
1 + 2jnBn

1 .

** D-2-2-1-1-2- We suppose that 2 | (p′ − 2a′) =⇒ p′ − 2a′ = 2α.P, with α ∈ N∗ and 2 ∤ P. It
follows that Bn

1 Cl = ωs2µ+α−jnΩ.P:
- If µ + α − jn ≥ 1 =⇒ 2 | Cl =⇒ 2 | C, no contradiction with Cl = 2im Am

1 + 2jnBn
1 and

the conjecture (3.1.1) is verified.
- If µ + α − jn ≤ 0 =⇒ 2 ∤ Cl then the contradiction with Cl = 2im Am

1 + 2jnBn
1 .

** D-2-2-1-2- We suppose now that 2 | Cn =⇒ 2 | C. Using the same method described
above, we obtain the identical results.
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1.5.8 Case 3 | a and b = 4p′, b ̸= 4 with p′ | p

3 | a =⇒ a = 3a′, b = 4p′ with p = k.p′, k ̸= 1 if not b = 4p this case has been studied (see
paragraph 1.5.6), then we have :

A2m =
4.p
3

.
a
b
=

4.k.p′.3.a′

12p′
= k.a′

We calculate BnCl:

BnCl = 3
√

ρ2
(

3sin2 θ

3
− cos2 θ

3

)
= 3
√

ρ2
(

3 − 4cos2 θ

3

)

but 3
√

ρ2 =
p
3

, then using cos2 θ

3
=

3.a′

b
:

BnCl = 3
√

ρ2
(

3 − 4cos2 θ

3

)
=

p
3

(
3 − 4

3.a′

b

)
= p.

(
1 − 4.a′

b

)
= k(p′ − a′)

As p = b.p′, and p′ > 1, we have :

BnCl = k(p′ − a′) (1.5.78)
and A2m = k.a′ (1.5.79)

** E-1- We suppose that k is prime. From A2m = k.a′ = (Am)2 =⇒ k | a′ and a′ =
k.a”2 =⇒ Am = k.a”. Then k | Am =⇒ k | A =⇒ A = ki.A1 with i ≥ 1 and k ∤ A1.
kmi Am

1 = ka” =⇒ a” = kmi−1Am
1 . From BnCl = k(p′ − a′) =⇒ k | (BnCl) =⇒ k | Bn or k | Cl.

** E-1-1- We suppose that k | Bn =⇒ k | B =⇒ B = kj.B1 with j ≥ 1 and k ∤ B1. Then
kn.j−1Bn

1 Cl = p′ − a′. As n.j − 1 ≥ 2 =⇒ k | (p′ − a′). But k | a′ =⇒ k | a, then
k | p′ =⇒ k | (4p′ = b) and we arrive to the contradiction that a, b are coprime.

** E-1-2- We suppose that k | Cl, using the same method with the above hypothesis k | Bn,
we obtain the identical results.

** E-2- We suppose that k is not prime.

** E-2-1- We take k = 4 =⇒ p = 4p′ = b, it is the case 1.5.3 studied above.

** E-2-2- We suppose that k ≥ 6 not prime. Let ω be a prime so that k = ωs.k1, with
s ≥ 1, ω ∤ k1. The equations (1.5.78-1.5.79) become:

BnCl = ωs.k1(p′ − a′) (1.5.80)
and A2m = ωs.k1.a′ (1.5.81)

** E-2-2-1- We suppose that ω = 2.

** E-2-2-1-1- If 2 | a′ =⇒ 2 | (3a′ = a), but 2 | (4p′ = b), then the contradiction with a, b
coprime.

** E-2-2-1-2- We consider that 2 ∤ a′. From the equation (1.5.81), it follows that 2 | A2m =⇒
2 | A =⇒ A = 2i A1 with 2 ∤ A1 and:

BnCl = 2sk1(p′ − a′)
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** E-2-2-1-2-1- We suppose that 2 ∤ (p′ − a′), from the above expression, we have 2 |
(BnCl) =⇒ 2 | Bn or 2 | Cl.

** E-2-2-1-2-1-1- If 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with 2 ∤ B1. Then Bn
1 Cl = 22im−jnk1(p′− a′):

- If 2im − jn ≥ 1 =⇒ 2 | Cl =⇒ 2 | C, no contradiction with Cl = 2im Am
1 + 2jnBn

1 and the
conjecture (3.1.1) is verified.

- If 2im − jn ≤ 0 =⇒ 2 ∤ Cl, then the contradiction with Cl = 2im Am
1 + 2jnBn

1 =⇒ 2 | Cl.

** E-2-2-1-2-1-2- If 2 | Cl =⇒ 2 | C, using the same method described above, we obtain the
identical results.

** E-2-2-1-2-2- We suppose that 2 | (p′ − a′). As 2 ∤ a′ =⇒ 2 ∤ p′, 2 | (p′ − a′) =⇒ p′ − a′ =
2α.P with α ≥ 1 and 2 ∤ P. The equation (1.5.80) is written as :

BnCl = 2s+αk1.P = 22im+αk1.P (1.5.82)

then 2 | (BnCl) =⇒ 2 | Bn or 2 | Cl.

** E-2-2-1-2-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1, with 2 ∤ B1. The equation
(1.5.82) becomes Bn

1 Cl = 22im+α−jnk1P:
- If 2im + α − jn ≥ 1 =⇒ 2 | Cl =⇒ 2 | C, no contradiction with Cl = 2im Am

1 + 2jnBn
1

and the conjecture (3.1.1) is verified.
- If 2im + α − jn ≤ 0 =⇒ 2 ∤ Cl, then the contradiction with Cl = 2im Am

1 + 2jnBn
1 =⇒ 2 |

Cl.

** E-2-2-1-2-2-2- We suppose that 2 | Cl =⇒ 2 | C. Using the same method described above,
we obtain the identical results.

** E-2-2-2- We suppose that ω ̸= 2. We recall the equations:

A2m = ωs.k1.a′ (1.5.83)
BnCl = ωs.k1(p′ − a′) (1.5.84)

** E-2-2-2-1- We suppose that ω, a′ are coprime, then ω ∤ a′. From the equation (1.5.83), we
have ω | A2m =⇒ ω | A =⇒ A = ωi A1 with ω ∤ A1 and s = 2im.

** E-2-2-2-1-1- We suppose that ω ∤ (p′ − a′). From the equation (1.5.84) above, we have
ω | (BnCl) =⇒ ω | Bn or ω | Cl.

** E-2-2-2-1-1-1- If ω | Bn =⇒ ω | B =⇒ B = ω jB1 with ω ∤ B1. Then Bn
1 Cl = 22im−jnk1(p′ −

a′):
- If 2im − jn ≥ 1 =⇒ ω | Cl =⇒ ω | C, no contradiction with Cl = ωim Am

1 + ω jnBn
1 and

the conjecture (3.1.1) is verified.
- If 2im − jn ≤ 0 =⇒ ω ∤ Cl, then the contradiction with Cl = ωim Am

1 + ω jnBn
1 =⇒ ω |

Cl.

** E-2-2-2-1-1-2- If ω | Cl =⇒ ω | C, using the same method described above, we obtain the
identical results.
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** E-2-2-2-1-2- We suppose that ω | (p′ − a′) =⇒ ω ∤ p′ as ω and a′ are coprime. ω |
(p′ − a′) =⇒ p′ − a′ = ωα.P with α ≥ 1 and ω ∤ P. The equation (1.5.84) becomes :

BnCl = ωs+αk1.P = ω2im+αk1.P (1.5.85)

then ω | (BnCl) =⇒ ω | Bn or ω | Cl.

** E-2-2-2-1-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ω jB1, with ω ∤ B1. The
equation (1.5.85) is written as Bn

1 Cl = 22im+α−jnk1P:
- If 2im + α − jn ≥ 1 =⇒ ω | Cl =⇒ ω | C, no contradiction with Cl = ωim Am

1 + ω jnBn
1

and the conjecture (3.1.1) is verified.
- If 2im + α − jn ≤ 0 =⇒ ω ∤ Cl, then the contradiction with Cl = ωim Am

1 + ω jnBn
1 =⇒

ω | Cl.

** E-2-2-2-1-2-2- We suppose that ω | Cl =⇒ ω | C, using the same method described
above, we obtain the identical results.

** E-2-2-2-2- We suppose that ω, a′ are not coprime, then a′ = ωβ.a” with ω ∤ a”. The
equation (1.5.83) becomes:

A2m = ωsk1a′ = ωs+βk1.a”

We have ω | A2m =⇒ ω | A =⇒ A = ωi A1 with ω ∤ A1 and s + β = 2im.

** E-2-2-2-2-1- We suppose that ω ∤ (p′ − a′) =⇒ ω ∤ p′ =⇒ ω ∤ (b = 4p′). From the
equation (1.5.84), we obtain ω | (BnCl) =⇒ ω | Bn or ω | Cl.

** E-2-2-2-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ω jB1 with ω ∤ B1. Then Bn
1 Cl = 2s−jnk1(p′ −

a′):
- If s − jn ≥ 1 =⇒ ω | Cl =⇒ ω | C, no contradiction with Cl = ωim Am

1 + ω jnBn
1 and the

conjecture (3.1.1) is verified.
- If s − jn ≤ 0 =⇒ ω ∤ Cl, then the contradiction with Cl = ωim Am

1 + ω jnBn
1 =⇒ ω | Cl.

** E-2-2-2-2-1-2- If ω | Cl =⇒ ω | C, using the same method described above, we obtain the
identical results.

** E-2-2-2-2-2- We suppose that ω | (p′ − a′ = p′ − ωβ.a”) =⇒ ω | p′ =⇒ ω | (4p′ = b), but
ω | a′ =⇒ ω | a. Then the contradiction with a, b coprime.

The study of the cases of 1.5.8 is achieved.

1.5.9 Case 3 | a and b | 4p

a = 3a′ and 4p = k1b. As A2m =
4p
3

cos2 θ

3
=

4p
3

3a′

b
= k1a′ and BnCl:

BnCl = 3
√

ρ2
(

3sin2 θ

3
− cos2 θ

3

)
=

p
3

(
3 − 4cos2 θ

3

)
=

p
3

(
3 − 4

3a′

b

)
=

k1

4
(b − 4a′)

As BnCl is an integer, we must obtain 4 | k1, or 4 | (b − 4a′) or (2 | k1 and 2 | (b − 4a′)).
** F-1- If k1 = 1 ⇒ b = 4p : it is the case 1.5.6.
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** F-2- If k1 = 4 ⇒ p = b : it is the case 1.5.3.

** F-3- If k1 = 2 and 2 | (b − 4a′): in this case, we have A2m = 2a′ =⇒ 2 | a′ =⇒ 2 | a.
2 | (b − 4a′) =⇒ 2 | b then the contradiction with a, b coprime.

** F-4- If 2 | k1 and 2 | (b − 4a′): 2 | (b − 4a′) =⇒ b − 4a′ = 2αλ, α and λ ∈ N∗ ≥ 1 with
2 ∤ λ; 2 | k1 =⇒ k1 = 2tk′1 with t ≥ 1 ∈ N∗ with 2 ∤ k′1 and we have:

A2m = 2tk′1a′ (1.5.86)

BnCl = 2t+α−2k′1λ (1.5.87)

From the equation (1.5.86), we have 2 | A2m =⇒ 2 | A =⇒ A = 2i A1, i ≥ 1 and 2 ∤ A1.
** F-4-1- We suppose that t = α = 1, then the equations (1.5.86-1.5.87) become :

A2m = 2k′1a′ (1.5.88)

BnCl = k′1λ (1.5.89)

From the equation (1.5.88) it follows that 2 | a′ =⇒ 2 | (a = 3a′). But b = 4a′ + 2λ =⇒ 2 | b,
then the contradiction with a, b coprime.

** F-4-2- We suppose that t + α − 2 ≥ 1 and we have the expressions:

A2m = 2tk′1a′ (1.5.90)

BnCl = 2t+α−2k′1λ (1.5.91)

** F-4-2-1- We suppose that 2 | a′ =⇒ 2 | a, but b = 2αλ + 4a′ =⇒ 2 | b, then the contradic-
tion with a, b coprime.

** F-4-2-2- We suppose that 2 ∤ a′. From (1.5.90), we have 2 | A2m =⇒ 2 | A =⇒ A = 2i A1
and BnCl = 2t+α−2k′1λ =⇒ 2 | BnCl =⇒ 2 | Bn or 2 | Cl.

** F-4-2-2-1- We suppose that 2 | Bn. We have 2 | B =⇒ B = 2jB1, j ≥ 1 and 2 ∤ B1. The
equation (1.5.91) becomes Bn

1 Cl = 2t+α−2−jnk′1λ:
- If t + α − 2 − jn > 0 =⇒ 2 | Cl =⇒ 2 | C, no contradiction with Cl = 2im Am

1 + 2jnBn
1

and the conjecture (3.1.1) is verified.
- If t + α − 2 − jn < 0 =⇒ 2 | k′1λ, but 2 ∤ k′1 and 2 ∤ λ. Then this case is impossible.
- If t + α − 2 − jn = 0 =⇒ Bn

1 Cl = k′1λ =⇒ 2 ∤ Cl then it is a contradiction with
Cl = 2im Am

1 + 2jnBn
1 .

** F-4-2-2-2- We suppose that 2 | Cl. We use the same method described above, we obtain
the identical results.

** F-5- We suppose that 4 | k1 with k1 > 4 ⇒ k1 = 4k′2, we have :

A2m = 4k′2a′ (1.5.92)

BnCl = k′2(b − 4a′) (1.5.93)

** F-5-1- We suppose that k′2 is prime, from (1.5.92), we have k′2 | a′. From (1.5.93),
k′2 | (BnCl) =⇒ k′2 | Bn or k′2 | Cl.
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** F-5-1-1- We suppose that k′2 | Bn =⇒ k′2 | B =⇒ B = k′β2 .B1 with β ≥ 1 and k′2 ∤ B1.
It follows that we have k′nβ−1

2 Bn
1 Cl = b − 4a′ =⇒ k′2 | b then the contradiction with a, b

coprime.

** F-5-1-2- We obtain identical results if we suppose that k′2 | Cl.

** F-5-2- We suppose that k′2 is not prime.

** F-5-2-1- We suppose that k′2 and a′ are coprime. From (1.5.92), k′2 can be written under
the form k′2 = q2j

1 .q2
2 and q1 ∤ q2 and q1 prime. We have A2m = 4q2j

1 .q2
2a′ =⇒ q1 | A and

BnCl = q2j
1 .q2

2(b − 4a′) =⇒ q1 | Bn or q1 | Cl.

** F-5-2-1-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = q f
1 .B1 with q1 ∤ B1. We obtain

Bn
1 Cl = q2j− f n

1 q2
2(b − 4a′):

- If 2j− f .n ≥ 1 =⇒ q1 | Cl =⇒ q1 | C but Cl = Am + Bn gives also q1 | C and the conjecture
(3.1.1) is verified.
- If 2j − f .n = 0, we have Bn

1 Cl = q2
2(b − 4a′), but Cl = Am + Bn gives q1 | C, then

q1 | (b − 4a′). As q1 and a′ are coprime, then q1 ∤ b, and the conjecture (3.1.1) is verified.
- If 2j− f .n < 0 =⇒ q1 | (b− 4a′) =⇒ q1 ∤ b because a′ is coprime with q1, and Cl = Am + Bn

gives q1 | C, and the conjecture (3.1.1) is verified.

** F-5-2-1-2- We obtain identical results if we suppose that q1 | Cl.

** F-5-2-2- We suppose that k′2, a′ are not coprime. Let q1 be a prime so that q1 | k′2 and
q1 | a′. We write k′2 under the form qj

1.q2 with j ≥ 1, q1 ∤ q2. From A2m = 4k′2a′ =⇒ q1 |
A2m =⇒ q1 | A. Then from BnCl = qj

1q2(b − 4a′), it follows that q1 | (BnCl) =⇒ q1 | Bn or
q1 | Cl.

** F-5-2-2-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qβ
1 .B1 with β ≥ 1 and q1 ∤ B1.

Then, we have qnβ
1 Bn

1 Cl = qj
1q2(b − 4a′) =⇒ Bn

1 Cl = qj−nβ
1 q2(b − 4a′).

- If j − nβ ≥ 1, then q1 | Cl =⇒ q1 | C, but Cl = Am + Bn gives q1 | C, then the conjecture
(3.1.1) is verified.
- If j − nβ = 0, we obtain Bn

1 Cl = q2(b − 4a′), but Cl = Am + Bn gives q1 | C, then
q1 | (b − 4a′) =⇒ q1 | b because q1 | a′ =⇒ q1 | a, then the contradiction with a, b coprime.
- If j − nβ < 0 =⇒ q1 | (b − 4a′) =⇒ q1 | b, because q1 | a′ =⇒ q1 | a, then the contradiction
with a, b coprime.

** F-5-2-2-2- We obtain identical results if we suppose that q1 | Cl.

** F-6- If 4 ∤ (b − 4a′) and 4 ∤ k1 it is impossible. We suppose that 4 | (b − 4a′) ⇒ 4 | b, and
b − 4a′ = 4t.g , t ≥ 1 with 4 ∤ g, then we have :

A2m = k1a′

BnCl = k1.4t−1.g

** F-6-1- We suppose that k1 is prime. From A2m = k1a′ we deduce easily that k1 | a′. From
BnCl = k1.4t−1.g we obtain that k1 | (BnCl) =⇒ k1 | Bn or k1 | Cl.
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** F-6-1-1- We suppose that k1 | Bn =⇒ k1 | B =⇒ B = kj
1.B1 with j > 0 and k1 ∤ B1, then

kn.j
1 Bn

1 Cl = k1.4t−1.g =⇒ kn.j−1
1 Bn

1 Cl = 4t−1.g. But n ≥ 3 and j ≥ 1, then n.j − 1 ≥ 2. We
deduce as k1 ̸= 2 that k1 | g =⇒ k1 | (b − 4a′), but k1 | a′ =⇒ k1 | b, then the contradiction
with a, b coprime.

** F-6-1-2- We obtain identical results if we suppose that k1 | Cl.

** F-6-2- We suppose that k1 is not prime ̸= 4, (k1 = 4 see case F-2, above) with 4 ∤ k1.

** F-6-2-1- If k1 = 2k′ with k′ odd > 1. Then A2m = 2k′a′ =⇒ 2 | a′ =⇒ 2 | a, as 4 | b it
follows the contradiction with a, b coprime.

** F-6-2-2- We suppose that k1 is odd with k1 and a′ coprime. We write k1 under the form
k1 = qj

1.q2 with q1 ∤ q2, q1 prime and j ≥ 1. BnCl = qj
1.q24t−1g =⇒ q1 | Bn or q1 | Cl.

** F-6-2-2-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = q f
1 .B1 with q1 ∤ B1. We obtain

Bn
1 Cl = qj− f .n

1 q24t−1g.
- If j − f .n ≥ 1 =⇒ q1 | Cl =⇒ q1 | C, but Cl = Am + Bn gives also q1 | C and the conjecture
(3.1.1) is verified.
- If j − f .n = 0, we have Bn

1 Cl = q24t−1g, but Cl = Am + Bn gives q1 | C, then q1 | (b − 4a′).
As q1 and a′ are coprime then q1 ∤ b and the conjecture (3.1.1) is verified.
- If j − f .n < 0 =⇒ q1 | (b − 4a′) =⇒ q1 ∤ b because q1, a′ are primes. Cl = Am + Bn gives
q1 | C and the conjecture (3.1.1) is verified.

** F-6-2-2-2- We obtain identical results if we suppose that q1 | Cl.

** F-6-2-3- We suppose that k1 and a′ are not coprime. Let q1 be a prime so that q1 | k1 and
q1 | a′. We write k1 under the form qj

1.q2 with q1 ∤ q2. From A2m = k1a′ =⇒ q1 | A2m =⇒
q1 | A. From BnCl = qj

1q2(b − 4a′), it follows that q1 | (BnCl) =⇒ q1 | Bn or q1 | Cl.

** F-6-2-3-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qβ
1 .B1 with β ≥ 1 and q1 ∤ B1. Then

we have qnβ
1 Bn

1 Cl = qj
1q2(b − 4a′) =⇒ Bn

1 Cl = qj−nβ
1 q2(b − 4a′):

- If j − nβ ≥ 1, then q1 | Cl =⇒ q1 | C, but Cl = Am + Bn gives q1 | C, and the conjecture
(3.1.1) is verified.

- If j − nβ = 0, we obtain Bn
1 Cl = q2(b − 4a′), but q1 | A and q1 | B then q1 | C and we

obtain q1 | (b − 4a′) =⇒ q1 | b because q1 | a′ =⇒ q1 | a, then the contradiction with a, b
coprime.

- If j − nβ < 0 =⇒ q1 | (b − 4a′) =⇒ q1 | b, then the contradiction with a, b coprime.

** F-6-2-3-2- We obtain identical results as above if we suppose that q1 | Cl.

1.6 Hypothesis: {3 | p and b | 4p}
1.6.1 Case b = 2 and 3 | p

3 | p ⇒ p = 3p′ with p′ ̸= 1 because 3 ≪ p, and b = 2, we obtain:

A2m =
4p.a
3b

=
4.3p′.a

3b
=

4.p′.a
2

= 2.p′.a
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As:
1
4
< cos2 θ

3
=

a
b
=

a
2
<

3
4
⇒ 1 < 2a < 3 ⇒ a = 1 =⇒ cos2 θ

3
=

1
2

but this case was studied (see case 1.4.1).

1.6.2 Case b = 4 and 3 | p

we have 3 | p =⇒ p = 3p′ with p′ ∈ N∗, it follows :

A2m =
4p.a
3b

=
4.3p′.a
3 × 4

= p′.a

and:
1
4
< cos2 θ

3
=

a
b
=

a
4
<

3
4
⇒ 1 < a < 3 ⇒ a = 2

as a, b are coprime, then the case b = 4 and 3 | p is impossible.

1.6.3 Case: b ̸= 2, b ̸= 4, b ̸= 3, b | p and 3 | p

As 3 | p, then p = 3p′ and :

A2m =
4p
3

cos2 θ

3
=

4p
3

a
b
=

4 × 3p′

3
a
b
=

4p′a
b

We consider the case: b | p′ =⇒ p′ = bp” and p” ̸= 1 (If p” = 1, then p = 3b, see paragraph
1.6.8 Case k′ = 1). Finally, we obtain:

A2m =
4bp”a

b
= 4ap” ; BnCl = p”.(3b − 4a)

** G-1- We suppose that p” is prime, then A2m = 4ap” = (Am)2 =⇒ p” | a. But
BnCl = p”(3b − 4a) =⇒ p” | Bn or p” | Cl.

** G-1-1- If p” | Bn =⇒ p” | B =⇒ B = p”B1 with B1 ∈ N∗. Then p”n−1Bn
1 Cl = 3b − 4a. As

n > 2, then (n − 1) > 1 and p” | a, then p” | 3b =⇒ p” = 3 or p” | b.

** G-1-1-1- If p” = 3 =⇒ 3 | a, with a that we write as a = 3a′2, but Am = 6a′ =⇒
3 | Am =⇒ 3 | A =⇒ A = 3A1, then 3m−1Am

1 = 2a′ =⇒ 3 | a′ =⇒ a′ = 3a”. As
p”n−1Bn

1 Cl = 3n−1Bn
1 Cl = 3b − 4a =⇒ 3n−2Bn

1 Cl = b − 36a”2. As n > 2 =⇒ n − 2 ≥ 1, then
3 | b and the contradiction with a, b coprime.

** G-1-1-2- We suppose that p” | b, as p” | a, then the contradiction with a, b coprime.

** G-1-2- If we suppose p” | Cl, we obtain identical results (contradictions).

** G-2- We consider now that p” is not prime.

** G-2-1- p”, a coprime: A2m = 4ap” =⇒ Am = 2a′.p1 with a = a′2 and p” = p2
1, then a′, p1

are also coprime. As Am = 2a′.p1, then 2 | a′ or 2 | p1.

** G-2-1-1- We suppose that 2 | a′, then 2 | a′ =⇒ 2 ∤ p1, but p” = p2
1.
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** G-2-1-1-1- If p1 is prime, it is impossible with Am = 2a′.p1.

** G-2-1-1-2- We suppose that p1 is not prime so we can write p1 = ωm =⇒ p” = ω2m.
Then BnCl = ω2m(3b − 4a).

** G-2-1-1-2-1- If ω is prime, ω ̸= 2, then ω | (BnCl) =⇒ ω | Bn or ω | Cl.

** G-2-1-1-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ω jB1 with ω ∤ B1, then Bn
1 .Cl = ω2m−nj(3b −

4a).

** G-2-1-1-2-1-1-1- If 2m − n.j = 0, we obtain Bn
1 .Cl = 3b − 4a. As Cl = Am + Bn =⇒ ω |

Cl =⇒ ω | C, and ω | (3b − 4a). But ω ̸= 2 and ω, a′ are coprime, then ω, a are coprime, it
follows ω ∤ (3b), then ω ̸= 3 and ω ∤ b, the conjecture (3.1.1) is verified.

** G-2-1-1-2-1-1-2- If 2m − nj ≥ 1, using the method as above, we obtain ω | Cl =⇒ ω | C
and ω | (3b − 4a) and ω ∤ a and ω ̸= 3 and ω ∤ b, then the conjecture (3.1.1) is verified.

** G-2-1-1-2-1-1-3- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .Cl = 3b − 4a. From Am + Bn = Cl =⇒

ω | Cl =⇒ ω | C, then C = ωh.C1, with ω ∤ C1, we obtain ωn.j−2m+h.lBn
1 .Cl

1 = 3b − 4a. If
n.j − 2m + h.l < 0 =⇒ ω | Bn

1 Cl
1 then the contradiction with ω ∤ B1 or ω ∤ C1. It follows

n.j − 2m + h.l > 0 and ω | (3b − 4a) with ω, a, b coprime and the conjecture is verified.

** G-2-1-1-2-1-2- Using the same method above, we obtain identical results if ω | Cl.

** G-2-1-1-2-2- We suppose that p” = ω2m and ω is not prime. We write ω = ω
f
1 .Ω with ω1

prime ∤ Ω, f ≥ 1, and ω1 | A. Then BnCl = ω
2 f .m
1 Ω2m(3b − 4a) =⇒ ω1 | (BnCl) =⇒ ω1 | Bn

or ω1 | Cl.

** G-2-1-1-2-2-1- If ω1 | Bn =⇒ ω1 | B =⇒ B = ω
j
1B1 with ω1 ∤ B1, then Bn

1 .Cl =

ω
2.m−nj
1 Ω2m(3b − 4a):

** G-2-1-1-2-2-1-1- If 2 f .m− n.j = 0, we obtain Bn
1 .Cl = Ω2m(3b− 4a). As Cl = Am + Bn =⇒

ω1 | Cl =⇒ ω1 | C, and ω1 | (3b − 4a). But ω1 ̸= 2 and ω1, a′ are coprime, then ω, a are
coprime, it follows ω1 ∤ (3b), then ω1 ̸= 3 and ω1 ∤ b, and the conjecture (3.1.1) is verified.

** G-2-1-1-2-2-1-2- If 2 f .m − n.j ≥ 1, we have ω1 | Cl =⇒ ω1 | C and ω1 | (3b − 4a) and
ω1 ∤ a and ω1 ̸= 3 and ω1 ∤ b, it follows that the conjecture (3.1.1) is verified.

** G-2-1-1-2-2-1-3- If 2 f .m − n.j < 0 =⇒ ω
n.j−2m. f
1 Bn

1 .Cl = Ω2m(3b − 4a). As ω1 | C using
Cl = Am + Bn, then C = ωh

1 .C1 =⇒ ωn.j−2m. f+h.lBn
1 .Cl

1 = Ω2m(3b − 4a). If n.j − 2m. f + h.l <
0 =⇒ ω1 | Bn

1 Cl
1, then the contradiction with ω1 ∤ B1 and ω1 ∤ C1. Then if n.j − 2m. f + h.l >

0 and ω1 | (3b − 4a) with ω1, a, b coprime and the conjecture (3.1.1) is verified.

** G-2-1-1-2-2-2- Using the same method above, we obtain identical results if ω1 | Cl.

** G-2-1-2- We suppose that 2 | p1: then 2 | p1 =⇒ 2 ∤ a′ =⇒ 2 ∤ a, but p” = p2
1.

** G-2-1-2-1- We suppose that p1 = 2, we obtain Am = 4a′ =⇒ 2 | a′, then the contradiction
with a, b coprime.
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** G-2-1-2-2- We suppose that p1 is not prime and 2 | p1. As Am = 2a′p1, p1 can written as
p1 = 2m−1ωm =⇒ p” = 22m−2ω2m. Then BnCl = 22m−2ω2m(3b − 4a) =⇒ 2 | Bn or 2 | Cl.

** G-2-1-2-2-1- We suppose that 2 | Bn =⇒ 2 | B. As 2 | A, then 2 | C. From BnCl =
22m−2ω2m(3b − 4a) it follows that if 2 | (3b − 4a) =⇒ 2 | b but as 2 ∤ a there is no contradic-
tion with a, b coprime and the conjecture (3.1.1) is verified.

** G-2-1-2-2-2- We suppose that 2 | Cl, using the same method above, we obtain identical
results.

** G-2-2- We suppose that p”, a are not coprime: let ω be a prime integer so that ω | a and
ω | p”.

** G-2-2-1- We suppose that ω = 3. As A2m = 4ap” =⇒ 3 | A, but 3 | p. As p =
A2m + B2n + AmBn =⇒ 3 | B2n =⇒ 3 | B, then 3 | Cl =⇒ 3 | C. We write A = 3i A1,
B = 3jB1, C = 3hC1 with 3 coprime with A1, B1 and C1 and p = 32im A2m

1 + 32njB2n
1 +

3im+jn Am
1 Bn

1 = 3k.g with k = min(2im, 2jn, im + jn) and 3 ∤ g. We have also (ω = 3) | a
and (ω = 3) | p” that gives a = 3αa1, 3 ∤ a1 and p” = 3µ p1, 3 ∤ p1 with A2m = 4ap” =
32im A2m

1 = 4 × 3α+µ.a1.p1 =⇒ α + µ = 2im. As p = 3p′ = 3b.p” = 3b.3µ p1 = 3µ+1.b.p1,
the exponent of the factor 3 of p is k, the exponent of the factor 3 of the left member of
the last equation is µ + 1 added of the exponent β of 3 of the term b, with β ≥ 0, let
min(2im, 2jn, im + jn) = µ + 1 + β and we recall that α + µ = 2im. But BnCl = p”(3b − 4a),
we obtain 3(nj+hl)Bn

1 Cl
1 = 3µ+1p1(b − 4 × 3(α−1)a1) = 3µ+1p1(3βb1 − 4 × 3(α−1)a1), 3 ∤ b1.

We have also Am + Bn = Cl =⇒ 3im Am
1 + 3jnBn

1 = 3hlCl
1. We call ϵ = min(im, jn), we have

ϵ = hl = min(im, jn). We obtain the conditions:

k = min(2im, 2jn, im + jn) = µ + 1 + β (1.6.1)
α + µ = 2im (1.6.2)

ϵ = hl = min(im, jn)

3(nj+hl)Bn
1 Cl

1 = 3µ+1p1(3βb1 − 4 × 3(α−1)a1)

** G-2-2-1-1- α = 1 =⇒ a = 3a1 and 3 ∤ a1, the equation (1.6.2) becomes:

1 + µ = 2im

and the first equation (1.6.1) is written as:

k = min(2im, 2jn, im + jn) = 2im + β

- If k = 2im =⇒ β = 0 then 3 ∤ b. We obtain 2im ≤ 2jn =⇒ im ≤ jn, and 2im ≤ im + jn =⇒
im ≤ jn. The third equation gives hl = im and the last equation gives nj + hl = µ + 1 =
2im =⇒ im = nj, then im = nj = hl and Bn

1 Cl
1 = p1(b − 4a1). As a, b are coprime, the

conjecture (3.1.1) is verified.
- If k = 2jn or k = im + jn, we obtain β = 0, im = jn = hl and Bn

1 Cl
1 = p1(b − 4a1). As

a, b are coprime, the conjecture (3.1.1) is verified.

** G-2-2-1-2- α > 1 =⇒ α ≥ 2.
- If k = 2im =⇒ 2im = µ + 1 + β, but µ = 2im − α that gives α = 1 + β ≥ 2 =⇒ β ̸=

0 =⇒ 3 | b, but 3 | a then the contradiction with a, b coprime.
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- If k = 2jn = µ + 1 + β ≤ 2im =⇒ µ + 1 + β ≤ µ + α =⇒ 1 + β ≤ α =⇒ β ≥ 1. If
β ≥ 1 =⇒ 3 | b but 3 | a, then the contradiction with a, b coprime.

- If k = im + jn =⇒ im + jn ≤ 2im =⇒ jn ≤ im, and im + jn ≤ 2jn =⇒ im ≤ jn, then
im = jn. As k = im + jn = 2im = 1 + µ + β and α + µ = 2im, we obtain α = 1 + β ≥ 2 =⇒
β ≥ 1 =⇒ 3 | b, then the contradiction with a, b coprime.

** G-2-2-2- We suppose that ω ̸= 3. We write a = ωαa1 with ω ∤ a1 and p” = ωµ p1
with ω ∤ p1. As A2m = 4ap” = 4ωα+µ.a1.p1 =⇒ ω | A =⇒ A = ωi A1, ω ∤ A1. But
BnCl = p”(3b − 4a) = ωµ p1(3b − 4a) =⇒ ω | BnCl =⇒ ω | Bn or ω | Cl.

** G-2-2-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ω jB1 and ω ∤ B1. From
Am + Bn = Cl =⇒ ω | Cl =⇒ ω | C. As p = bp′ = 3bp” = 3ωµbp1 = ωk(ω2im−k A2m

1 +

ω2jn−kB2n
1 + ωim+jn−k Am

1 Bn
1 ) with k = min(2im, 2jn, im + jn). Then:

- If k = µ, then ω ∤ b and the conjecture (3.1.1) is verified.
- If k > µ, then ω | b, but ω | a then the contradiction with a, b coprime.
- If k < µ, it follows from:

3ωµbp1 = ωk(ω2im−k A2m
1 + ω2jn−kB2n

1 + ωim+jn−k Am
1 Bn

1 )

that ω | A1 or ω | B1 then the contradiction with ω ∤ A1 or ω ∤ B1.

** G-2-2-2-2- If ω | Cl =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1. From Am + Bn = Cl =⇒ ω |
(Cl − Am) =⇒ ω | B. Then, using the same method as for the case G-2-2-2-1-, we obtain
identical results.

1.6.4 Case b = 3 and 3 | p

As 3 | p =⇒ p = 3p′, We write :

A2m =
4p
3

cos2 θ

3
=

4p
3

a
b
=

4 × 3p′

3
a
3
=

4p′a
3

As A2m is an integer and a, b are coprime and cos2 θ

3
< 1 (see equation (1.3.9)), then we

have necessary 3 | p′ =⇒ p′ = 3p” with p” ̸= 1, if not p = 3p′ = 3 × 3p” = 9, but
9 ≪ (p = A2m + B2n + AmBn), the hypothesis p” = 1 is impossible, then p” > 1, and we
obtain:

A2m =
4p′a

3
=

4 × 3p”a
3

= 4p”a ; BnCl = p”.(9 − 4a)

As
1
4
< cos2 θ

3
=

a
b
=

a
3
<

3
4
=⇒ 3 < 4a < 9 =⇒ as a > 1, a = 2 and we obtain:

A2m = 4p”a = 8p” ; BnCl =
3p”(9 − 4a)

3
= p” (1.6.3)

The two last equations above imply that p” is not a prime. We can write p” as : p” =
∏i∈I pαi

i where pi are distinct primes, αi elements of N∗ and i ∈ I a finite set of in-
dexes. We can write also p” = pα1

1 .q1 with p1 ∤ q1. From (1.6.3), we have p1 | A and
p1 | BnCl =⇒ p1 | Bn or p1 | Cl.

** H-1- We suppose that p1 | Bn =⇒ B = pβ1
1 .B1 with p1 ∤ B1 and β1 ≥ 1. Then, we obtain

Bn
1 Cl = pα1−nβ1

1 .q1 with the following cases:
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- If α1 − nβ1 ≥ 1 =⇒ p1 | Cl =⇒ p1 | C, in accord with p1 | (Cl = Am + Bn), it follows
that the conjecture (3.1.1) is verified.

- If α1 − nβ1 = 0 =⇒ Bn
1 Cl = q1 =⇒ p1 ∤ Cl, it is a contradiction with p1 | (Am − Bn) =⇒

p1 | Cl. Then this case is impossible.
- If α1 − nβ1 < 0, we obtain pnβ1−α1

1 Bn
1 Cl = q1 =⇒ p1 | q1, it is a contradiction with

p1 ∤ q1. Then this case is impossible.

** H-2- We suppose that p1 | Cl, using the same method as for the case p1 | Bn, we obtain
identical results.

1.6.5 Case 3 | p and b = p

We have cos2 θ

3
=

a
b
=

a
p

and:

A2m =
4p
3

cos2 θ

3
=

4p
3

.
a
p
=

4a
3

As A2m is an integer, it implies that 3 | a, but 3 | p =⇒ 3 | b. As a and b are coprime, then
the contradiction and the case 3 | p and b = p is impossible.

1.6.6 Case 3 | p and b = 4p

3 | p =⇒ p = 3p′, p′ ̸= 1 because 3 ≪ p, then b = 4p = 12p′.

A2m =
4p
3

cos2 θ

3
=

4p
3

a
b
=

a
3
=⇒ 3 | a

as A2m is an integer. But 3 | p =⇒ 3 | [(4p) = b], then the contradiction with a, b coprime
and the case b = 4p is impossible.

1.6.7 Case 3 | p and b = 2p

3 | p =⇒ p = 3p′, p′ ̸= 1 because 3 ≪ p, then b = 2p = 6p′.

A2m =
4p
3

cos2 θ

3
=

4p
3

a
b
=

2a
3

=⇒ 3 | a

as A2m is an integer. But 3 | p =⇒ 3 | (2p) =⇒ 3 | b, then the contradiction with a, b
coprime and the case b = 2p is impossible.

1.6.8 Case 3 | p and b ̸= 3 a divisor of p

We have b = p′ ̸= 3, and p is written as p = kp′ with 3 | k =⇒ k = 3k′ and :

A2m =
4p
3

cos2 θ

3
=

4p
3

.
a
b
= 4ak′

BnCl =
p
3

.
(

3 − 4cos2 θ

3

)
= k′(3p′ − 4a) = k′(3b − 4a)

** I-1- k′ ̸= 1:
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** I-1-1- We suppose that k′ is prime, then A2m = 4ak′ = (Am)2 =⇒ k′ | a. But BnCl =
k′(3b − 4a) =⇒ k′ | Bn or k′ | Cl.

** I-1-1-1- If k′ | Bn =⇒ k′ | B =⇒ B = k′B1 with B1 ∈ N∗. Then k′n−1Bn
1 Cl = 3b − 4a. As

n > 2, then (n − 1) > 1 and k′ | a, then k′ | 3b =⇒ k′ = 3 or k′ | b.

** I-1-1-1-1- If k′ = 3 =⇒ 3 | a, with a that we can write it under the form a = 3a′2. But
Am = 6a′ =⇒ 3 | Am =⇒ 3 | A =⇒ A = 3A1 with A1 ∈ N∗. Then 3m−1Am

1 = 2a′ =⇒
3 | a′ =⇒ a′ = 3a”. But k′n−1Bn

1 Cl = 3n−1Bn
1 Cl = 3b − 4a =⇒ 3n−2Bn

1 Cl = b − 36a”2. As
n ≥ 3 =⇒ n − 2 ≥ 1, then 3 | b. Hence the contradiction with a, b coprime.

** I-1-1-1-2- We suppose that k′ | b, but k′ | a, then the contradiction with a, b coprime.

** I-1-1-2- We suppose that k′ | Cl, using the same method as for the case k′ | Bn, we obtain
identical results.

** I-1-2- We consider that k′ is not a prime.

** I-1-2-1- We suppose that k′, a coprime: A2m = 4ak′ =⇒ Am = 2a′.p1 with a = a′2 and
k′ = p2

1, then a′, p1 are also coprime. As Am = 2a′.p1 then 2 | a′ or 2 | p1.

** I-1-2-1-1- We suppose that 2 | a′, then 2 | a′ =⇒ 2 ∤ p1, but k′ = p2
1.

** I-1-2-1-1-1- If p1 is prime, it is impossible with Am = 2a′.p1.

** I-1-2-1-1-2- We suppose that p1 is not prime and it can be written as p1 = ωm =⇒ k′ =
ω2m. Then BnCl = ω2m(3b − 4a).

** I-1-2-1-1-2-1- If ω is prime ̸= 2, then ω | (BnCl) =⇒ ω | Bn or ω | Cl.

** I-1-2-1-1-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ω jB1 with ω ∤ B1, then Bn
1 .Cl = ω2m−nj(3b −

4a).
- If 2m − n.j = 0, we obtain Bn

1 .Cl = 3b − 4a, as Cl = Am + Bn =⇒ ω | Cl =⇒ ω | C, and
ω | (3b − 4a). But ω ̸= 2 and ω, a′ are coprime, then ω ∤ (3b) =⇒ ω ̸= 3 and ω ∤ b. Hence,
the conjecture (3.1.1) is verified.

- If 2m − nj ≥ 1, using the same method, we have ω | Cl =⇒ ω | C and ω | (3b − 4a)
and ω ∤ a and ω ̸= 3 and ω ∤ b. Then the conjecture (3.1.1) is verified.

- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .Cl = 3b − 4a. As Cl = Am + Bn =⇒ ω | C then

C = ωh.C1 =⇒ ωn.j−2m+h.lBn
1 .Cl

1 = 3b − 4a. If n.j − 2m + h.l < 0 =⇒ ω | Bn
1 Cl

1, then the
contradiction with ω ∤ B1 or ω ∤ C1. If n.j − 2m + h.l > 0 =⇒ ω | (3b − 4a) with ω, a, b
coprime, it implies that the conjecture (3.1.1) is verified.

** I-1-2-1-1-2-1-2- We suppose that ω | Cl, using the same method as for the case ω | Bn, we
obtain identical results.

** I-1-2-1-1-2-2- Now k′ = ω2m and ω not a prime, we write ω = ω
f
1 .Ω with ω1 a prime ∤ Ω

and f ≥ 1 an integer, and ω1 | A, then BnCl = ω
2 f .m
1 Ω2m(3b − 4a) =⇒ ω1 | (BnCl) =⇒ ω1 |

Bn or ω1 | Cl.
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** I-1-2-1-1-2-2-1- If ω1 | Bn =⇒ ω1 | B =⇒ B = ω
j
1B1 with ω1 ∤ B1, then Bn

1 .Cl =

ω
2. f m−nj
1 Ω2m(3b − 4a).

- If 2 f .m − n.j = 0, we obtain Bn
1 .Cl = Ω2m(3b − 4a). As Cl = Am + Bn =⇒ ω1 | Cl =⇒

ω1 | C, and ω1 | (3b − 4a). But ω1 ̸= 2 and ω1, a′ are coprime, then ω, a are coprime, then
ω1 ∤ (3b) =⇒ ω1 ̸= 3 and ω1 ∤ b. Hence, the conjecture (3.1.1) is verified.

- If 2 f .m − n.j ≥ 1, we have ω1 | Cl =⇒ ω1 | C and ω1 | (3b − 4a) and ω1 ∤ a and ω1 ̸= 3
and ω1 ∤ b, then the conjecture (3.1.1) is verified.

- If 2 f .m − n.j < 0 =⇒ ω
n.j−2m. f
1 Bn

1 .Cl = Ω2m(3b − 4a). As Cl = Am + Bn =⇒ ω1 | C
, then C = ωh

1 .C1 =⇒ ωn.j−2m. f+h.lBn
1 .Cl

1 = Ω2m(3b − 4a). If n.j − 2m. f + h.l < 0 =⇒ ω1 |
Bn

1 Cl
1, then the contradiction with ω1 ∤ B1 and ω1 ∤ C1. Then if n.j − 2m. f + h.l > 0 and

ω1 | (3b − 4a) with ω1, a, b coprime, then the conjecture (3.1.1) is verified.

** I-1-2-1-1-2-2-2- As in the case ω1 | Bn, we obtain identical results if ω1 | Cl.

** I-1-2-1-2- If 2 | p1: then 2 | p1 =⇒ 2 ∤ a′ =⇒ 2 ∤ a, but k′ = p2
1.

** I-1-2-1-2-1- If p1 = 2, we obtain Am = 4a′ =⇒ 2 | a′, then the contradiction with 2 ∤ a′.
Case to reject.

** I-1-2-1-2-2- We suppose that p1 is not prime and 2 | p1. As Am = 2a′p1, p1 is writ-
ten under the form p1 = 2m−1ωm =⇒ p2

1 = 22m−2ω2m. Then BnCl = k′(3b − 4a) =

22m−2ω2m(3b − 4a) =⇒ 2 | Bn or 2 | Cl.

** I-1-2-1-2-2-1- If 2 | Bn =⇒ 2 | B, as 2 | A =⇒ 2 | C. From BnCl = 22m−2ω2m(3b − 4a) it
follows that if 2 | (3b − 4a) =⇒ 2 | b but as 2 ∤ a, there is no contradiction with a, b coprime
and the conjecture (3.1.1) is verified.

** I-1-2-1-2-2-2- We obtain identical results as above if 2 | Cl.

** I-1-2-2- We suppose that k′, a are not coprime: let ω be a prime integer so that ω | a and
ω | p2

1.

** I-1-2-2-1- We suppose that ω = 3. As A2m = 4ak′ =⇒ 3 | A, but 3 | p. As p =
A2m + B2n + AmBn =⇒ 3 | B2n =⇒ 3 | B, then 3 | Cl =⇒ 3 | C. We write A = 3i A1,
B = 3jB1, C = 3hC1 with 3 coprime with A1, B1 and C1 and p = 32im A2m

1 + 32njB2n
1 +

3im+jn Am
1 Bn

1 = 3s.g with s = min(2im, 2jn, im + jn) and 3 ∤ g. We have also (ω = 3) | a
and (ω = 3) | k′ that give a = 3αa1, 3 ∤ a1 and k′ = 3µ p2, 3 ∤ p2 with A2m = 4ak′ =
32im A2m

1 = 4 × 3α+µ.a1.p2 =⇒ α + µ = 2im. As p = 3p′ = 3b.k′ = 3b.3µ p2 = 3µ+1.b.p2.
The exponent of the factor 3 of p is s, the exponent of the factor 3 of the left member of
the last equation is µ + 1 added of the exponent β of 3 of the factor b, with β ≥ 0, let
min(2im, 2jn, im + jn) = µ + 1 + β, we recall that α + µ = 2im. But BnCl = k′(4b − 3a)
that gives 3(nj+hl)Bn

1 Cl
1 = 3µ+1p2(b − 4 × 3(α−1)a1) = 3µ+1p2(3βb1 − 4 × 3(α−1)a1), 3 ∤ b1. We

have also Am + Bn = Cl that gives 3im Am
1 + 3jnBn

1 = 3hlCl
1. We call ϵ = min(im, jn), we

obtain ϵ = hl = min(im, jn). We have then the conditions:

s = min(2im, 2jn, im + jn) = µ + 1 + β (1.6.4)
α + µ = 2im (1.6.5)

ϵ = hl = min(im, jn) (1.6.6)

3(nj+hl)Bn
1 Cl

1 = 3µ+1p2(3βb1 − 4 × 3(α−1)a1) (1.6.7)
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** I-1-2-2-1-1- α = 1 =⇒ a = 3a1 and 3 ∤ a1, the equation (1.6.5) becomes:

1 + µ = 2im

and the first equation (1.6.4) is written as :

s = min(2im, 2jn, im + jn) = 2im + β

- If s = 2im =⇒ β = 0 =⇒ 3 ∤ b. We obtain 2im ≤ 2jn =⇒ im ≤ jn, and 2im ≤
im + jn =⇒ im ≤ jn. The third equation (1.6.6) gives hl = im. The last equation (1.6.7)
gives nj + hl = µ + 1 = 2im =⇒ im = jn, then im = jn = hl and Bn

1 Cl
1 = p2(b − 4a1). As

a, b are coprime, the conjecture (3.1.1) is verified.
- If s = 2jn or s = im + jn, we obtain β = 0, im = jn = hl and Bn

1 Cl
1 = p2(b − 4a1). Then

as a, b are coprime, the conjecture (3.1.1) is verified.

** I-1-2-2-1-2- α > 1 =⇒ α ≥ 2.
- If s = 2im =⇒ 2im = µ + 1 + β, but µ = 2im − α it gives α = 1 + β ≥ 2 =⇒ β ̸=

0 =⇒ 3 | b, but 3 | a then the contradiction with a, b coprime and the conjecture (3.1.1) is
not verified.

- If s = 2jn = µ + 1 + β ≤ 2im =⇒ µ + 1 + β ≤ µ + α =⇒ 1 + β ≤ α =⇒ β = 1. If
β = 1 =⇒ 3 | b but 3 | a, then the contradiction with a, b coprime and the conjecture (3.1.1)
is not verified.

- If s = im + jn =⇒ im + jn ≤ 2im =⇒ jn ≤ im, and im + jn ≤ 2jn =⇒ im ≤ jn, then
im = jn. As s = im + jn = 2im = 1+ µ + β and α + µ = 2im it gives α = 1+ β ≥ 2 =⇒ β ≥
1 =⇒ 3 | b, then the contradiction with a, b coprime and the conjecture (3.1.1) is not verified.

** I-1-2-2-2- We suppose that ω ̸= 3. We write a = ωαa1 with ω ∤ a1 and k′ = ωµ p2
with ω ∤ p2. As A2m = 4ak′ = 4ωα+µ.a1.p2 =⇒ ω | A =⇒ A = ωi A1, ω ∤ A1. But
BnCl = k′(3b − 4a) = ωµ p2(3b − 4a) =⇒ ω | BnCl =⇒ ω | Bn or ω | Cl.

** I-1-2-2-2-1- ω | Bn =⇒ ω | B =⇒ Bn = ω jB1 and ω ∤ B1. From Am + Bn = Cl =⇒ ω |
Cl =⇒ ω | C. As p = bp′ = 3bk′ = 3ωµbp2 = ωs(ω2im−s A2m

1 + ω2jn−sB2n
1 + ωim+jn−s Am

1 Bn
1 )

with s = min(2im, 2jn, im + jn). Then:
- If s = µ, then ω ∤ b and the conjecture (3.1.1) is verified.
- If s > µ, then ω | b, but ω | a then the contradiction with a, b coprime and the

conjecture (3.1.1) is not verified.
- If s < µ, it follows from:

3ωµbp1 = ωs(ω2im−s A2m
1 + ω2jn−sB2n

1 + ωim+jn−s Am
1 Bn

1 )

that ω | A1 or ω | B1 that is the contradiction with the hypothesis and the conjecture (3.1.1)
is not verified.

** I-1-2-2-2-2- If ω | Cl =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1. From Am + Bn = Cl =⇒ ω |
(Cl − Am) =⇒ ω | B. Then we obtain identical results as the case above I-1-2-2-2-1-.

** I-2- We suppose k′ = 1: then k′ = 1 =⇒ p = 3b, then we have A2m = 4a = (2a′)2 =⇒
Am = 2a′, then a = a′2 is even and :

AmBn = 2 3
√

ρcos
θ

3
. 3
√

ρ

(√
3sin

θ

3
− cos

θ

3

)
=

p
√

3
3

sin
2θ

3
− 2a
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and we have also:

A2m + 2AmBn =
2p

√
3

3
sin

2θ

3
= 2b

√
3sin

2θ

3
(1.6.8)

The left member of the equation (1.6.8) is a naturel number and also b, then 2
√

3sin
2θ

3
can

be written under the form :
2
√

3sin
2θ

3
=

k1

k2

where k1, k2 are two natural numbers coprime and k2 | b =⇒ b = k2.k3.

** I-2-1- k′ = 1 and k3 ̸= 1: then A2m + 2AmBn = k3.k1. Let µ be a prime integer so that
µ | k3. If µ = 2 ⇒ 2 | b, but 2 | a, it is a contradiction with a, b coprime. We suppose that
µ ̸= 2 and µ | k3, then µ | Am(Am + 2Bn) =⇒ µ | Am or µ | (Am + 2Bn).

** I-2-1-1- µ | Am: If µ | Am =⇒ µ | A2m =⇒ µ | 4a =⇒ µ | a. As µ | k3 =⇒ µ | b, the
contradiction with a, b coprime.

** I-2-1-2- µ | (Am + 2Bn): If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn, then µ ̸= 2 and µ ∤ Bn.
µ | (Am + 2Bn), we can write Am + 2Bn = µ.t′. It follows:

Am + Bn = µt′ − Bn =⇒ A2m + B2n + 2AmBn = µ2t′2 − 2t′µBn + B2n

Using the expression of p, we obtain:

p = t′2µ2 − 2t′Bnµ + Bn(Bn − Am)

As p = 3b = 3k2.k3 and µ | k3 then µ | p =⇒ p = µ.µ′, then we obtain:

µ′.µ = µ(µt′2 − 2t′Bn) + Bn(Bn − Am)

and µ | Bn(Bn − Am) =⇒ µ | Bn or µ | (Bn − Am).

** I-2-1-2-1- µ | Bn: If µ | Bn =⇒ µ | B, that is the contradiction with I-2-1-2- above.

** I-2-1-2-2- µ | (Bn − Am): If µ | (Bn − Am) and using that µ | (Am + 2Bn), we obtain :

µ | 3Bn =⇒


µ | Bn =⇒ µ | B

or

µ = 3

** I-2-1-2-2-1- µ | Bn: If µ | Bn =⇒ µ | B, that is the contradiction with I-2-1-2- above.

** I-2-1-2-2-2- µ = 3: If µ = 3 =⇒ 3 | k3 =⇒ k3 = 3k′3, and we have b = k2k3 = 3k2k′3, it
follows p = 3b = 9k2k′3, then 9 | p, but p = (Am − Bn)2 + 3AmBn then:

9k2k′3 − 3AmBn = (Am − Bn)2

that we write as:
3(3k2k′3 − AmBn) = (Am − Bn)2 (1.6.9)

then:
3 | (3k2k′3 − AmBn) =⇒ 3 | AmBn =⇒ 3 | Am or 3 | Bn
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** I-2-1-2-2-2-1- 3 | Am: If 3 | Am =⇒ 3 | A and we have also 3 | A2m, but A2m = 4a =⇒ 3 |
4a =⇒ 3 | a. As b = 3k2k′3 then 3 | b, but a, b are coprime, then the contradiction and 3 ∤ A.

** I-2-1-2-2-2-2- 3 | Bm: If 3 | Bn =⇒ 3 | B, but the equation (1.6.9) implies 3 | (Am −
Bn)2 =⇒ 3 | (Am − Bn) =⇒ 3 | Am =⇒ 3 | A. The last case above has given that 3 ∤ A.
Then the case 3 | Bm is to reject.

Finally the hypothesis k3 ̸= 1 is impossible.

** I-2-2- Now, we suppose that k3 = 1 =⇒ b = k2 and p = 3b = 3k2, then we have:

2
√

3sin
2θ

3
=

k1

b
(1.6.10)

with k1, b coprime. We write (1.6.10) as :

4
√

3sin
θ

3
cos

θ

3
=

k1

b

Taking the square of the two members and replacing cos2 θ

3
by

a
b

, we obtain:

3 × 42.a(b − a) = k2
1 =⇒ k2

1 = 3 × 42.a′2(b − a)

it implies that :

b − a = 3α2, α ∈ N∗ =⇒ b = a′2 + 3α2 =⇒ k1 = 12a′α

As:
k1 = 12a′α = Am(Am + 2Bn) =⇒ 3α = a′ + Bn

We consider now that 3 | (b − a) with b = a′2 + 3α2. The case α = 1 gives a′ + Bn = 3
that is impossible. We suppose α > 1, the pair (a′, α) is a solution of the Diophantine
equation:

X2 + 3Y2 = b (1.6.11)

with X = a′ and Y = α. But using a theorem on the solutions of the equation given by
(1.6.11), b is written as (see theorem in [2]):

b = 22s × 3t.pt1
1 · · · ptg

g q2s1
1 · · · q2sr

r

where pi are prime numbers verifying pi ≡ 1(mod 6), the qj are also prime numbers so
that qj ≡ 5(mod 6), then :

- If s ≥ 1 =⇒ 2 | b, as 2 | a, then the contradiction with a, b coprime.
- If t ≥ 1 =⇒ 3 | b, but 3 | (b − a) =⇒ 3 | a, then the contradiction with a, b coprime.

** I-2-2-1- We suppose that b is written as :

b = pt1
1 · · · ptg

g q2s1
1 · · · q2sr

r

with pi ≡ 1(mod 6) and qj ≡ 5(mod 6). Finally, we obtain that b ≡ 1(mod 6). We will
verify then this condition.
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Table 1.2: Table of Cl(mod 6)

Am , Bn 1 2 4 5

1 2 3 5 0

2 3 4 0 1

4 5 0 2 3

5 0 1 3 4

** I-2-2-1-1- We present the table below giving the value of Am + Bn = Cl modulo 6 in
function of the value of Am, Bn(mod 6). We obtain the table below after retiring the lines
(respectively the colones) of Am ≡ 0(mod 6) and Am ≡ 3(mod 6) (respectively of Bn ≡
0(mod 6) and Bn ≡ 3(mod 6)), they present cases with contradictions:
** I-2-2-1-1-1- For the case Cl ≡ 0(mod 6) and Cl ≡ 3(mod 6), we deduce that 3 | Cl =⇒
3 | C =⇒ C = 3hC1, with h ≥ 1 and 3 ∤ C1. It follows that p − BnCl = 3b − 3lhCl

1Bn =
A2m =⇒ 3 | (A2m = 4a) =⇒ 3 | a =⇒ 3 | b, then the contradiction with a, b coprime.

** I-2-2-1-1-2- For the case Cl ≡ 0(mod 6), Cl ≡ 2(mod 6) and Cl ≡ 4(mod 6), we de-
duce that 2 | Cl =⇒ 2 | C =⇒ C = 2hC1, with h ≥ 1 and 2 ∤ C1. It follows that
p = 3b = A2m + BnCl = 4a + 2lhCl

1Bn =⇒ 2 | 3b =⇒ 2 | b, then the contradiction with a, b
coprime.

** I-2-2-1-1-3- We consider the cases Am ≡ 1(mod 6) and Bn ≡ 4(mod 6) (respectively
Bn ≡ 2(mod 6)): then 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with j ≥ 1 and 2 ∤ B1. It follows from
3b = A2m + BnCl = 4a + 2jnBn

1 Cl that 2 | b, then the contradiction with a, b coprime.

** I-2-2-1-1-4- We consider the case Am ≡ 5(mod 6) and Bn ≡ 2(mod 6): then 2 | Bn =⇒
2 | B =⇒ B = 2jB1 with j ≥ 1 and 2 ∤ B1. It follows that 3b = A2m + BnCl = 4a + 2jnBn

1 Cl,
then 2 | b and we obtain the contradiction with a, b coprime.

** I-2-2-1-1-5- We consider the case Am ≡ 2(mod 6) and Bn ≡ 5(mod 6): as Am ≡ 2(mod
6) =⇒ Am ≡ 2(mod 3), then Am is not a square and also for Bn. Hence, we can write Am

and Bn as:

Am = a0.µA2

Bn = b0µB2

where a0 (respectively b0) regroups the product of the prime numbers of Am with exponent
1 (respectively of Bn) with not necessary (a0, µA) = 1 and (b0, µB) = 1. We have also
p = 3b = A2m + AmBn + B2n = (Am − Bn)2 + 3AmBn =⇒ 3 | (b − AmBn) =⇒ AmBn ≡
b(mod 3) but b = a + 3α2 =⇒ b ≡ a ≡ a′2(mod 3), then AmBn ≡ a′2(mod 3). But Am ≡
2(mod 6) =⇒ 2a′ ≡ 2(mod 6) =⇒ 4a′2 ≡ 4(mod 6) =⇒ a′2 ≡ 1(mod 3). It follows that
AmBn is a square, let AmBn = µN2 = µA2.µB2.a0.b0. We call µN2

1 = a0.b0. Let p1 be a prime
number so that p1 | a0 =⇒ a0 = p1.a1 with p1 ∤ a1. p1 | µN2

1 =⇒ p1 | µN1 =⇒ µN1 = pt
1µN′

1
with t ≥ 1 and p1 ∤ µN′

1, then p2t−1
1 µN′2

1 = a1.b0. As 2t ≥ 2 =⇒ 2t − 1 ≥ 1 =⇒ p1 | a1.b0
but (p1, a1) = 1, then p1 | b0 =⇒ p1 | Bn =⇒ p1 | B. But p1 | (Am = 2a′), and p1 ̸= 2
because p1 | Bn and Bn is odd, then the contradiction. Hence, p1 | a′ =⇒ p1 | a. If p1 = 3,
from 3 | (b − a) =⇒ 3 | b then the contradiction with a, b coprime. Then p1 > 3 a prime
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that divides Am and Bn, then p1 | (p = 3b) =⇒ p1 | b, it follows the contradiction with a, b
coprime, knowing that p = 3b ≡ 3(mod 6) and we choose the case b ≡ 1(mod 6) of our
interest.

** I-2-2-1-1-6- We consider the last case of the table above Am ≡ 4(mod 6) and Bn ≡
1(mod 6). We return to the equation (1.6.11) that b verifies :

b = X2 + 3Y2 (1.6.12)
with X = a′; Y = α

and 3α = a′ + Bn

But p = A2m + AmBn + B2n = 3b = 3(3α2 + a′2) =⇒ A2m + ClBn = 3a′2 + 9α2. As A2m =
(2a′)2 = 4a′2, we obtain:

9α2 − a′2 = Cl.Bn

Then the pair (3α, a′) ∈ N∗ × N∗ is a solution of the Diophantine equation:

x2 − y2 = N (1.6.13)

where N = Cl.Bm > 0.

Let Q(N) be the number of the solutions of (1.6.13) and τ(N) the number of ways to
write the factors of N, then we announce the following result concerning the number of
the solutions of (1.6.13) (see theorem 27.3 in [2]):

Theorem 1.6.1. Let Q(N) be the number of the solutions of (1.6.13) and τ(N) the number
of ways to write the factors of N, then the number of the solutions of (1.6.13) :
- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].

As Am = 2a′, m ≥ 3 =⇒ Am ≡ 0(mod 4). Concerning Bn, for Bn ≡ 0(mod 4) or
Bn ≡ 2(mod 4), we find that 2 | Bn =⇒ 2 | α =⇒ 2 | b, then the contradiction with
a, b coprime.

For the last case Bn ≡ 3(mod 4) =⇒ Cl ≡ 3(mod 4) =⇒ N = BnCl ≡ 1(mod 4) =⇒
Q(N) = [τ(N)/2].

As (3α, a′) is a couple of solutions of the Diophantine equation (1.6.13) and 3α > a′, then
∃ d, d′ positive integers with d > d′ and N = d.d′ so that :

d + d′ = 6α (1.6.14)
d − d′ = 2a′ (1.6.15)

We will use the same method used in the above paragraph A-2-1-2-

** I-2-2-1-1-6-1- As Cl > Bn, we take d = Cl and d′ = Bn. It follows:

Cl + Bn = 6α = 2a′ + 2Bn = Am + 2Bn (1.6.16)
Cl − Bn = 2a′ = Am (1.6.17)

Then the case d = Cl and d′ = Bn gives a priory no contradictions.
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** I-2-2-1-1-6-2- Now, we consider the case d = BnCl and d′ = 1. We rewrite the equations
(3.2.24-3.2.25):

BnCl + 1 = 6α (1.6.18)
BnCl − 1 = 2a′ (1.6.19)

We obtain 1 = Bn, it follows Cl − Am = 1, we know [?] that the only positive solution of
the last equation is C = 3, A = 2, m = 3 and l = 2 < 3, then the contradiction.

** I-2-2-1-1-6-3- Now, we consider the case d = clr−1
1 Cl

1 where c1 is a prime integer with
c1 ∤ C1 and C = cr

1C1, r ≥ 1. It follows that d′ = c1.Bn. We rewrite the equations (3.2.24-
3.2.25):

clr−1
1 Cl

1 + c1.Bn = 6α (1.6.20)

clr−1
1 Cl

1 − c1.Bn = 2a′ (1.6.21)

As l ≥ 3, from the last two equations above, it follows that c1 | (6α) and c1 | (2a′). Then
c1 = 2, or c1 = 3 and 3 | a′ or c1 ̸= 3 | α and c1 | a′.

** I-2-2-1-1-6-3-1- We suppose c1 = 2. As 2 | (Am = 2a′) ⇒ 2 | (a = a′2 and 2 | Cl because
l ≥ 3, it follows 2 | Bn, then 2 | (p = 3b). Then the contradiction with a, b coprime.

** I-2-2-1-1-6-3-2- We suppose c1 = 3 ⇒ c1 | 2a′ =⇒ c1 | a′ =⇒ c1 | (a = a′2). It follows that
(c1 = 3) | (b = a′2 + 3α2), then the contradiction with a, b coprime.

** I-2-2-1-1-6-3-3- We suppose c1 ̸= 3 and c1 | 3α and c1 | a′. It follows that c1 | a and
c1 | (b = a′2 + 3α2, then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ not coprime so that N = BnCl = d.d′ give
also contradictions.

** I-2-2-1-1-6-4- Now, let C = cr
1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider the case

d = Cl
1 and d′ = crl

1 Bn so that d > d′. We rewrite the equations (3.2.24-3.2.25):

Cl
1 + crl

1 Bn = 6α (1.6.22)

Cl
1 − crl

1 Bn = 2a′ (1.6.23)

We obtain crl
1 Bn = Bn =⇒ crl

1 = 1, then the contradiction.

** I-2-2-1-1-6-5- Now, let C = cr
1C1 with c1 a prime, r ≥ 1 and c1 ∤ C1, we consider the case

d = Cl
1Bn and d′ = crl

1 so that d > d′. We rewrite the equations (3.2.24-3.2.25):

Cl
1Bl + crl

1 = 6α (1.6.24)

Cl
1Bl − crl

1 = 2a′ (1.6.25)

We obtain crl
1 = Bn =⇒ c1 | Bn, as c1 | C then c1 | Am = 2a′. If c1 = 2, the contradiction

with BnCl ≡ 1(mod 4). Then c1 | a′ =⇒ c1 | (a = a′2) =⇒ c1 | (p = b), it follows a, b are
not coprime, then the contradiction.

Cases like d′ < Cl a divisor of Cl or d′ < Bl a divisor of Bn with d′ < d and d.d′ = N = BnCl

give contradictions.
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** I-2-2-1-1-6-6- Now, we consider the case d = b1.Cl where b1 is a prime integer with b1 ∤ B1
and B = br

1B1, r ≥ 1. It follows that d′ = bnr−1
1 Bn

1 . We rewrite the equations (3.2.24-3.2.25):

b1Cl + bnr−1
1 Bn

1 = 6α (1.6.26)

b1Cl − bnr−1
1 Bn

1 = 2a′ (1.6.27)

As n ≥ 3, from the last two equations above, it follows that b1 | 6α and b1 | (2a′). Then
b1 = 2, or b1 | α and b1 | a′ or b1 = 3 and 3 | a′.

** I-2-2-1-1-6-6-1- We suppose b1 = 2 =⇒ 2 | Bn. As 2 | (Am = 2a′ =⇒ 2 | a′ =⇒ 2 | a, but
2 | Bn and 2 | Am then 2 | (p = 3b). It follows the contradiction with a, b coprime.

** I-2-2-1-1-6-6-2- We suppose b1 ̸= 2, 3, then b1 | α and b1 | a′ =⇒ b1 | (a = a′2), then
b1 | (b = 3α2 + a′2), it follows the contradiction with a, b coprime.

** I-2-2-1-1-6-6-3- We suppose b1 = 3 =⇒ 3 | 6α, and 3 | (Am = 2a′) =⇒ 3 | (a = a′2), then
3 | (b = 3α2 + a′2), it follows the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′ so that
N = ClBm = d.d′ give also contradictions.

Finally, from the cases studied in the above paragraph I-2-2-1-1-6-, we have found
one suitable factorization of N that gives a priory no contradictions, it is the case N =
Bn.Cl = d.d′ with d = Cl, d′ = Bn but 1 ≪ τ(N), it follows the contradiction with
Q(N) = [τ(N)/2] ≤ 1. The last case Am ≡ 4(mod 6) and Bn ≡ 1(mod 6) gives con-
tradictions.

It follows that the condition 3 | (b − a) is a contradiction.

The study of the case 1.6.8 is achieved.

1.6.9 Case 3 | p and b | 4p

The following cases have been soon studied:
* 3 | p, b = 2 =⇒ b | 4p: case 1.6.1,
* 3 | p, b = 4 =⇒ b | 4p: case 1.6.2,
* 3 | p =⇒ p = 3p′, b | p′ =⇒ p′ = bp”, p” ̸= 1: case 1.6.3,
* 3 | p, b = 3 =⇒ b | 4p: case 1.6.4,
* 3 | p =⇒ p = 3p′, b = p′ =⇒ b | 4p: case 1.6.8.

** J-1- Particular case: b = 12. In fact 3 | p =⇒ p = 3p′ and 4p = 12p′. Taking b = 12, we
have b | 4p. But b < 4a < 3b, that gives 12 < 4a < 36 =⇒ 3 < a < 9. As 2 | b and 3 | b, the
possible values of a are 5 and 7.

** J-1-1- a = 5 and b = 12 =⇒ 4p = 12p′ = bp′. But A2m =
4p
3

.
a
b
=

5bp′

3b
=

5p′

3
=⇒ 3 |

p′ =⇒ p′ = 3p” with p” ∈ N∗, then p = 9p”, we obtain the expressions:

A2m = 5p” (1.6.28)

BnCl =
p
3

(
3 − 4cos2 θ

3

)
= 4p” (1.6.29)
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As n, l ≥ 3, we deduce from the equation (1.6.29) that 2 | p” =⇒ p” = 2α p1 with α ≥ 1 and
2 ∤ p1. Then (1.6.28) becomes: A2m = 5p” = 5 × 2α p1 =⇒ 2 | A =⇒ A = 2i A1, i ≥ 1 and
2 ∤ A1. We have also BnCl = 2α+2p1 =⇒ 2 | Bn or 2 | Cl.

** J-1-1-1- We suppose that 2 | Bn =⇒ B = 2jB1, j ≥ 1 and 2 ∤ B1. We obtain Bn
1 Cl =

2α+2−jn p1:
- If α + 2 − jn > 0 =⇒ 2 | Cl, there is no contradiction with Cl = 2im Am

1 + 2jnBn
1 =⇒ 2 |

Cl and the conjecture (3.1.1) is verified.
- If α + 2 − jn = 0 =⇒ Bn

1 Cl = p1. From C=2im Am
1 + 2jnBn

1 =⇒ 2 | Cl that implies that
2 | p1, then the contradiction with 2 ∤ p1.

- If α + 2 − jn < 0 =⇒ 2jn−α−2Bn
1 Cl = p1, it implies that 2 | p1, then the contradiction as

above.
** J-1-1-2- We suppose that 2 | Cl, using the same method above, we obtain the identical
results.

** J-1-2- We suppose that a = 7 and b = 12 =⇒ 4p = 12p′ = bp′. But A2m =
4p
3

.
a
b
=

12p′

3
.

7
12

=
7p′

3
=⇒ 3 | p′ =⇒ p = 9p”, we obtain:

A2m = 7p”

BnCl =
p
3

(
3 − 4cos2 θ

3

)
= 2p”

The last equation implies that 2 | BnCl. Using the same method as for the case J-1-1- above,
we obtain the identical results.

We study now the general case. As 3 | p ⇒ p = 3p′ and b | 4p ⇒ ∃k1 ∈ N∗ and
4p = 12p′ = k1b.

** J-2- k1 = 1 : If k1 = 1 then b = 12p′, (p′ ̸= 1, if not p = 3 ≪ A2m + B2n + AmBn). But

A2m =
4p
3

.cos2 θ

3
=

12p′

3
a
b
=

4p′.a
12p′

=
a
3
⇒ 3 | a because A2m is a natural number, then the

contradiction with a, b coprime.

** J-3- k1 = 3 : If k1 = 3, then b = 4p′ and A2m =
4p
3

.cos2 θ

3
=

k1.a
3

= a = (Am)2 = a′2 =⇒

Am = a′. The term AmBn gives AmBn =
p
√

3
3

sin
2θ

3
− a

2
, then:

A2m + 2AmBn =
2p

√
3

3
sin

2θ

3
= 2p′

√
3sin

2θ

3
(1.6.30)

The left member of (1.6.30) is an integer number and also p′, then 2
√

3sin
2θ

3
can be written

under the form:
2
√

3sin
2θ

3
=

k2

k3

where k2, k3 are two integer numbers and are coprime and k3 | p′ =⇒ p′ = k3.k4.

** J-3-1- k4 ̸= 1 : We suppose that k4 ̸= 1, then:

A2m + 2AmBn = k2.k4 (1.6.31)
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Let µ be a prime number so that µ | k4, then µ | Am(Am + 2Bn) =⇒ µ | Am or µ |
(Am + 2Bn).

** J-3-1-1- µ | Am : If µ | Am =⇒ µ | A2m =⇒ µ | a. As µ | k4 =⇒ µ | p′ ⇒ µ | (4p′ = b).
But a, b are coprime, then the contradiction.

** J-3-1-2- µ | (Am + 2Bn) : If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn, then µ ̸= 2 and µ ∤ Bn.
µ | (Am + 2Bn), we can write Am + 2Bn = µ.t′. It follows:

Am + Bn = µt′ − Bn =⇒ A2m + B2n + 2AmBn = µ2t′2 − 2t′µBn + B2n

Using the expression of p, we obtain p = t′2µ2 − 2t′Bnµ + Bn(Bn − Am). As p = 3p′ and
µ | p′ ⇒ µ | (3p′) ⇒ µ | p, we can write : ∃µ′ and p = µµ′, then we arrive to:

µ′.µ = µ(µt′2 − 2t′Bn) + Bn(Bn − Am)

and µ | Bn(Bn − Am) =⇒ µ | Bn or µ | (Bn − Am).

** J-3-1-2-1- µ | Bn : If µ | Bn =⇒ µ | B, it is in contradiction with J-3-1-2-.

** J-3-1-2-2- µ | (Bn − Am) : If µ | (Bn − Am) and using µ | (Am + 2Bn), we obtain :

µ | 3Bn =⇒


µ | Bn

or

µ = 3

** J-3-1-2-2-1- µ | Bn : If µ | Bn =⇒ µ | B, it is in contradiction with J-3-1-2-.

** J-3-1-2-2-2- µ = 3 : If µ = 3 =⇒ 3 | k4 =⇒ k4 = 3k′4, and we have p′ = k3k4 = 3k3k′4, it
follows that p = 3p′ = 9k3k′4, then 9 | p, but p = (Am − Bn)2 + 3AmBn, then we obtain:

9k3k′4 − 3AmBn = (Am − Bn)2

that we write : 3(3k3k′4 − AmBn) = (Am − Bn)2, then : 3 | (3k3k′4 − AmBn) =⇒ 3 | AmBn =⇒
3 | Am or 3 | Bn.

** J-3-1-2-2-2-1- 3 | Am : If 3 | Am =⇒ 3 | A2m ⇒ 3 | a, but 3 | p′ ⇒ 3 | (4p′) ⇒ 3 | b, then
the contradiction with a, b coprime and 3 ∤ A.

** J-3-1-2-2-2-2- 3 | Bn : If 3 | Bn but Am = µt′ − 2Bn = 3t′ − 2Bn =⇒ 3 | Am, it is in
contradiction with 3 ∤ A.

Then the hypothesis k4 ̸= 1 is impossible.

** J-3-2- k4 = 1: We suppose now that k4 = 1 =⇒ p′ = k3k4 = k3. Then we have:

2
√

3sin
2θ

3
=

k2

p′
(1.6.32)

with k2, p′ coprime, we write (1.6.32) as :

4
√

3sin
θ

3
cos

θ

3
=

k2

p′
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Taking the square of the two members and replacing cos2 θ

3
by

a
b

and b = 4p′, we obtain:

3.a(b − a) = k2
2

As A2m = a = a′2, it implies that :

3 | (b − a), and b − a = b − a′2 = 3α2

As k2 = Am(Am + 2Bn) following the equation (1.6.31) and that 3 | k2 =⇒ 3 | Am(Am +
2Bn) =⇒ 3 | Am or 3 | (Am + 2Bn).

** J-3-2-1- 3 | Am: If 3 | Am =⇒ 3 | A2m =⇒ 3 | a, but 3 | (b − a) =⇒ 3 | b, then the
contradiction with a, b coprime.

** J-3-2-2- 3 | (Am + 2Bn) =⇒ 3 ∤ Am and 3 ∤ Bn. As k2
2 = 9aα2 = 9a′2α2 =⇒ k2 = 3a′α =

Am(Am + 2Bn), then :
3α = Am + 2Bn (1.6.33)

As b can be written under the form b = a′2 + 3α2, then the pair (a′, α) is a solution of the
Diophantine equation:

x2 + 3y2 = b (1.6.34)

As b = 4p′, then :

** J-3-2-2-1- If x, y are even, then 2 | a′ =⇒ 2 | a, it is a contradiction with a, b coprime.

** J-3-2-2-2- If x, y are odd, then a′, α are odd, it implies Am = a′ ≡ 1(mod 4) or Am ≡
3(mod 4). If u, v verify (1.6.34), then b = u2 + 3v2, with u ̸= a′ and v ̸= α, then u, v do not
verify (1.6.33): 3v ̸= u + 2Bn, if not, u = 3v − 2Bn =⇒ b = (3v − 2Bn)2 + 3v2 = a′2 + 3α2,
the resolution of the obtained equation of second degree in v gives the positive root v1 = α,
then u = 3v − 2Bn = 3α − 2Bn = a′, then the uniqueness of the representation of b by the
equation (1.6.34).

** J-3-2-2-2-1- We suppose that Am ≡ 1(mod 4) and Bn ≡ 0(mod 4), then Bn is even and
Bn = 2B′. The expression of p becomes:

p = a′2 + 2a′B′ + 4B′2 = (a′ + B′)2 + 3B′2 = 3p′ =⇒ 3 | (a′ + B′) =⇒ a′ + B′ = 3B”
p′ = B′2 + 3B”2 =⇒ b = 4p′ = (2B′)2 + 3(2B”)2 = a′2 + 3α2

as b has an unique representation, it follows 2B′ = Bn = a′ = Am, then the contradiction
with Am > Bn.

** J-3-2-2-2-2- We suppose that Am ≡ 1(mod 4) and Bn ≡ 1(mod 4), then Cl is even and
Cl = 2C′. The expression of p becomes:

p = C2l − ClBn + B2n = 4C′2 − 2C′Bn + B2n = (C′ − Bn)2 + 3C′2 = 3p′

=⇒ 3 | (C′ − Bn) =⇒ C′ − Bn = 3C”
p′ = C′2 + 3C”2 =⇒ b = 4p′ = (2C′)2 + 3(2C”)2 = a′2 + 3α2

as b has an unique representation, it follows 2C′ = Cl = a′ = Am, then the contradiction.
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** J-3-2-2-2-3- We suppose that Am ≡ 1(mod 4) and Bn ≡ 2(mod 4), then Bn is even, see
J-3-2-2-2-1-.

** J-3-2-2-2-4- We suppose that Am ≡ 1(mod 4) and Bn ≡ 3(mod 4), then Cl is even, see
J-3-2-2-2-2-.

** J-3-2-2-2-5- We suppose that Am ≡ 3(mod 4) and Bn ≡ 0(mod 4), then Bn is even, see
J-3-2-2-2-1-.

** J-3-2-2-2-6- We suppose that Am ≡ 3(mod 4) and Bn ≡ 1(mod 4), then Cl is even, see
J-3-2-2-2-2-.

** J-3-2-2-2-7- We suppose that Am ≡ 3(mod 4) and Bn ≡ 2(mod 4), then Bn is even, see
J-3-2-2-2-1-.

** J-3-2-2-2-8- We suppose that Am ≡ 3(mod 4) and Bn ≡ 3(mod 4), then Cl is even, see
J-3-2-2-2-2-.

We have achieved the study of the case J-3-2-2- . It gives contradictions.

** J-4- We suppose that k1 ̸= 3 and 3 | k1 =⇒ k1 = 3k′1 with k′1 ̸= 1, then 4p = 12p′ =

k1b = 3k′1b ⇒ 4p′ = k′1b. A2m can be written as A2m =
4p
3

cos2 θ

3
=

3k′1b
3

a
b

= k′1a and

BnCl =
p
3

(
3 − 4cos2 θ

3

)
=

k′1
4
(3b − 4a). As BnCl is an integer number, we must have

4 | (3b − 4a) or 4 | k′1 or [2 | k′1 and 2 | (3b − 4a)].

** J-4-1- We suppose that 4 | (3b − 4a).

** J-4-1-1- We suppose that 3b − 4a = 4 =⇒ 4 | b =⇒ 2 | b. Then, we have:

A2m = k′1a

BnCl = k′1

** J-4-1-1-1- If k′1 is prime, from BnCl = k′1, it is impossible.

** J-4-1-1-2- We suppose that k′1 > 1 is not prime. Let ω be a prime number so that ω | k′1.

** J-4-1-1-2-1- We suppose that k′1 = ωs, with s ≥ 6. Then we have :

A2m = ωs.a (1.6.35)
BnCl = ωs (1.6.36)

** J-4-1-1-2-1-1- We suppose that ω = 2. If a, k′1 are not coprime , then 2 | a, as 2 | b, it is the
contradiction with a, b coprime.

** J-4-1-1-2-1-2- We suppose ω = 2 and a, k′1 are coprime, then 2 ∤ a. From (1.6.36), we
deduce that B = C = 2 and n + l = s, and A2m = 2s.a, but Am = 2l − 2n =⇒ A2m =
(2l − 2n)2 = 22l + 22n − 2(2l+n) = 22l + 22n − 2× 2s = 2s.a =⇒ 22l + 22n = 2s(a+ 2). If l = n,
we obtain a = 0 then the contradiction. If l ̸= n, as Am = 2l − 2n > 0 =⇒ n < l =⇒ 2n < s,
then 22n(1+ 22l−2n − 2s+1−2n) = 2n2l.a. We call l = n + n1 =⇒ 1+ 22l−2n − 2s+1−2n = 2n1 .a,
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but the left member is odd and the right member is even, then the contradiction. Then the
case ω = 2 is impossible.

** J-4-1-1-2-1-3- We suppose that k′1 = ωs with ω ̸= 2:

** J-4-1-1-2-1-3-1- Suppose that a, k′1 are not coprime, then ω | a =⇒ a = ωt.a1 and t ∤ a1.
Then, we have:

A2m = ωs+t.a1 (1.6.37)
BnCl = ωs (1.6.38)

From (1.6.38), we deduce that Bn = ωn, Cn = ωl, s = n + l and Am = ωl − ωn > 0 =⇒ l >
n. We have also A2m = ωs+t.a1 = (ωl − ωn)2 = ω2l + ω2n − 2 × ωs. As ω ̸= 2 =⇒ ω is
odd, then A2m = ωs+t.a1 = (ωl − ωn)2 is even, then 2 | a1 =⇒ 2 | a, it is in contradiction
with a, b coprime, then this case is impossible.

** J-4-1-1-2-1-3-2- Suppose that a, k′1 are coprime, with :

A2m = ωs.a (1.6.39)
BnCl = ωs (1.6.40)

From (1.6.40), we deduce that Bn = ωn, Cl = ωl and s = n + l. As ω ̸= 2 =⇒ ω is odd and
A2m = ωs.a = (ωl − ωn)2 is even, then 2 | a. It follows the contradiction with a, b coprime
and this case is impossible.

** J-4-1-1-2-2- We suppose that k′1 = ωs.k2, with s ≥ 6, ω ∤ k2. We have :

A2m = ωs.k2.a
BnCl = ωs.k2

** J-4-1-1-2-2-1- If k2 is prime, from the last equation above, ω = k2, it is in contradiction
with ω ∤ k2. Then this case is impossible.

** J-4-1-1-2-2-2- We suppose that k′1 = ωs.k2, with s ≥ 6, ω ∤ k2 and k2 not a prime. Then,
we have:

A2m = ωs.k2.a
BnCl = ωs.k2 (1.6.41)

** J-4-1-1-2-2-2-1- We suppose that ω, a are coprime, then ω ∤ a. As A2m = ωs.k2.a =⇒
ω | A =⇒ A = ωi.A1 with i ≥ 1 and ω ∤ A1, then s = 2i.m. From (1.6.41), we have
ω | (BnCl) =⇒ ω | Bn or ω | Cl.

** J-4-1-1-2-2-2-1-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ω j.B1 with j ≥ 1 and ω ∤ B1.
then :

Bn
1 Cl = ω2im−jnk2

- If 2im − jn > 0, ω | Cl =⇒ ω | C, no contradiction with Cl = ωim Am
1 + ω jnBn

1 and the
conjecture (3.1.1) is verified.

- If 2im − jn = 0 =⇒ Bn
1 Cl = k2, as ω ∤ k2 =⇒ ω ∤ Cl, then the contradiction with

ω | (Cl = Am + Bn).
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- If 2im − jn < 0 =⇒ ω jn−2imBn
1 Cl = k2 =⇒ ω | k2, then the contradiction with ω ∤ k2.

** J-4-1-1-2-2-2-1-2- We suppose that ω | Cl. Using the same method used above, we obtain
identical results.

** J-4-1-1-2-2-2-2- We suppose that a, ω are not coprime, then ω | a =⇒ a = ωt.a1 and
ω ∤ a1. So we have :

A2m = ωs+t.k2.a1 (1.6.42)
BnCl = ωs.k2 (1.6.43)

As A2m = ωs+t.k2.a1 =⇒ ω | A =⇒ A = ωi A1 with i ≥ 1 and ω ∤ A1, then s + t = 2im.
From (1.6.43), we have ω | (BnCl) =⇒ ω | Bn or ω | Cl.

** J-4-1-1-2-2-2-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ω jB1 with j ≥ 1 and ω ∤ B1.
then:

Bn
1 Cl = ω2im−t−jnk2

- If 2im − t − jn > 0, ω | Cl =⇒ ω | C, no contradiction with Cl = ωim Am
1 + ω jnBn

1 and the
conjecture (3.1.1) is verified.

- If 2im − t − jn = 0 =⇒ Bn
1 Cl = k2, As ω ∤ k2 =⇒ ω ∤ Cl, then the contradiction with

ω | (Cl = Am + Bn).
- If 2im − t − jn < 0 =⇒ ω jn+t−2imBn

1 Cl = k2 =⇒ ω | k2, then the contradiction with
ω ∤ k2.

** J-4-1-1-2-2-2-2-2- We suppose that ω | Cl. Using the same method used above, we obtain
identical results.

** J-4-1-2- 3b − 4a ̸= 4 and 4 | (3b − 4a) =⇒ 3b − 4a = 4sΩ with s ≥ 1 and 4 ∤ Ω. We obtain:

A2m = k′1a (1.6.44)

BnCl = 4s−1k′1Ω (1.6.45)

** J-4-1-2-1- We suppose that k′1 = 2. From (1.6.44), we deduce that 2 | a. As 4 |
(3b − 4a) =⇒ 2 | b, then the contradiction with a, b coprime and this case is impossi-
ble.

** J-4-1-2-2- We suppose that k′1 = 3. From (1.6.44) we deduce that 33 | A2m. From
(1.6.45), it follows that 33 | Bn or 33 | Cl. In the last two cases, we obtain 33 | p. But
4p = 3k′1b = 9b =⇒ 3 | b, then the contradiction with a, b coprime. Then this case is
impossible.

** J-4-1-2-3- We suppose that k′1 is prime ≥ 5:

** J-4-1-2-3-1- Suppose that k′1 and a are coprime. The equation (1.6.44) gives (Am)2 = k′1.a,
that is impossible with k′1 ∤ a. Then this case is impossible.

** J-4-1-2-3-2- Suppose that k′1 and a are not coprime. Let k′1 | a =⇒ a = k′α1 a1 with α ≥ 1
and k′1 ∤ a1. The equation (1.6.44) is written as :

A2m = k′1a = k′α+1
1 a1
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The last equation gives k′1 | A2m =⇒ k′1 | A =⇒ A = k′i1 .A1, with k′1 ∤ A1. If 2i.m ̸= (α + 1),
it is impossible. We suppose that 2i.m = α + 1, then k′1 | Am. We return to the equation
(1.6.45). If k′1 and Ω are coprime, it is impossible. We suppose that k′1 and Ω are not co-
prime, then k′1 | Ω and the exponent of k′1 in Ω is so the equation (1.6.45) is satisfying. We
deduce easily that k′1 | Bn. Then k′21 | (p = A2m + B2n + AmBn), but 4p = 3k′1b =⇒ k′1 | b,
then the contradiction with a, b coprime.

** J-4-1-2-4- We suppose that k′1 ≥ 4 is not a prime.

** J-4-1-2-4-1- We suppose that k′1 = 4, we obtain then A2m = 4a and BnCl = 3b − 4a =
3p′ − 4a. This case was studied in the paragraph 1.6.8, case ** I-2-.

** J-4-1-2-4-2- We suppose that k′1 > 4 is not a prime.

** J-4-1-2-4-2-1- We suppose that a, k′1 are coprime. From the expression A2m = k′1.a, we
deduce that a = a2

1 and k′1 = k”2
1. It gives :

Am = a1.k”1

BnCl = 4s−1k”2
1.Ω

Let ω be a prime so that ω | k”1 and k”1 = ωt.k”2 with ω ∤ k”2. The last two equations
become :

Am = a1.ωt.k”2 (1.6.46)
BnCl = 4s−1ω2t.k”2

2.Ω (1.6.47)

From (1.6.46), ω | Am =⇒ ω | A =⇒ A = ωi.A1 with ω ∤ A1 and im = t. From (1.6.47), we
obtain ω | BnCl =⇒ ω | Bn or ω | Cl.

** J-4-1-2-4-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ω j.B1 with ω ∤ B1. From (1.6.46), we have
Bn

1 Cl = ω2t−j.n4s−1.k”2
2.Ω.

** J-4-1-2-4-2-1-1-1- If ω = 2 and 2 ∤ Ω, we have Bn
1 Cl = 22t+2s−j.n−2k”2

2.Ω:
- If 2t + 2s − jn − 2 ≤ 0 then 2 ∤ Cl, then the contradiction with Cl = ωim Am

1 + ω jnBn
1 .

- If 2t + 2s − jn − 2 ≥ 1 =⇒ 2 | Cl =⇒ 2 | C and the conjecture (3.1.1) is verified.

** J-4-1-2-4-2-1-1-2- If ω = 2 and if 2 | Ω =⇒ Ω = 2.Ω1 because 4 ∤ Ω, we have Bn
1 Cl =

22t+2s+1−j.n−2k”2
2Ω1:

- If 2t + 2s − jn − 3 ≤ 0 then 2 ∤ Cl, then the contradiction with Cl = ωim Am
1 + ω jnBn

1 .
- If 2t + 2s − jn − 3 ≥ 1 =⇒ 2 | Cl =⇒ 2 | C and the conjecture (3.1.1) is verified.

** J-4-1-2-4-2-1-1-3- If ω ̸= 2, we have Bn
1 Cl = ω2t−j.n4s−1.k”2

2.Ω:
-If 2t − jn ≤ 0 =⇒ ω ∤ Cl it is in contradiction with Cl = ωim Am

1 + ω jnBn
1 .

-If 2t − jn ≥ 1 =⇒ ω | Cl =⇒ ω | C and the conjecture (3.1.1) is verified.

** J-4-1-2-4-2-1-2- If ω | Cl =⇒ ω | C =⇒ C = ωh.C1, with ω ∤ C1. Using the same method
as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.
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** J-4-1-2-4-2-2- We suppose that a, k′1 are not coprime. Let ω be a prime so that ω | a and
ω | k′1. We write:

a = ωα.a1

k′1 = ωµ.k”1

with a1, k”1 coprime. The expression of A2m becomes A2m = ωα+µ.a1.k”1. The term BnCl

becomes:
BnCl = 4s−1.ωµ.k”1.Ω (1.6.48)

** J-4-1-2-4-2-2-1- If ω = 2 =⇒ 2 | a, but 2 | b, then the contradiction with a, b coprime, this
case is impossible.

** J-4-1-2-4-2-2-2- If ω ≥ 3, we have ω | a. If ω | b then the contradiction with a, b coprime.
We suppose that ω ∤ b. From the expression of A2m, we obtain ω | A2m =⇒ ω | A =⇒ A =
ωi.A1 with ω ∤ A1, i ≥ 1 and 2i.m = α + µ. From (1.6.48), we deduce that ω | Bn or ω | Cl.

** J-4-1-2-4-2-2-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ω jB1 with ω ∤ B1 and j ≥ 1.
Then, Bn

1 Cl = 4s−1ωµ−jn.k”1.Ω :

* ω ∤ Ω :
- If µ − jn ≥ 1, we have ω | Cl =⇒ ω | C, there is no contradiction with Cl = ωim Am

1 +

ω jnBn
1 and the conjecture (3.1.1) is verified.

- If µ − jn ≤ 0, then ω ∤ Cl and it is a contradiction with Cl = ωim Am
1 + ω jnBn

1 . Then
this case is impossible.

* ω | Ω : we write Ω = ωβ.Ω1 with β ≥ 1 and ω ∤ Ω1. As 3b− 4a = 4s.Ω = 4s.ωβ.Ω1 =⇒
3b = 4a + 4s.ωβ.Ω1 = 4ωα.a1 + 4s.ωβ.Ω1 =⇒ 3b = 4ω(ωα−1.a1 + 4s−1.ωβ−1.Ω1). If ω = 3
and β = 1, we obtain b = 4(3α−1a1 + 4s−1Ω1) and Bn

1 Cl = 4s−13µ+1−jn.k”1Ω1.
- If µ − jn + 1 ≥ 1, then 3 | Cl and the conjecture (3.1.1) is verified.
- If µ − jn + 1 ≤ 0, then 3 ∤ Cl and it is the contradiction with Cl = 3im Am

1 + 3jnBn
1 .

Now, if β ≥ 2 and α = im ≥ 3, we obtain 3b = 4ω2(ωα−2a1 + 4s−1ωβ−2Ω1). If ω = 3 or
not, then ω | b, but ω | a, then the contradiction with a, b coprime.

** J-4-1-2-4-2-2-2-2- We suppose that ω | Cl =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1 and h ≥ 1.
Then, BnCl

1 = 4s−1ωµ−hl.k”1.Ω. Using the same method as above, we obtain identical re-
sults.

** J-4-2- We suppose that 4 | k′1.

** J-4-2-1- k′1 = 4 =⇒ 4p = 3k′1b = 12b =⇒ p = 3b = 3p′, this case has been studied (see
case I-2- paragraph 1.6.8).

** J-4-2-2- k′1 > 4 with 4 | k′1 =⇒ k′1 = 4sk”1 and s ≥ 1, 4 ∤ k”1. Then, we obtain:

A2m = 4sk”1a = 22sk”1a
BnCl = 4s−1k”1(3b − 4a) = 22s−2k”1(3b − 4a)

** J-4-2-2-1- We suppose that s = 1 and k′1 = 4k”1 with k”1 > 1, so p = 3p′ and p′ = k”1b,
this is the case 1.6.3 already studied.
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** J-4-2-2-2- We suppose that s > 1, then k′1 = 4sk”1 =⇒ 4p = 3 × 4sk”1b and we obtain:

A2m = 4sk”1a (1.6.49)
BnCl = 4s−1k”1(3b − 4a) (1.6.50)

** J-4-2-2-2-1- We suppose that 2 ∤ (k”1.a) =⇒ 2 ∤ k”1 and 2 ∤ a. As (Am)2 = (2s)2.(k”1.a), we
call d2 = k”1.a, then Am = 2s.d =⇒ 2 | Am =⇒ 2 | A =⇒ A = 2i A1 with 2 ∤ A1 and i ≥ 1,
then: 2im Am

1 = 2s.d =⇒ s = im. From the equation (1.6.50), we have 2 | (BnCl) =⇒ 2 | Bn

or 2 | Cl.

** J-4-2-2-2-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j.B1, with j ≥ 1 and 2 ∤ B1. The
equation (1.6.50) becomes:

Bn
1 Cl = 22s−jn−2k”1(3b − 4a) = 22im−jn−2k”1(3b − 4a)

* We suppose that 2 ∤ (3b − 4a):
- If 2im − jn − 2 ≥ 1, then 2 | Cl, there is no contradiction with Cl = 2im Am

1 + 2jnBn
1 and

the conjecture (3.1.1) is verified.
- If 2im − jn − 2 ≤ 0, then 2 ∤ Cl, then the contradiction with Cl = 2im Am

1 + 2jnBn
1 .

* We suppose that 2µ | (3b − 4a), µ ≥ 1:
- If 2im + µ − jn − 2 ≥ 1, then 2 | Cl, no contradiction with Cl = 2im Am

1 + 2jnBn
1 and the

conjecture (3.1.1) is verified.
- If 2im + µ − jn − 2 ≤ 0, then 2 ∤ Cl, then the contradiction with Cl = 2im Am

1 + 2jnBn
1 .

** J-4-2-2-2-1-2- We suppose that 2 | Cl =⇒ 2 | C =⇒ C = 2h.C1, with h ≥ 1 and 2 ∤ C1.
With the same method used above, we obtain identical results.

** J-4-2-2-2-2- We suppose that 2 | (k”1.a):

** J-4-2-2-2-2-1- We suppose that k”1 and a are coprime:

** J-4-2-2-2-2-1-1- We suppose that 2 ∤ a and 2 | k”1 =⇒ k”1 = 22µ.k”2
2 and a = a2

1, then the
equations (1.6.49-1.6.50) become:

A2m = 4s.22µk”2
2a2

1 =⇒ Am = 2s+µ.k”2.a1 (1.6.51)

BnCl = 4s−122µk”2
2(3b − 4a) = 22s+2µ−2k”2

2(3b − 4a) (1.6.52)

The equation (1.6.51) gives 2 | Am =⇒ 2 | A =⇒ A = 2i.A1 with 2 ∤ A1, i ≥ 1 and
im = s + µ. From the equation (1.6.52), we have 2 | (BnCl) =⇒ 2 | Bn or 2 | Cl.

** J-4-2-2-2-2-1-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j.B1, 2 ∤ B1 and j ≥ 1, then
Bn

1 Cl = 22s+2µ−jn−2k”2
2(3b − 4a):

* We suppose that 2 ∤ (3b − 4a):
- If 2im + 2µ − jn − 2 ≥ 1 ⇒ 2 | Cl, then there is no contradiction with Cl = 2im Am

1 +

2jnBn
1 and the conjecture (3.1.1) is verified.

- If 2im + 2µ − jn − 2 ≤ 0 ⇒ 2 ∤ Cl, then the contradiction with Cl = 2im Am
1 + 2jnBn

1 .

* We suppose that 2α | (3b − 4a), α ≥ 1 so that a, b remain coprime:
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- If 2im + 2µ + α − jn − 2 ≥ 1 ⇒ 2 | Cl, then no contradiction with Cl = 2im Am
1 + 2jnBn

1
and the conjecture (3.1.1) is verified.

- If 2im + 2µ + α − jn − 2 ≤ 0 ⇒ 2 ∤ Cl, then the contradiction with Cl = 2im Am
1 + 2jnBn

1 .

** J-4-2-2-2-2-1-1-2- We suppose that 2 | Cl =⇒ 2 | C =⇒ C = 2h.C1, with h ≥ 1 and 2 ∤ C1.
With the same method used above, we obtain identical results.

** J-4-2-2-2-2-1-2- We suppose that 2 ∤ k”1 and 2 | a =⇒ a = 22µ.a2
1 and k”1 = k”2

2, then the
equations (1.6.49-1.6.50) become:

A2m = 4s.22µa2
1k”2

2 =⇒ Am = 2s+µ.a1.k”2. (1.6.53)

BnCl = 4s−1k”2
2(3b − 4a) = 22s−2k”2

2(3b − 4a) (1.6.54)

The equation (1.6.53) gives 2 | Am =⇒ 2 | A =⇒ A = 2i.A1 with 2 ∤ A1, i ≥ 1 and
im = s + µ. From the equation (1.6.54), we have 2 | (BnCl) =⇒ 2 | Bn or 2 | Cl.

** J-4-2-2-2-2-1-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j.B1, 2 ∤ B1 and j ≥ 1. Then
we obtain Bn

1 Cl = 22s−jn−2k”2
2(3b − 4a):

* We suppose that 2 ∤ (3b − 4a) =⇒ 2 ∤ b:
- If 2im − jn − 2 ≥ 1 ⇒ 2 | Cl, then no contradiction with Cl = 2im Am

1 + 2jnBn
1 and the

conjecture (3.1.1) is verified.
- If 2im − jn − 2 ≤ 0 ⇒ 2 ∤ Cl, then the contradiction with Cl = 2im Am

1 + 2jnBn
1 .

* We suppose that 2α | (3b − 4a), α ≥ 1, in this case a, b are not coprime, then the con-
tradiction.

** J-4-2-2-2-2-1-2-2- We suppose that 2 | Cl =⇒ 2 | C =⇒ C = 2h.C1, with h ≥ 1 and 2 ∤ C1.
With the same method used above, we obtain identical results.

** J-4-2-2-2-2-2- We suppose that k”1 and a are not coprime 2 | a and 2 | k”1. Let a = 2t.a1
and k”1 = 2µk”2 and 2 ∤ a1 and 2 ∤ k”2. From (1.6.49), we have µ + t = 2λ and a1.k”2 = ω2.
The equations (1.6.49-1.6.50) become:

A2m = 4sk”1a = 22s.2µk”2.2t.a1 = 22s+2λ.ω2 =⇒ Am = 2s+λ.ω (1.6.55)
BnCl = 4s−12µk”2(3b − 4a) = 22s+µ−2k”2(3b − 4a) (1.6.56)

From (1.6.55) we have 2 | Am =⇒ 2 | A =⇒ A = 2i A1,i ≥ 1 and 2 ∤ A1. From(1.6.56),
2s + µ − 2 ≥ 1, we deduce that 2 | (BnCl) =⇒ 2 | Bn or 2 | Cl.

** J-4-2-2-2-2-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j.B1, 2 ∤ B1 and j ≥ 1. Then
we obtain Bn

1 Cl = 22s+µ−jn−2k”2(3b − 4a):

* We suppose that 2 ∤ (3b − 4a):

- If 2s + µ − jn − 2 ≥ 1 ⇒ 2 | Cl, then no contradiction with Cl = 2im Am
1 + 2jnBn

1 and
the conjecture (3.1.1) is verified.

- If 2s + µ − jn − 2 ≤ 0 ⇒ 2 ∤ Cl, then the contradiction with Cl = 2im Am
1 + 2jnBn

1 .

* We suppose that 2α | (3b − 4a), for one value α ≥ 1. As 2 | a, then 2α | (3b − 4a) =⇒
2 | (3b − 4a) =⇒ 2 | (3b) =⇒ 2 | b, then the contradiction with a, b coprime.
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** J-4-2-2-2-2-2-2- We suppose that 2 | Cl =⇒ 2 | C =⇒ C = 2h.C1, with h ≥ 1 and 2 ∤ C1.
With the same method used above, we obtain identical results.

** J-4-3- 2 | k′1 and 2 | (3b − 4a): then we obtain 2 | k′1 =⇒ k′1 = 2t.k”1 with t ≥ 1 and 2 ∤ k”1,
2 | (3b − 4a) =⇒ 3b − 4a = 2µ.d with µ ≥ 1 and 2 ∤ d. We have also 2 | b. If 2 | a, it is a
contradition with a, b coprime.

We suppose, in the following, that 2 ∤ a. The equations (1.6.49-1.6.50) become:

A2m = 2t.k”1.a = (Am)2 (1.6.57)

BnCl = 2t−1k”1.2µ−1d = 2t+µ−2k”1.d (1.6.58)

From (1.6.57), we deduce that the exponent t is even, let t = 2λ. Then we call ω2 = k”1.a, it
gives Am = 2λ.ω =⇒ 2 | Am =⇒ 2 | A =⇒ A = 2i.A1 with i ≥ 1 and 2 ∤ A1. From (1.6.58),
we have 2λ + µ − 2 ≥ 1, then 2 | (BnCl) =⇒ 2 | Bn or 2 | Cl:

** J-4-3-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1, with j ≥ 1 and 2 ∤ B1. Then we
obtain Bn

1 Cl = 22λ+µ−jn−2.k”1.d.
- If 2λ + µ − jn − 2 ≥ 1 ⇒ 2 | Cl =⇒ 2 | C, there is no contradiction with Cl =

2im Am
1 + 2jnBn

1 and the conjecture (3.1.1) is verified.
- If 2s + t + µ − jn − 2 ≤ 0 ⇒ 2 ∤ C, then the contradiction with Cl = 2im Am

1 + 2jnBn
1 .

** J-4-3-2- We suppose that 2 | Cl =⇒ 2 | C. With the same method used above, we obtain
identical results.

The Main Theorem is proved.

1.7 Examples and Conclusion

1.7.1 Numerical Examples

Example 1:

We consider the example : 63 + 33 = 35 with Am = 63, Bn = 33 and Cl = 35. With the
notations used in the paper, we obtain:

p = 36 × 73, q = 8 × 311, ∆̄ = 4 × 318(37 × 42 − 733) < 0

ρ =
38 × 73

√
73√

3
, cosθ = −4 × 33 ×

√
3

73
√

73
(1.7.1)

As A2m =
4p
3

.cos2 θ

3
=⇒ cos2 θ

3
=

3A2m

4p
=

3 × 24

73
=

a
b
=⇒ a = 3 × 24, b = 73; then we

obtain:

cos
θ

3
=

4
√

3√
73

, p = 36.b (1.7.2)

We verify easily the equation (1.7.1) to calculate cosθ using (1.7.2). For this example, we can
use the two conditions from (1.4.9) as 3 | a ,b | 4p and 3 | p. The cases 1.5.4 and 1.6.3 are
respectively used. For the case 1.5.4, it is the case B-2-2-1- that was used and the conjecture
(3.1.1) is verified. Concerning the case 1.6.3, it is the case G-2-2-1- that was used and the
conjecture (3.1.1) is verified.
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Example 2:

The second example is: 74 + 73 = 143. We take Am = 74 , Bn = 73 and Cl = 143. We obtain
p = 57× 76 = 3× 19× 76 , q = 8× 710 , ∆ = 27q2 − 4p3 = 27× 4× 718(16× 49− 193) =

−27× 4× 718 × 6075 < 0 , ρ = 19× 79 ×
√

19 , cosθ = − 4 × 7
19
√

19
. As A2m =

4p
3

.cos2 θ

3
=⇒

cos2 θ

3
=

3A2m

4p
=

72

4 × 19
=

a
b
=⇒ a = 72, b = 4 × 19, then cos

θ

3
=

7
2
√

19
and we have the

two principal conditions 3 | p and b | (4p). The calculation of cosθ from the expression of

cos
θ

3
is confirmed by the value below:

cosθ = cos3(θ/3) = 4cos3 θ

3
− 3cos

θ

3
= 4

(
7

2
√

19

)3

− 3
7

2
√

19
= − 4 × 7

19
√

19

Then, we obtain 3 | p ⇒ p = 3p′, b | (4p) with b ̸= 2, 4 then 12p′ = k1b = 3 × 76b.
It concerns the paragraph 1.6.9 of the second hypothesis. As k1 = 3 × 76 = 3k′1 with
k′1 = 76 ̸= 1. It is the case J-4-1-2-4-2-2- with the condition 4 | (3b − 4a). So we verify :

3b − 4a = 3 × 4 × 19 − 4 × 72 = 32 =⇒ 4 | (3b − 4a)

with A2m = 78 = 76 × 72 = k′1.a and k′1 not a prime, with a and k′1 not coprime with
ω = 7 ∤ Ω(= 2). We find that the conjecture (3.1.1) is verified with a common factor equal
to 7 (prime and divisor of k′1 = 76).

Example 3:

The third example is: 194 + 383 = 573 with Am = 194, Bn = 383 and Cl = 573. We obtain
p = 196 × 577 , q = 8 × 27 × 1910 , ∆ = 27q2 − 4p3 = 4 × 1918(273 × 16 × 192 − 5773) <

0 , ρ =
199 × 577

√
577

3
√

3
, cosθ = −4 × 34 × 19

√
3

577
√

577
. As A2m =

4p
3

.cos2 θ

3
=⇒ cos2 θ

3
=

3A2m

4p
=

3 × 192

4 × 577
=

a
b
=⇒ a = 3 × 192, b = 4 × 577, then cos

θ

3
=

19
√

3
2
√

577
and we have the

first hypothesis 3 | a and b | (4p). Here again, the calculation of cosθ from the expression

of cos
θ

3
is confirmed by the value below:

cosθ = cos3(θ/3) = 4cos3 θ

3
− 3cos

θ

3
= 4

(
19
√

3
2
√

577

)3

− 3
19
√

3
2
√

577
= −4 × 34 × 19

√
3

577
√

577

Then, we obtain 3 | a ⇒ a = 3a′ = 3 × 192, b | (4p) with b ̸= 2, 4 and b = 4p′ with p = kp′

soit p′ = 577 and k = 196. This concerns the paragraph 1.5.8 of the first hypothesis. It is
the case E-2-2-2-2-1- with ω = 19, a′, ω not coprime and ω = 19 ∤ (p′ − a′) = (577 − 192)
with s − jn = 6 − 1 × 3 = 3 ≥ 1, and the conjecture (3.1.1) is verified.

1.7.2 Conclusion

The method used to give the proof of the conjecture of Beal has discussed many possibles
cases, using elementary number theory and the results of some theorems about Diophan-
tine equations. We have confirmed the method by three numerical examples. In conclusion,
we can announce the theorem:
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Chapter 1 A Complete Proof of Beal’s Conjecture

Theorem 1.7.1. Let A, B, C, m, n, and l be positive natural numbers with m, n, l > 2. If :

Am + Bn = Cl (1.7.3)

then A, B, and C have a common factor.
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Chapter 2

Is The Riemann Hypothesis True? Yes It
Is

Abstract

In 1859, Georg Friedrich Bernhard Riemann had announced the following conjecture, called
Riemann Hypothesis : The nontrivial roots (zeros) s = σ + it of the zeta function, defined by:

ζ(s) =
+∞

∑
n=1

1
ns , for ℜ(s) > 1

have real part σ =
1
2

.

We give a proof that σ =
1
2

using an equivalent statement of the Riemann Hypothesis concern-
ing the Dirichlet η function.

Résumé

En 1859, Georg Friedrich Bernhard Riemann avait annoncé la conjecture suivante, dite
Hypothèse de Riemann: Les zéros non triviaux s = σ + it de la fonction zeta définie par:

ζ(s) =
+∞

∑
n=1

1
ns , pour ℜ(s) > 1

ont comme parties réelles σ =
1
2

.

On donne une démonstration que σ =
1
2

en utilisant une proposition équivalente de l’Hypothèse de
Riemann.

’I feel that these aren’t the right techniques to solve the Riemann hypothesis itself, it’s
going to need some big idea from somewhere else.’

James Maynard (07/15/2024) [1]
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Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.1.1 The function ζ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.1.2 A Equivalent statement to the Riemann Hypothesis. . . . . . . . . . 64

2.2 Preliminaries of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.3 Case σ =
1
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4 Case 0 < ℜ(s) < 1
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.1 Case where there are zeros of η(s) with s = σ + it and 0 < σ <
1
2

. . 67

2.5 Case
1
2
< ℜ(s) < 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.1 Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [2]:

Conjecture 2.1.1. Let ζ(s) be the complex function of the complex variable s = σ + it
defined by the analytic continuation of the function:

ζ1(s) =
+∞

∑
n=1

1
ns , for ℜ(s) = σ > 1

over the whole complex plane, with the exception of s = 1. Then the nontrivial zeros
of ζ(s) = 0 are written as :

s =
1
2
+ it

In this paper, our idea is to start from an equivalent statement of the Riemann Hypoth-
esis, namely the one concerning the Dirichlet η function. The latter is related to Riemann’s
ζ function where we do not need to manipulate any expression of ζ(s) in the critical band
0 < ℜ(s) < 1. In our calculations, we will use the definition of the limit of real sequences.

We arrive to give the proof that σ =
1
2

.

2.1.1 The function ζ.

We denote s = σ + it the complex variable of C. For ℜ(s) = σ > 1, let ζ1 be the function
defined by :

ζ1(s) =
+∞

∑
n=1

1
ns , for ℜ(s) = σ > 1

We know that with the previous definition, the function ζ1 is an analytical function of s.
Denote by ζ(s) the function obtained by the analytic continuation of ζ1(s) to the whole
complex plane, minus the point s = 1, then we recall the following theorem [3]:
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Theorem 2.1.2. The function ζ(s) satisfies the following :
1. ζ(s) has no zero for ℜ(s) > 1;
2. the only pole of ζ(s) is at s = 1; it has residue 1 and is simple;
3. ζ(s) has trivial zeros at s = −2,−4, . . .;
4. the nontrivial zeros lie inside the region 0 ≤ ℜ(s) ≤ 1 (called the critical strip) and are

symmetric about both the vertical line ℜ(s) = 1
2

and the real axis ℑ(s) = 0.

The vertical line ℜ(s) = 1
2

is called the critical line.

The Riemann Hypothesis is formulated as:

Conjecture 2.1.3. (The Riemann Hypothesis,[3]) All nontrivial zeros of ζ(s) lie on the

critical line ℜ(s) = 1
2

.

In addition to the properties cited by the theorem 2.1.2 above, the function ζ(s) satisfies
the functional relation [3] called also the reflection functional equation for s ∈ C\{0, 1} :

ζ(1 − s) = 21−sπ−scos
sπ

2
Γ(s)ζ(s) (2.1.1)

where Γ(s) is the gamma function defined only for ℜ(s) > 0, given by the formula :

Γ(s) =
∫ ∞

0
e−tts−1dt, ℜ(s) > 0

So, instead of using the functional given by (2.1.1), we will use the one presented by G.H.
Hardy [4] namely Dirichlet’s eta function [3]:

η(s) =
+∞

∑
n=1

(−1)n−1

ns = (1 − 21−s)ζ(s)

The function eta is convergent for all s ∈ C with ℜ(s) > 0 [3].

We have also the theorem (see page 16, [4]):

Theorem 2.1.4. For all t ∈ R, ζ(1 + it) ̸= 0.

So, we take the critical strip as the region defined as 0 < ℜ(s) < 1.

2.1.2 A Equivalent statement to the Riemann Hypothesis.

Among the equivalent statements to the Riemann Hypothesis is that of the Dirichlet func-
tion eta which is stated as follows [3]:
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Equivalence 2.1.5. The Riemann Hypothesis is equivalent to the statement that all
zeros of the Dirichlet eta function :

η(s) =
+∞

∑
n=1

(−1)n−1

ns = (1 − 21−s)ζ(s), σ > 1 (2.1.2)

that fall in the critical strip 0 < ℜ(s) < 1 lie on the critical line ℜ(s) = 1
2

.

The series (2.1.2) is convergent, and represents (1 − 21−s)ζ(s) for ℜ(s) = σ > 0 ([4],
pages 20-21). We can rewrite:

η(s) =
+∞

∑
n=1

(−1)n−1

ns = (1 − 21−s)ζ(s), ℜ(s) = σ > 0 (2.1.3)

η(s) is a complex number, it can be written as :

η(s) = ρ.eiα =⇒ ρ2 = η(s).η(s) (2.1.4)

and η(s) = 0 ⇐⇒ ρ = 0.

2.2 Preliminaries of the proof

Proof. . We denote s = σ + it with 0 < σ < 1. We consider one zero of η(s) that falls in
critical strip and we write it as s = σ + it, then we obtain 0 < σ < 1 and η(s) = 0 ⇐⇒
(1 − 21−s)ζ(s) = 0. We verifies easily the two propositions:

s, is one zero of η(s) that falls in the critical strip, is also one zero of ζ(s) (2.2.1)

Conversely, if s is a zero of ζ(s) in the critical strip, let ζ(s) = 0 =⇒ η(s) = (1− 21−s)ζ(s) =
0, then s is also one zero of η(s) in the critical strip. We can write:

s, is one zero of ζ(s) that falls in the critical strip, is also one zero of η(s) (2.2.2)

Let us write the function η:

η(s) =
+∞

∑
n=1

(−1)n−1

ns =
+∞

∑
n=1

(−1)n−1e−sLogn =
+∞

∑
n=1

(−1)n−1e−(σ+it)Logn =

=
+∞

∑
n=1

(−1)n−1e−σLogn.e−itLogn

=
+∞

∑
n=1

(−1)n−1e−σLogn(cos(tLogn)− isin(tLogn))

The function η is convergent for all s ∈ C with ℜ(s) > 0, but not absolutely convergent.
Let s be one zero of the function eta, then :

+∞

∑
n=1

(−1)n−1

ns = 0
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or:

∀ϵ′ > 0 ∃n0, ∀N > n0,
∣∣∣ N

∑
n=1

(−1)n−1

ns

∣∣∣ < ϵ′

We definite the sequence of functions ((ηn)n∈N∗(s)) as:

ηn(s) =
n

∑
k=1

(−1)k−1

ks =
n

∑
k=1

(−1)k−1 cos(tLogk)
kσ

− i
n

∑
k=1

(−1)k−1 sin(tLogk)
kσ

with s = σ + it and t ̸= 0.

Let s be one zero of η that lies in the critical strip, then η(s) = 0, with 0 < σ < 1. It
follows that we can write limn−→+∞ηn(s) = 0 = η(s). We obtain:

limn−→+∞

n

∑
k=1

(−1)k−1 cos(tLogk)
kσ

= 0

limn−→+∞

n

∑
k=1

(−1)k−1 sin(tLogk)
kσ

= 0

Using the definition of the limit of a sequence, we can write:

∀ϵ1 > 0 ∃nr, ∀N > nr, |ℜ(η(s)N)| < ϵ1 =⇒ ℜ(η(s)N)
2 < ϵ1

2 (2.2.3)
∀ϵ2 > 0 ∃ni, ∀N > ni, |ℑ(η(s)N)| < ϵ2 =⇒ ℑ(η(s)N)

2 < ϵ2
2 (2.2.4)

Then:

0 <
N

∑
k=1

cos2(tLogk)
k2σ

+ 2
N

∑
k,k′=1;k<k′

(−1)k+k′cos(tLogk).cos(tLogk′)
kσk′σ

< ϵ2
1

0 <
N

∑
k=1

sin2(tLogk)
k2σ

+ 2
N

∑
k,k′=1;k<k′

(−1)k+k′sin(tLogk).sin(tLogk′)
kσk′σ

< ϵ2
2

Taking ϵ = ϵ1 = ϵ2 and N > max(nr, ni), we get by making the sum member to member of
the last two inequalities:

0 <
N

∑
k=1

1
k2σ

+ 2
N

∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

< 2ϵ2 (2.2.5)

We can write the above equation as :

0 < ρ2
N < 2ϵ2 (2.2.6)

or ρ(s) = 0.

2.3 Case σ =
1
2

.

We suppose that σ =
1
2

. Let’s start by recalling Hardy’s theorem (1914) ([3], page 24):

Theorem 2.3.1. There are infinitely many zeros of ζ(s) on the critical line.
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From the propositions (2.2.1-2.2.2), it follows the proposition :

Proposition 2.3.2. There are infinitely many zeros of η(s) on the critical line.

Let sj =
1
2 + itj one of the zeros of the function η(s) on the critical line, so η(sj) = 0.

The equation (2.2.5) is written for sj:

0 <
N

∑
k=1

1
k
+ 2

N

∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k′))
√

k
√

k′
< 2ϵ2

or:
N

∑
k=1

1
k
< 2ϵ2 − 2

N

∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k′))
√

k
√

k′

If N −→ +∞, the series
N

∑
k=1

1
k

is divergent and becomes infinite. then:

+∞

∑
k=1

1
k
≤ 2ϵ2 − 2

+∞

∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k′))
√

k
√

k′

Hence, we obtain the following result:

limN−→+∞

N

∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k′))
√

k
√

k′
= −∞ (2.3.1)

if not, we will have a contradiction with the fact that :

limN−→+∞

N

∑
k=1

(−1)k−1 1
ksj

= 0 ⇐⇒ η(s) is convergent for sj =
1
2
+ itj

2.4 Case 0 < ℜ(s) < 1
2

.

2.4.1 Case where there are zeros of η(s) with s = σ + it and 0 < σ <
1
2

.

Suppose that there exists s = σ + it one zero of η(s) or η(s) = 0 =⇒ ρ2(s) = 0 with
0 < σ < 1

2 =⇒ s lies inside the critical band. We write the equation (2.2.5):

0 <
N

∑
k=1

1
k2σ

+ 2
N

∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

< 2ϵ2

or:
N

∑
k=1

1
k2σ

< 2ϵ2 − 2
N

∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

But 2σ < 1, it follows that limN−→+∞

N

∑
k=1

1
k2σ

−→ +∞ and then, we obtain :

+∞

∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))
kσk′σ

= −∞ (2.4.1)
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2.5 Case
1
2
< ℜ(s) < 1.

Let s = σ + it be the zero of η(s) in 0 < ℜ(s) < 1
2 , object of the previous paragraph.

From the proposition (2.2.1), ζ(s) = 0. According to point 4 of theorem 2.1.2, the complex
number s′ = 1 − σ + it = σ′ + it′ with σ′ = 1 − σ, t′ = t and 1

2 < σ′ < 1 verifies ζ(s′) = 0,
so s′ is also a zero of the function ζ(s) in the band 1

2 < ℜ(s) < 1, it follows from the
proposition (2.2.2) that η(s′) = 0 =⇒ ρ(s′) = 0. By applying (2.2.5), we get:

0 <
N

∑
k=1

1
k2σ′ + 2

N

∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′ < 2ϵ2 =⇒

−1
2

.
N

∑
k=1

1
k2σ′ <

N

∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′ < −1

2
.

N

∑
k=1

1
k2σ′ + ϵ2 (2.5.1)

As 0 < σ < 1
2 =⇒ 2 > 2σ′ = 2(1 − σ) > 1, then the series ∑N

k=1
1

k2σ′ is convergent to a

positive constant not null C(σ′). As 1/k2 < 1/k2σ′
for all k > 0, then :

0 < ζ(2) =
π2

6
=

+∞

∑
k=1

1
k2 <

+∞

∑
k=1

1
k2σ′ = C(σ′) = ζ1(2σ′) = ζ(2σ′)

From the equation (2.5.1), it follows that :

+∞

∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′ = −C(σ′)

2
= −ζ(2σ′)

2
> −∞ (2.5.2)

Case t = 0

We suppose that t = 0 =⇒ t′ = 0. We known the following proposition:

Proposition 2.5.1. For all s = σ real with 0 < σ < 1, η(s) > 0 and ζ(s) < 0.

We deduce the contradiction with the hypothesis s′ = σ′ is a zero of η(s) and:

The equation (2.5.2) is false for the case t′ = t = 0. (2.5.3)

Case t′ = t ̸= 0

We suppose that t′ ̸= 0. Let s′ = σ′ + it′ = 1 − σ + it a zero of η(s), we have:

+∞

∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))
kσ′k′σ′ = −C(σ′)

2
= −ζ(2σ′)

2
> −∞ (2.5.4)

the left member of the equation (2.5.4) above is finite and depends of σ′ and t′, but the right
member is a function only of σ′ equal to −ζ(2σ′)/2.

We recall the following theorem (see page 140, [4]):
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Theorem 2.5.2.

limT−→+∞
1
T

∫ T

1
| ζ(σ” + iτ) |2 dτ = ζ(2σ”) (σ” >

1
2
) (2.5.5)

Let t0 so that t0 ≥ 1. As the integral of the left member of the above equation is
convergent, the equation (2.5.5) can be written as:

limT−→+∞
1
T

∫ T

t0

|ζ(σ” + iτ)|2dτ = ζ(2σ”)

and ζ(2σ”) is independent of any t0 then in particular for t0 = t′. As σ” is any σ” > 1/2, I
choose σ” = σ′ and t0 = t′, it follows that ζ(2σ′) does not depend of t′ so that s′ = σ′ + it′

is a root of η. Hence, the contradiction with equation (2.5.2). Then the equation (2.5.4) is
false.

It follows that the equation (2.5.4) is false for the case t′ ̸= 0. (2.5.6)

It follows that the equation (2.5.2) is false and η(s′) does not vanish for σ′ ∈]1/2, 1[.

From (2.5.3-2.5.6), we conclude that the function η(s) has no zeros for all s′ = σ′ + it′

with σ′ ∈]1/2, 1[, it follows that the case of the section (2.4) above concerning the case

0 < ℜ(s) <
1
2

is false too. Then, the function η(s) has all its zeros on the critical line

σ =
1
2

. From the equivalent statement (2.1.5), it follows that the Riemann hypothesis is
verified.

We therefore announce the important theorem as follows:

Theorem 2.5.3. The Riemann Hypothesis is true:

All nontrivial zeros of the function ζ(s) with s = σ + it lie on the vertical line ℜ(s) = 1
2

.
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Chapter 3

Is The Conjecture c < rad1.63(abc) True?

Abstract

In this paper, we consider the abc conjecture, we will give the proof that the conjecture
c < rad1.63(abc) is true. It constitutes the key to resolve the abc conjecture.

Résumé:

Dans cet article, nous considérons la conjecture abc. Nous donnons la preuve de la con-
jecture c < rad1.63(abc) qui constitue la clé pour résoudre la conjecture abc.

To Prof. A. Nitaj for his work on the abc conjecture

Contents
3.1 Introduction and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 The Proof of The c < rad1.63(abc)Conjecture . . . . . . . . . . . . . . . . . . 72

3.2.1 Trivial cases: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.2 We suppose µc > rad0.63(c) and µa > rad0.63(a) . . . . . . . . . . . . 73

3.1 Introduction and Notations

Let a be a positive integer, a = ∏i aαi
i , ai prime integers and αi ≥ 1 positive integers. We

call radical of a the integer ∏i ai noted by rad(a). Then a is written as:

a = ∏
i

aαi
i = rad(a). ∏

i
aαi−1

i (3.1.1)

We denote:
µa = ∏

i
aαi−1

i =⇒ a = µa.rad(a) (3.1.2)

71



Chapter 3 Is The Conjecture c < rad1.63(abc) True?

The abc conjecture was proposed independently in 1985 by David Masser of the University
of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes
the distribution of the prime factors of two integers with those of its sum. The definition
of the abc conjecture is given below:

Conjecture 3.1.1. (abc Conjecture): For each ϵ > 0, there exists K(ϵ) such that if a, b, c
positive integers relatively prime with c = a + b, then :

c < K(ϵ).rad1+ϵ(abc) (3.1.3)

where K is a constant depending only of ϵ.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [2]. It concerned the best example

given by E. Reyssat [2]:

2 + 310.109 = 235 =⇒ c < rad1.629912(abc) (3.1.4)

A conjecture was proposed that c < rad2(abc) [3]. In 2012, A. Nitaj [4] proposed the
following conjecture:

Conjecture 3.1.2. Let a, b, c be positive integers relatively prime with c = a + b, then:

c < rad1.63(abc) (3.1.5)
abc < rad4.42(abc) (3.1.6)

In this paper, we will give the proof of the conjecture given by (3.1.5) that constitutes
the key to obtain the proof of the abc conjecture using classical methods with the help of
some theorems from the field of the number theory.

3.2 The Proof of The c < rad1.63(abc)Conjecture

Let a, b, c be positive integers, relatively prime, with c = a + b, b < a and R = rad(abc),

c =
j′=J′

∏
j′=1

c
β j′

j′ , β j′ ≥ 1, cj′ ≥ 2 prime integers.

In the following, we will give the proof of the conjecture c < rad1.63(abc).

Proof. :

3.2.1 Trivial cases:

- We suppose that c < rad(abc), then we obtain:

c < rad(abc) < rad1.63(abc) =⇒ c < R1.63

and the condition (3.1.5) is satisfied.

- We suppose that c = rad(abc), then a, b, c are not coprime, case to reject.
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In the following, we suppose that c > rad(abc) and a, b and c are not all prime numbers.

- We suppose µa ≤ rad0.63(a). We obtain :

c = a + b < 2a ≤ 2rad1.63(a) < rad1.63(abc) =⇒ c < rad1.63(abc) =⇒ c < R1.63

Then (3.1.5) is satisfied.

- We suppose µc ≤ rad0.63(c). We obtain :

c = µcrad(c) ≤ rad1.63(c) < rad1.63(abc) =⇒ c < R1.63

and the condition (3.1.5) is satisfied.

3.2.2 We suppose µc > rad0.63(c) and µa > rad0.63(a)

Case : rad0.63(c) < µc ≤ rad1.63(c) and rad0.63(a) < µa ≤ rad1.63(a)

We can write:

µc ≤ rad1.63(c) =⇒ c ≤ rad2.63(c)

µa ≤ rad1.63(a) =⇒ a ≤ rad2.63(a)

 =⇒ ac ≤ rad2.63(ac) =⇒ a2 < ac ≤ rad2.63(ac)

=⇒ a < rad1.315(ac) =⇒ c < 2a < 2rad1.315(ac) < rad1.63(abc)

=⇒ c = a + b < R1.63

Case : rad1.63(c) < µc or rad1.63(a) < µa

I - We suppose that rad1.63(c) < µc and rad1.63(a) < µa ≤ rad2(a):

I-1- Case rad(a) < rad(c):
In this case a = µa.rad(a) ≤ rad3(a) ≤ rad1.63(a)rad1.37(a) < rad1.63(a).rad1.37(c) =⇒ c <

2a < 2rad1.63(a).rad1.37(c) < rad1.63(abc) =⇒ c < R1.63 .

I-2- Case rad(c) < rad(a) < rad
1.63
1.37 (c): As a ≤ rad1.63(a).rad1.37(a) < rad1.63(a).rad1.63(c)

=⇒ c < 2a < 2rad1.63(a).rad1.63(c) < R1.63 =⇒ c < R1.63 .

I-3- Case rad
1.63
1.37 (c) < rad(a):

I-3-1- We suppose rad1.63(c) < µc ≤ rad2.26(c), we obtain:

c ≤ rad3.26(c) =⇒ c ≤ rad1.63(c).rad1.63(c) =⇒
c < rad1.63(c).rad1.37(a) < rad1.63(c).rad1.63(a).rad1.63(b) = R1.63 =⇒ c < R1.63

I-3-2- We suppose µc > rad2.26(c) =⇒ c > rad3.26(c).

I-3-2-1- We consider the case µa = rad2(a) =⇒ a = rad3(a) and c = a + 1. Then, we obtain
that X = rad(a) is a solution in positive integers of the equation:

X3 + 1 = c (3.2.1)
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I-3-2-1-1- We suppose that c = radn(c) with n ≥ 4, we obtain the equation:

radn(c)− rad3(a) = 1 (3.2.2)

But the solutions of the equation (3.2.2) are [5] :(rad(c) = 3, n = 2, rad(a) = +2), it follows
the contradiction with n ≥ 4 and the case c = radn(c), n ≥ 4 is to reject.

I-3-2-1-2- In the following, we will study the cases µc = A.radn(c) with rad(c) ∤ A, n ≥ 0.
The above equation (3.2.1) can be written as :

(X + 1)(X2 − X + 1) = c (3.2.3)

Let δ one divisor of c so that :

X + 1 = δ (3.2.4)

X2 − X + 1 =
c
δ
= m = δ2 − 3X (3.2.5)

We recall that rad(a) > rad
1.63
1.37 (c).

I-3-2-1-2-1- We suppose δ = l.rad(c). We have δ = l.rad(c) < c = µc.rad(c) =⇒ l < µc. As
c
δ
=

µcrad(c)
lrad(c)

=
µc

l
= m = δ2 − 3X =⇒ µc = l.m = l(δ2 − 3X). From m = δ2 − 3X) and

X = rad(a), we obtain:

m = l2rad2(c)− 3rad(a) =⇒ 3rad(a) = l2rad2(c)− m

A- Case 3|m =⇒ m = 3m′, m′ > 1: As µc = ml = 3m′l =⇒ 3|rad(c) and (rad(c), m′) not
coprime. We obtain:

rad(a) = l2rad(c).
rad(c)

3
− m′

It follows that a, c are not coprime, then the contradiction.

B - Case m = 3 =⇒ µc = 3l =⇒ c = 3lrad(c) = 3δ = δ(δ2 − 3X) =⇒ δ2 = 3(1 + X) =
3δ =⇒ δ = lrad(c) = 3 =⇒ c = 3δ = 9 = a + 1 =⇒ a = 8 =⇒ c = 9 < (2 × 3)1.63 ≈ 18.55,
it is a trivial case and the conjecture is true.

I-3-2-1-2-2- We suppose δ = l.rad2(c), l ≥ 2. If n = 0 then µc = A and from the equation
above (3.2.5):

m =
c
δ
=

µc.rad(c)
lrad2(c)

=
A.rad(c)
lrad2(c)

=
A

lrad(c)
⇒ rad(c)|A

It follows the contradiction with the hypothesis above rad(c) ∤ A.

I-3-2-1-2-3- We suppose δ = lrad2(c), l ≥ 2 and in the following n > 0. As m =
c
δ

=

µc.rad(c)
lrad2(c)

=
µc

lrad(c)
, if lrad(c) ∤ µc then the case is to reject. We suppose lrad(c)|µc =⇒

µc = m.lrad(c), with m, rad(c) not coprime, then
c
δ
= m = δ2 − 3rad(a).

C - Case m = 1 = c/δ =⇒ δ2 − 3rad(a) = 1 =⇒ (δ − 1)(δ + 1) = 3rad(a) = rad(a)(δ +
1) =⇒ δ = 2 = l.rad2(c), then the contradiction.
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D - Case m = 3, we obtain 3(1 + rad(a)) = δ2 = 3δ =⇒ δ = 3 = lrad2(c). Then the
contradiction.

E - Case m ̸= 1, 3, we obtain: 3rad(a) = l2rad4(c)− m =⇒ rad(a) and rad(c) are not co-
prime. Then the contradiction.

I-3-2-1-2-4- We suppose δ = l.radn(c), l ≥ 2 with n ≥ 3. c = µc.rad(c) = lradn(c)(δ2 −
3rad(a)) and m = δ2 − 3rad(a) = δ2 − 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradictions, it
follows the reject of these cases.

G - Case m ̸= 1, 3. Let q be a prime that divides m (q can be equal to m), it follows
q|(µc = l.m) =⇒ q = cj′0

=⇒ cj′0
|δ2 =⇒ cj′0

|3rad(a). Then rad(a) and rad(c) are not coprime.
It follows the contradiction.

I-3-2-1-2-5- We suppose δ = ∏j∈J1
c

β j
j , β j ≥ 1 with at least one j0 ∈ J1 with:

β j0 ≥ 2, rad(c) ∤ δ (3.2.6)

We can write:

δ = µδ.rad(δ), rad(c) = r.rad(δ), r > 1, (r, µδ) = 1 (3.2.7)

Then, we obtain:

c = µc.rad(c) = µc.r.rad(δ) = δ(δ2 − 3X) = µδ.rad(δ)(δ2 − 3X) =⇒
r.µc = µδ(δ

2 − 3X) (3.2.8)

- We suppose µc = µδ =⇒ r = δ2 − 3X = (µc.rad(δ))2 − 3X. As δ < δ2 − 3X =⇒ r > δ =⇒
rad(c) > r > (µc.rad(δ) = A.radn(c)rad(δ)) =⇒ 1 > A.radn−1(δ), then the contradiction.

- We suppose µc < µδ. As rad(a) = δ − 1 = µδrad(δ)− 1, we obtain:

rad(a) > µc.rad(δ)− 1 > 0 =⇒ rad(ac) > c.rad(δ)− rad(c) > 0

As c = 1 + a and we consider the cases c > rad(ac), then:

c > rad(ac) > c.rad(δ)− rad(c) > 0 =⇒ c > c.rad(δ)− rad(c) > 0 =⇒

1 > rad(δ)− rad(c)
c

> 0, rad(δ) ≥ 2 =⇒ The contradiction (3.2.9)

- We suppose µc > µδ. In this case, from the equation (3.2.8) and as (r, µδ) = 1, it follows
we can write:

µc = µ1.µ2, µ1, µ2 > 1,
c = µcrad(c) = µ1.µ2.rad(δ).r = δ.(δ2 − 3X),

We do a choice so that µ2 = µδ, r.µ1 = δ2 − 3X =⇒ δ = µ2.rad(δ).

** 1- We suppose (µ1, µ2) ̸= 1, then ∃ cj0 so that cj0 |µ1 and cj0 |µ2. But µδ = µ2 ⇒ c2
j0
|δ. From

3X = δ2 − rµ1 =⇒ cj0 |3X =⇒ cj0 |X or cj0 = 3.
- If cj0 |(X = rad(a)), it follows the contradiction with (c, a) = 1.
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- If cj0 = 3. We have rµ1 = δ2 − 3X = δ2 − 3(δ − 1) =⇒ δ2 − 3δ + 3 − r.µ1 = 0. As
3|µ1 =⇒ µ1 = 3kµ′

1, 3 ∤ µ′
1, k ≥ 1, we obtain:

δ2 − 3δ + 3(1 − 3k−1rµ′
1) = 0 (3.2.10)

** 1-1- We consider the case k > 1 =⇒ 3 ∤ (1− 3k−1rµ′
1). Let us recall the Eisenstein criterion

[6]:

Theorem 3.2.1. (Eisenstein Criterion) Let f = a0 + · · ·+ anXn be a polynomial ∈ Z[X].
We suppose that ∃ p a prime number so that p ∤ an, p|ai, (0 ≤ i ≤ n − 1), and p2 ∤ a0, then
f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

R(Z) = Z2 − 3Z + 3(1 − 3k−1rµ′
1) (3.2.11)

then:
- 3 ∤ 1, - 3|(−3),- 3|3(1 − 3k−1rµ′

1), and - 32 ∤ 3(1 − 3k−1rµ′
1).

It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with R(δ) =
0.

** 1-2- We consider the case k = 1, then µ1 = 3µ′
1 and (µ′

1, 3) = 1, we obtain:

δ2 − 3δ + 3(1 − rµ′
1) = 0 (3.2.12)

** 1-2-1- We consider that 3 ∤ (1 − r.µ′
1), we apply the same Eisenstein criterion to the

polynomial R′(Z) given by:

R′(Z) = Z2 − 3Z + 3(1 − rµ′
1)

and we find a contradiction with R′(δ) = 0.

** 1-2-2- We consider that:

3|(1 − r.µ′
1) =⇒ rµ′

1 − 1 = 3i.h, i ≥ 1, 3 ∤ h, h ∈ N∗ (3.2.13)

δ is an integer root of the polynomial R′(Z):

R′(Z) = Z2 − 3Z + 3(1 − rµ′
1) = 0 (3.2.14)

The discriminant of R′(Z) is:
∆ = 32 + 3i+1 × 4.h

As the root δ is an integer, it follows that ∆ = t2 > 0 with t a positive integer. We obtain:

∆ = 32(1 + 3i−1 × 4h) = t2 (3.2.15)
=⇒ 1 + 3i−1 × 4h = q2 > 1, q ∈ N∗ (3.2.16)

We can write the equation (3.2.12) as :

δ(δ − 3) = 3i+1.h =⇒ 33µ′
1

rad(δ)
3

.
(
µ′

1rad(δ)− 1
)
= 3i+1.h =⇒ (3.2.17)

µ′
1

rad(δ)
3

.
(
µ′

1rad(δ)− 1
)
= h (3.2.18)
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We obtain i = 2 and q2 = 1 + 12h = 1 + 4µ′
1rad(δ)(µ′

1rad(δ)− 1). Then, q satisfies :

q2 − 1 = 12h = 4µ′
1rad(δ)(µ′

1rad(δ)− 1) =⇒ (3.2.19)
(q−1)

2 . (q+1)
2 = 3h = (µ′

1rad(δ)− 1).µ′
1rad(δ) ⇒ (3.2.20)

q − 1 = 2µ′
1rad(δ)− 2 (3.2.21)

q + 1 = 2µ′
1rad(δ) (3.2.22)

It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

x2 − y2 = N (3.2.23)

with N = 4µ′
1rad(δ)(µ′

1rad(δ)− 1) = 12h > 0. Let Q(N) be the number of the solutions
of (3.2.23) and τ(N) is the number of suitable factorization of N, then we announce the
following result concerning the solutions of the Diophantine equation (3.2.23) (see theorem
27.3 in [7]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

As N = 4µ′
1rad(δ)(µ′

1rad(δ)− 1) =⇒ N ≡ 0(mod 4) =⇒ Q(N) = [τ(N/4)/2]. As (q, 1)
is a couple of solutions of the Diophantine equation (3.2.23), then ∃ d, d′ positive integers
with d > d′ and N = d.d′ so that :

d + d′ = 2q (3.2.24)
d − d′ = 2.1 = 2 (3.2.25)

** 1-2-2-1 As N > 1, we take d = N and d′ = 1. It follows: N + 1 = 2q

N − 1 = 2
=⇒ N = 3 =⇒ then the contradiction with N ≡ 0(mod 4).

** 1-2-2-2 Now, we consider the case d = 2µ′
1rad(δ)(µ′

1rad(δ)− 1) and d′ = 2. It follows: 2µ′
1rad(δ)(µ′

1rad(δ)− 1) + 2 = 2q

2µ′
1rad(δ)(µ′

1rad(δ)− 1)− 2 = 2
⇒ 2µ′

1rad(δ)(µ′
1rad(δ)− 1) = q + 1

As q + 1 = 2µ′
1rad(δ), we obtain µ′

1rad(δ) = 2, then the contradiction with 3|δ.

** 1-2-2-3 Now, we consider the case d = µ′
1rad(δ)(µ′

1rad(δ)− 1) and d′ = 4. It follows: µ′
1rad(δ)(µ′

1rad(δ)− 1) + 4 = 2q

µ′
1rad(δ)(µ′

1rad(δ)− 1)− 4 = 2 ⇒ µ′
1rad(δ)(µ′

1rad(δ)− 1) = 6

As µ′
1rad(δ) > 0 =⇒ µ′

1rad(δ) = 3 =⇒ µ′
1 = 1, rad(δ) = 3 and q = 5. From q2 = 1 + 12h,

we obtain h = 2. Using the relation (3.2.13) rµ′
1 − 1 = 3ih as µ′

1 = 1, i = 2, h = 2, it gives
r − 1 = 9h = 18. As δ is the positive root of the equation (3.2.12):

Z2 − 3Z + 3(1 − r) = 0 =⇒ δ = 9 = 32
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But δ = 1 + X = 1 + rad(a) =⇒ rad(a) = 8 = 23, then the contradiction.

** 1-2-2-4 Now, let cj0 be a prime integer so that cj0 |radδ, we consider the case d =

µ′
1

rad(δ)
cj0

(µ′
1rad(δ)− 1) and d′ = 4cj0 . It follows:


µ′

1
rad(δ)

cj0
(µ′

1rad(δ)− 1) + 4cj0 = 2q

µ′
1

rad(δ)
cj0

(µ′
1rad(δ)− 1)− 4cj0 = 2

=⇒ µ′
1

rad(δ)
cj0

(µ′
1rad(δ)− 1) = 2(1 + 2cj0) =⇒

Then the contradiction as the left member is greater than the right member 2(1 + 2cj0).

** 1-2-2-5 Now, we consider the case d = 4µ′
1rad(δ) and d′ = (µ′

1rad(δ)− 1). It follows: 4µ′
1rad(δ) + (µ′

1rad(δ)− 1) = 2q

4µ′
1rad(δ)− (µ′

1rad(δ)− 1) = 2
=⇒ 3µ′

1rad(δ) = 1 =⇒ Then the contradiction.

** 1-2-2-6 Now, we consider the case d = 2µ′
1rad(δ) and d′ = 2(µ′

1rad(δ)− 1). It follows: 2µ′
1rad(δ) + 2(µ′

1rad(δ)− 1) = 2q =⇒ 2µ′
1rad(δ)− 1 = q

2µ′
1rad(δ)− 2(µ′

1rad(δ)− 1) = 2 =⇒ 2 = 2

It follows that this case presents no contradictions a priori.

** 1-2-2-7 µ′
1rad(δ) and µ′

1rad(δ)− 1 are coprime, let µ′
1rad(δ)− 1 =

j=J

∏
j=1

λ
γj
j , we consider the

case d = 2λj′µ
′
1rad(δ) and d′ = 2

µ′
1rad(δ)− 1

λj′
. It follows:


2λj′µ

′
1rad(δ) + 2

µ′
1rad(δ)− 1

λj′
= 2q

2λj′µ
′
1rad(δ)− 2

µ′
1rad(δ)− 1

λj′
= 2

** 1-2-2-7-1 We suppose that γj′ = 1. We consider the case d = 2λj′µ
′
1rad(δ) and d′ =

2
µ′

1rad(δ)− 1
λj′

. It follows:


2λj′µ

′
1rad(δ) + 2

µ′
1rad(δ)− 1

λj′
= 2q

2λj′µ
′
1rad(δ)− 2

µ′
1rad(δ)− 1

λj′
= 2

=⇒ 4λj′µ
′
1rad(δ) = 2(q+ 1) =⇒ 2λj′µ

′
1rad(δ) = q+ 1

But from the equation (3.2.22), q + 1 = 2µ′
1rad(δ), then λj′ = 1, it follows the contradiction.
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** 1-2-2-7-2 We suppose that γj′ ≥ 2. We consider the case d = 2λ
γj′−r′j′
j′ µ′

1rad(δ) and

d′ = 2
µ′

1rad(δ)− 1

λ
r′

j′

j′

. It follows:



2λ
γj′−r′j′
j′ µ′

1rad(δ) + 2
µ′

1rad(δ)− 1

λ
r′

j′

j′

= 2q

2λ
γj′−r′j′
j′ µ′

1rad(δ)− 2
µ′

1rad(δ)− 1

λ
r′

j′

j′

= 2

=⇒ 4λ
γj′−r′j′
j′ µ′

1rad(δ) = 2(q + 1)

=⇒ 2λ
γj′−r′j′
j′ µ′

1rad(δ) = q + 1

As above, it follows the contradiction. It is trivial that the other cases for more factors

∏
j”

λ
γj”−r”j”
j” give also contradictions.

** 1-2-2-8 Now, we consider the case d = 4(µ′
1rad(δ)− 1) and d′ = µ′

1rad(δ), we have d > d′.
It follows: 4(µ′

1rad(δ)− 1) + µ′
1rad(δ) = 2q ⇒ 5µ′

1rad(δ) = 2(q + 2)

4(µ′
1rad(δ)− 1)− µ′

1rad(δ) = 2 ⇒ µ′
1rad(δ) = 2

⇒

 Then the contradiction as

3|δ.

** 1-2-2-9 Now, we consider the case d = 4u(µ′
1rad(δ)− 1) and d′ =

µ′
1rad(δ)

u
, where u > 1

is an integer divisor of µ′
1rad(δ). We have d > d′ and:

4u(µ′
1rad(δ)− 1) +

µ′
1rad(δ)

u
= 2q

4u(µ′
1rad(δ)− 1)−

µ′
1rad(δ)

u
= 2

=⇒ 2u(µ′
1rad(δ)− 1) = µ′

1rad(δ)

Then the contradiction as µ′
1rad(δ) and (µ′

1rad(δ)− 1) are coprime.

In conclusion, we have found only one case (** 1-2-2-6 above) where there is no contra-
dictions a priori. As τ(N) is large and also [τ(N/4)/2], it follows the contradiction with
Q(N) ≤ 1 and the hypothesis (µ1, µ2) ̸= 1 is false.

** 2- We suppose that (µ1, µ2) = 1.

From the equation rµ1 = δ2 − 3X and the condition rad(a) = X > rad1.63/1.37(c) ⇐⇒
δ − 1 = X > rad1.19(c), we obtain the following inequality:

δ − 1 > (r.rad(δ))1.19 =⇒ −3(δ − 1) < −3r.rad(δ).(r.rad(δ))0.19 =⇒
rµ1 = δ2 − 3(δ − 1) < (r.rad(δ))2 − 3r.rad(δ).(r.rad(δ))0.19 =⇒

µ1 < r.rad2(δ)− 3.rad(δ).(r.rad(δ))0.19 =⇒

µ1 < r.rad2(δ)

(
1 − 3

(r.rad(δ))0.81

)
(3.2.26)
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As a = rad3(a) < c, we can write:

rad3(a) < µ1µ2rad(c) < µ2.rad(δ).rad2(c)
(

1 − 3
(r.rad(δ))0.81

)
but (r, rad(δ)) = 1, r.rad(δ) ≥ 6 =⇒ (r.rad(δ))0.81 ≥ (60.81 ≈ 4.26) and δ = µ2.rad(δ), it
follows:

rad3(a) < µ1µ2rad(c) < µ2.rad(δ).rad2(c) =⇒ rad3(a) < δ.rad2(c) < 1.6rad(a).rad2(c)

As rad(a) > (rad1.62/1.37(c) = rad1.19(c)) =⇒ rad1.19(c) < rad(a) < 1.27rad(c), then we
obtain:

rad1.19(c) < 1.27rad(c) =⇒ rad(c) < 3.5 =⇒ rad(c) ≤ 3, but rad(c) = r.rad(δ) ≥ 6

Then the contradiction.

It follows that the case µc > rad2.26(c) ⇒ c > rad3.26(c) and a = rad3(a) is impossible.

I-3-2-2- We consider the case µa = rad2(a) =⇒ a = rad3(a) and c = a + b. Then, we obtain
that X = rad(a) is a solution in positive integers of the equation:

X3 + 1 = c̄ (3.2.27)

with c̄ = c − b + 1 = a + 1 =⇒ (c̄, a) = 1. We obtain the same result as of the case I-3-2-1-
studied above considering rad(a) > rad

1.63
1.37 (c̄).

I-3-2-3- We suppose µc > rad2.26(c) ⇒ c > rad3.26(c) and c large and µa < rad2(a), we
consider c = a + b, b ≥ 1. Then c = rad3(c) + h, h > rad3(c), h a positive integer and we can
write a + l = rad3(a), l > 0. Then we obtain :

rad3(c) + h = rad3(a)− l + b =⇒ rad3(a)− rad3(c) = h + l − b > 0 (3.2.28)

as rad(a) > rad
1.63
1.37 (c). We obtain the equation:

rad3(a)− rad3(c) = h + l − b = m > 0 (3.2.29)

Let X = rad(a)− rad(c), then X is an integer root of the polynomial H(X) defined as:

H(X) = X3 + 3rad(ac)X − m = 0 (3.2.30)

To resolve the above equation, we denote X = u + v, It follows that u3, v3 are the roots of
the polynomial G(t) given by:

G(t) = t2 − mt − rad3(ac) = 0 (3.2.31)

The discriminant of G(t) is ∆ = m2 + 4rad3(ac) = α2, α > 0. As m = rad3(a)− rad3(c) >
0, we obtain that α = rad3(a) + rad3(c) > 0, then from the expression of the discriminant
∆, it follows that the couple (α = x, m = y) is a solution of the Diophantine equation:

x2 − y2 = N (3.2.32)

with N = 4rad3(ac) = 4rad3(a).rad3(c) > 0. Here, we will use the same method that is
given in the above sub-paragraph ** 1-2-2- of the paragraph I-3-2-1-2-5-. We have the two
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terms rad3(a) and rad3(c) coprime. As (α, m) is a couple of solutions of the Diophantine
equation (3.2.32) and α > m, then ∃ d, d′ positive integers with d > d′ and N = d.d′ so that
:

d + d′ = 2α (3.2.33)
d − d′ = 2m (3.2.34)

I-3-2-3-1- Let us consider the case d = 2rad3(a), d′ = 2rad3(c). It follows: 2rad3(a) + 2rad3(c) = 2α =⇒ α = rad3(a) + rad3(c)

2rad3(a)− 2rad3(c) = 2m =⇒ m = rad3(a)− rad3(c)

It follows that this case presents a priori no contradictions.

I-3-2-3-2- Now, we consider for example, the case d = 4rad3(a) and d′ = rad3(c) =⇒ d > d′.
We rewrite the equations (3.2.33-3.2.34):

4rad3(a) + rad3(c) = 2(rad3(a) + rad3(c)) ⇒ 2rad3(a) = rad3(c))
4rad3(a)− rad3(c) = 2(rad3(a)− rad3(c)) =⇒ 2rad3(a) = −rad3(c))

Then the contradiction.

I-3-2-3-3- We consider the case d = 4rad3(c)rad3(a) and d′ = 1 =⇒ d > d′. We rewrite the
equations (3.2.33-3.2.34):

4rad3(c)rad3(a) + 1 = 2(rad3(c) + rad3(a)) =⇒
2(2rad3(c)rad3(a)− rad3(c)− rad3(a)) = −1 ⇒ a contradiction

4rad3(c)rad3(a)− 1 = 2(rad3(c)− rad3(a))

Then the contradiction.

I-3-2-3-4- Let c1 be the first factor of rad(c). We consider the case d = 4c1rad3(a) and

d′ =
rad3(c)

c1
=⇒ d > d′. We rewrite the equation (3.2.33):

4c1rad3(a) +
rad3(c)

c1
= 2(rad3(a) + rad3(c)) ⇒

2rad3(a)(2c1 − 1) =
rad3(c)

c1
(2c1 − 1) ⇒ 2rad3(a) = rad2(c).

rad(c)
c1

c1 = 2 or not, there is a contradiction with a, c coprime.

The other cases of the expressions of d and d′ not coprime so that N = d.d′ give also
contradictions.

Let Q(N) be the number of the solutions of (3.2.32), as N ≡ 0(mod 4), then Q(N) =
[τ(N/4)/2]. From the study of the cases above, we obtain that Q(N) ≤ 1 is ≪ [(τ(N)/4)/2].
It follows the contradiction.

Then the cases µa ≤ rad2(a) and c > rad3.26(c) are impossible.
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II- We suppose that rad1.63(c) < µc ≤ rad2(c) and µa > rad1.63(a):

II-1- Case rad(c) < rad(a) : As c ≤ rad3(c) = rad1.63(c).rad1.37(c) =⇒ c < rad1.63(c).rad1.37(a) <
rad1.63(ac) < rad1.63(abc) =⇒ c < R1.63 .

II-2- Case rad(a) < rad(c) < rad
1.63
1.37 (a):

As c ≤ rad3(c) ≤ rad1.63(c).rad1.37(c) =⇒ c < rad1.63(c).rad1.63(a) < rad1.63(abc) =⇒
c < R1.63 .

II-3- Case rad
1.63
1.37 (a) < rad(c):

II-3-1- We suppose rad1.63(a) < µa ≤ rad2.26(a) =⇒ a ≤ rad1.63(a).rad1.63(a) =⇒ a <
rad1.63(a).rad1.37(c) =⇒ c = a + b < 2a < 2rad1.63(a).rad1.63(c) < rad1.63(abc) =⇒ c <

R1.63 =⇒ c < R1.63 .

II-3-2- We suppose µa > rad2.26(a) =⇒ a > rad3.26(a) and µc ≤ rad2(c). Using the same
method as it was explicated in the paragraphs I-3-2- (permuting a, c see in Appendix II’-3-
2-), we arrive at a contradiction. It follows that the cases µc ≤ rad2(c) and µa > rad2.26(a)
are impossible.

Case µa > rad1.63(a) and µc > rad1.63(c):

Taking into account the cases studied above, it remains to see the following two cases:
- µc > rad2(c) and µa > rad1.63(a),
- µa > rad2(a) and µc > rad1.63(c).

III- We suppose µc > rad2(c) and µa > rad1.63(a) =⇒ c > rad3(c) and a > rad2.63(a). We
can write c = rad3(c) + h and a = rad3(a) + l with h a positive integer and l ∈ Z.

III-1- We suppose rad(c) < rad(a). We obtain the equation:

rad3(a)− rad3(c) = h − l − b = m > 0 (3.2.35)

Let X = rad(a)− rad(c), from the above equation, X is a real root of the polynomial:

H(X) = X3 + 3rad(ac)X − m = 0 (3.2.36)

As above, to resolve (3.2.36), we denote X = u + v, It follows that u3, v3 are the roots of the
polynomial G(t) given by :

G(t) = t2 − mt − rad3(ac) = 0 (3.2.37)

The discriminant of G(t) is:

∆ = m2 + 4rad3(ac) = α2, α > 0 (3.2.38)

As m = rad3(a) − rad3(c) > 0, we obtain that α = rad3(a) + rad3(c) > 0, then from the
equation (3.2.38), it follows that (α = x, m = y) is a solution of the Diophantine equation:

x2 − y2 = N (3.2.39)

82



Chapter 3 Is The Conjecture c < rad1.63(abc) True?

with N = 4rad3(ac) > 0. Let Q(N) be the number of the solutions of (3.2.39) and τ(N) is
the number of suitable factorization of N, and using the same method as in the paragraph
I-3-2-3- above, we obtain a contradiction.

III-2- We suppose rad(a) < rad(c). We obtain the equation:

rad3(c)− rad3(a) = b + l − h = m > 0 (3.2.40)

Let X be the variable X = rad(c)− rad(a), we use the similar calculations as in the para-
graph above I-3-2-3- permuting c, a, we find a contradiction.

It follows that the case µc > rad2(c) and µa > rad1.63(a) is impossible.

IV - We suppose µa > rad2(a) and µc > rad1.63(c), we obtain a > rad3(a) and c > rad2.63(c).
We can write a = rad3(a) + h and c = rad3(c) + l with h a positive integer and l ∈ Z.

The calculations are similar to those in the cases of the paragraph III. We obtain a contra-
diction.

It follows that the case µc > rad1.63(c) and µa > rad2(a) is impossible.

All possible cases are discussed.

We can state the following important theorem:

Theorem 3.2.2. Let a, b, c positive integers relatively prime with c = a + b, then c <
rad1.63(abc).

From the theorem above, we can announce also:

Corollary 3.2.2.1. Let a, b, c positive integers relatively prime with c = a + b, then the
conjecture c < rad2(abc) is true.

Appendix

II’-3-2- We suppose µa > rad2.26(a) =⇒ a > rad3.26(a).

II’-3-2-1- We consider the case µc = rad2(c) =⇒ c = rad3(c) and c = a + 1. Then, we obtain
that Y = rad(c) is a solution in positive integers of the equation:

Y3 − 1 = a (3.2.41)

II’-3-2-1-1- We suppose that a = radn(a) with n ≥ 4, we obtain the equation:

rad3(c)− radn(a) = 1 (3.2.42)

But the solutions of the Catalan equation [5] xp − yq = 1 where the unknowns x, y, p and q
take integer values, all ≥ 2, has only one solution (x, y, p, q) = (3, 2, 2, 3), but the solution of
the equation (3.2.42) are (rad(c) = 3, rad(a) = 2, 3 ̸= 2, n ≥ 4), it follows the contradiction
with n ≥ 4 and the case a = radn(a), n ≥ 4 is to reject.
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II’-3-2-1-2- In the following, we will study the cases µa = A.radn(a) with rad(a) ∤ A, n ≥ 0.
The above equation (3.2.41) can be written as :

(Y − 1)(Y2 + Y + 1) = a (3.2.43)

Let δ one divisor of a so that :

Y − 1 = δ (3.2.44)

Y2 + Y + 1 =
a
δ
= m = δ2 + 3Y (3.2.45)

We recall that rad(c) > rad
1.63
1.37 (a).

II’-3-2-1-2-1- We suppose δ = l.rad(a). We have δ = l.rad(a) < a = µa.rad(a) =⇒ l < µa.

As δ is a divisor of a, then l is a divisor of µa,
a
δ
=

µarad(a)
l.rad(a)

=
µa

l
= m = δ2 + 3Y, then

µa = l.m. From µa = l(δ2 + 3Y), we obtain:

m = l2rad2(a) + 3rad(c) =⇒ 3rad(c) = m − l2rad2(a)

A’- Case 3|m =⇒ m = 3m′, m′ > 1: As µa = ml = 3m′l =⇒ 3|rad(a) and (rad(a), m′) not
coprime. We obtain:

rad(c) = m′ − l2rad(a).
rad(a)

3
It follows that a, c are not coprime, then the contradiction.

B’ - Case m = 3 =⇒ µa = 3l =⇒ a = 3lrad(a) = 3δ = δ(δ2 + 3Y) =⇒ δ2 = 3(1 − Y) =
−3δ < 0, then the contradiction.

II’-3-2-1-2-2- We suppose δ = l.rad2(a), l ≥ 2. If n = 0 then µa = A and from the equation
above (3.2.45):

m =
a
δ
=

µa.rad(a)
lrad2(a)

=
A.rad(a)
lrad2(a)

=
A

lrad(a)
⇒ rad(a)|A

It follows the contradiction with the hypothesis above rad(a) ∤ A.

II’-3-2-1-2-3- We suppose δ = lrad2(a), l ≥ 2 and in the following n > 0. As m =
a
δ
=

µa.rad(a)
lrad2(a)

=
µa

lrad(a)
, if lrad(a) ∤ µa then the case is to reject. We suppose lrad(a)|µa =⇒

µa = m.lrad(a), with m, rad(a) not coprime, then
a
δ
= m = δ2 + 3rad(c).

C’ - Case m = 1 = a/δ =⇒ δ2 + 3rad(c) = 1, then the contradiction.

D’ - Case m = 3, we obtain 3(1 − rad(c)) = δ2 =⇒ δ2 < 0. Then the contradiction.

E’ - Case m ̸= 1, 3, we obtain: 3rad(c) = m − l2rad4(a) =⇒ rad(a) and rad(c) are not co-
prime. Then the contradiction.

II’-3-2-1-2-4- We suppose δ = l.radn(a), l ≥ 2 with n ≥ 3. From a = µa.rad(a) =
lradn(a)(δ2 + 3rad(c)), we denote m = δ2 + 3rad(c) = δ2 + 3Y.
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F’ - As seen above (paragraphs C’,D’), the cases m = 1 and m = 3 give contradictions, it
follows the reject of these cases.

G’ - Case m ̸= 1, 3. Let q be a prime that divides m (q can be equal to m), it follows
q|µa =⇒ q = aj′0

=⇒ aj′0
|δ2 =⇒ aj′0

|3rad(c). Then rad(a) and rad(c) are not coprime. It
follows the contradiction.

II’-3-2-1-2-5- We suppose δ = ∏j∈J1
a

β j
j , β j ≥ 1 with at least one j0 ∈ J1 with:

β j0 ≥ 2, rad(a) ∤ δ (3.2.46)

We can write:

δ = µδ.rad(δ), rad(a) = r.rad(δ), r > 1, (r, rad(δ)) = 1 ⇒ (r, µδ) = 1 (3.2.47)

Then, we obtain:

a = µa.rad(a) = µa.r.rad(δ) = δ(δ2 + 3Y) = µδ.rad(δ)(δ2 + 3Y) =⇒
r.µa = µδ(δ

2 + 3Y) (3.2.48)

- We suppose µa = µδ =⇒ r = δ2 + 3Y = (µa.rad(δ))2 + 3Y. As δ < δ2 + 3Y =⇒ r > δ =⇒
rad(a) > r > (µa.rad(δ) = A.radn(a)rad(δ)) =⇒ 1 > A.radn−1(δ), then the contradiction.

- We suppose µa < µδ. As rad(c) = µδrad(δ) + 1, we obtain:

rad(c) > µa.rad(δ) + 1 > 0 =⇒ rad(ac) > a.rad(δ) + rad(a) > 0

As c = 1 + a and we consider the cases c > rad(ac), then:

c > rad(ac) > a.rad(δ) + rad(a) > 0 =⇒ a + 1 ≥ a.rad(δ) + rad(a) > 0 =⇒

a ≥ a.rad(δ) + rad(δ) =⇒ 1 ≥ rad(δ) +
rad(a)

a
> 0, rad(δ) ≥ 2 =⇒ The contradiction

- We suppose µa > µδ. In this case, from the equation (3.2.8) and as (r, µδ) = 1, it follows
we can write:

µa = µ1.µ2, µ1, µ2 > 1 (3.2.49)
a = µarad(a) = µ1.µ2.r.rad(δ) = δ.(δ2 + 3Y) (3.2.50)

so that r.µ1 = δ2 + 3Y, µ2 = µδ =⇒ δ = µ2.rad(δ) (3.2.51)

** 1- We suppose (µ1, µ2) ̸= 1, then ∃ aj0 so that aj0 |µ1 and aj0 |µ2. But µδ = µ2 ⇒ a2
j0
|δ.

From 3Y = rµ1 − δ2 =⇒ aj0 |3Y =⇒ aj0 |Y or aj0 = 3.
- If aj0 |(Y = rad(c)), it follows the contradiction with (c, a) = 1.
- If aj0 = 3. We have rµ1 = δ2 + 3Y = δ2 + 3(δ + 1) =⇒ δ2 + 3δ + 3 − r.µ1 = 0. As

3|µ1 =⇒ µ1 = 3kµ′
1, 3 ∤ µ′

1, k ≥ 1, we obtain:

δ2 + 3δ + 3(1 − 3k−1rµ′
1) = 0 (3.2.52)

** 1-1- We consider the case k > 1 =⇒ 3 ∤ (1− 3k−1rµ′
1). Let us recall the Eisenstein criterion

[6]
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Theorem 3.2.3. (Eisenstein Criterion) Let f = a0 + · · ·+ anXn be a polynomial ∈ Z[X].
We suppose that ∃ p a prime number so that p ∤ an, p|ai, (0 ≤ i ≤ n − 1), and p2 ∤ a0, then
f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:

R(Z) = Z2 + 3Z + 3(1 − 3k−1rµ′
1) (3.2.53)

then:
- 3 ∤ 1, - 3|(+3),- 3|3(1 − 3k−1rµ′

1), and - 32 ∤ 3(1 − 3k−1rµ′
1).

It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with R(δ) =
0.

** 1-2- We consider the case k = 1, then µ1 = 3µ′
1 and (µ′

1, 3) = 1, we obtain:

δ2 + 3δ + 3(1 − rµ′
1) = 0 (3.2.54)

** 1-2-1- We consider that 3 ∤ (1 − r.µ′
1), we apply the same Eisenstein criterion to the

polynomial R′(Z) given by:

R′(Z) = Z2 + 3Z + 3(1 − rµ′
1)

and we find a contradiction with R′(δ) = 0.

** 1-2-2- We consider that:

3|(1 − r.µ′
1) =⇒ rµ′

1 − 1 = 3i.h, i ≥ 1, 3 ∤ h, h ∈ N∗ (3.2.55)

δ is an integer root of the polynomial R′(Z):

R′(Z) = Z2 + 3Z + 3(1 − rµ′
1) = 0 (3.2.56)

The discriminant of R′(Z) is:
∆ = 32 + 3i+1 × 4.h

As the root δ is an integer, it follows that ∆ = t2 > 0 with t a positive integer. We obtain:

∆ = 32(1 + 3i−1 × 4h) = t2 (3.2.57)
=⇒ 1 + 3i−1 × 4h = q2 > 1, q ∈ N∗ (3.2.58)

As µδ = µ2 and 3|µ2 =⇒ µ2 = 3µ′
2, then we can write the equation (3.2.54) as :

δ(δ + 3) = 3i+1.h =⇒ 33µ′
2

rad(δ)
3

.
(
µ′

2rad(δ) + 1
)
= 3i+1.h =⇒ (3.2.59)

µ′
2

rad(δ)
3

.
(
µ′

2rad(δ) + 1
)
= h (3.2.60)

We obtain i = 2 and q2 = 1 + 12h = 1 + 4µ′
2rad(δ)(µ′

2rad(δ) + 1). Then, q satisfies :

q2 − 1 = 12h = 4µ′
2rad(δ)(µ′

2rad(δ) + 1) =⇒ (3.2.61)
(q−1)

2 . (q+1)
2 = 3h = µ′

2rad(δ)(µ′
2rad(δ) + 1). ⇒ (3.2.62)

q + 1 = 2µ′
2rad(δ) + 2 (3.2.63)

q − 1 = 2µ′
2rad(δ) (3.2.64)
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It follows that (q = x, 1 = y) is a solution of the Diophantine equation:

x2 − y2 = N (3.2.65)

with N = 4µ′
2rad(δ)(µ′

2rad(δ) + 1) = 12h > 0. Let Q(N) be the number of the solutions
of (3.2.65) and τ(N) is the number of suitable factorization of N, then we announce the
following result concerning the solutions of the Diophantine equation (3.2.65) (see theorem
27.3 in [7]):

- If N ≡ 2(mod 4), then Q(N) = 0.
- If N ≡ 1 or N ≡ 3(mod 4), then Q(N) = [τ(N)/2].
- If N ≡ 0(mod 4), then Q(N) = [τ(N/4)/2].
[x] is the integral part of x for which [x] ≤ x < [x] + 1.

As N = 4µ′
2rad(δ)(µ′

2rad(δ) + 1) =⇒ N ≡ 0(mod 4) =⇒ Q(N) = [τ(N/4)/2]. As (q, 1)
is a couple of solutions of the Diophantine equation (3.2.65), then ∃ d, d′ positive integers
with d > d′ and N = d.d′ so that :

d + d′ = 2q (3.2.66)
d − d′ = 2.1 = 2 (3.2.67)

** 1-2-2-1 As N > 1, we take d = N and d′ = 1. It follows: N + 1 = 2q

N − 1 = 2
=⇒ N = 3 =⇒ then the contradiction with N ≡ 0(mod 4).

** 1-2-2-2 Now, we consider the case d = 2µ′
2rad(δ)(µ′

2rad(δ) + 1) and d′ = 2. It follows: 2µ′
2rad(δ)(µ′

2rad(δ) + 1) + 2 = 2q

2µ′
2rad(δ)(µ′

2rad(δ) + 1)− 2 = 2
⇒ µ′

2rad(δ)(µ′
2rad(δ) + 1) = q − 1

As q − 1 = 2µ′
2rad(δ), we obtain µ′

2rad(δ) = 1, then the contradiction.

** 1-2-2-3 Now, we consider the case d = µ′
2rad(δ)(µ′

2rad(δ) + 1) and d′ = 4. It follows: µ′
2rad(δ)(µ′

2rad(δ) + 1) + 4 = 2q

µ′
2rad(δ)(µ′

2rad(δ) + 1)− 4 = 2 ⇒ µ′
2rad(δ)(µ′

2rad(δ) + 1) = 6

As µ′
2rad(δ) ≥ 2 =⇒ µ′

2rad(δ) = 2 =⇒ µ′
2 = 1 ⇒ µ2 = 3 = µδ and rad(δ) = 2 but 3 ∤ 2,

then the contradiction.

** 1-2-2-4 Now, let aj0 be a prime integer so that aj0 |radδ, we consider the case d =

µ′
2

rad(δ)
aj0

(µ′
2rad(δ) + 1) and d′ = 4aj0 . It follows:


µ′

2
rad(δ)

aj0
(µ′

2rad(δ) + 1) + 4aj0 = 2q

µ′
2

rad(δ)
aj0

(µ′
2rad(δ) + 1)− 4aj0 = 2

=⇒ µ′
2

rad(δ)
aj0

(µ′
2rad(δ) + 1) = 2(1 + 2aj0) =⇒

Then the contradiction as the left member is greater than the right member 2(1 + 2aj0).
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** 1-2-2-5 Now, we consider the case d = 4µ′
2rad(δ) and d′ = (µ′

2rad(δ) + 1). It follows: 4µ′
2rad(δ) + (µ′

2rad(δ) + 1) = 2q

4µ′
2rad(δ)− (µ′

2rad(δ) + 1) = 2
=⇒ 3µ′

2rad(δ) = 3 =⇒ Then the contradiction.

** 1-2-2-6 Now, we consider the case d = 2(µ′
2rad(δ) + 1) and d = 2µ′

2rad(δ). It follows: 2(µ′
2rad(δ) + 1) + 2µ′

2rad(δ) = 2q =⇒ 2µ′
2rad(δ) + 1 = q

2(µ′
2rad(δ) + 1)− 2µ′

2rad(δ) = 2 =⇒ 2 = 2

It follows that this case presents no contradictions a prior.

** 1-2-2-7 µ′
2rad(δ) and µ′

2rad(δ) + 1 are coprime, let µ′
2rad(δ) + 1 =

j=J

∏
j=1

λ
γj
j , we consider the

case d = 2λj′µ
′
2rad(δ) and d′ = 2

µ′
2rad(δ) + 1

λj′
. It follows:


2λj′µ

′
2rad(δ) + 2

µ′
2rad(δ) + 1

λj′
= 2q

2λj′µ
′
2rad(δ)− 2

µ′
2rad(δ) + 1

λj′
= 2

** 1-2-2-7-1 We suppose that γj′ = 1. We consider the case d = 2λj′µ
′
2rad(δ) and d′ =

2
µ′

2rad(δ) + 1
λj′

. It follows:


2λj′µ

′
1rad(δ) + 2

µ′
1rad(δ)− 1

λj′
= 2q

2λj′µ
′
1rad(δ)− 2

µ′
1rad(δ)− 1

λj′
= 2

=⇒ 4λj′µ
′
1rad(δ) = 2(q+ 1) =⇒ 2λj′µ

′
1rad(δ) = q+ 1

But from the equation (3.2.22), q + 1 = 2µ′
1rad(δ), then λj′ = 1, it follows the contradiction.

** 1-2-2-7-2 We suppose that γj′ ≥ 2. We consider the case d = 2λ
γj′−r′j′
j′ µ′

2rad(δ) and

d′ = 2
µ′

2rad(δ) + 1

λ
r′

j′

j′

. It follows:



2λ
γj′−r′j′
j′ µ′

2rad(δ) + 2
µ′

2rad(δ) + 1

λ
r′

j′

j′

= 2q

2λ
γj′−r′j′
j′ µ′

2rad(δ)− 2
µ′

2rad(δ) + 1

λ
r′

j′

j′

= 2

=⇒ 4λ
γj′−r′j′
j′ µ′

2rad(δ) = 2(q + 1)

=⇒ 2λ
γj′−r′j′
j′ µ′

2rad(δ) = q + 1
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As above, it follows the contradiction. It is trivial that the other cases for more factors

∏
j”

λ
γj”−r”j”
j” give also contradictions.

** 1-2-2-8 Now, we consider the case d = 4(µ′
2rad(δ) + 1) and d′ = µ′

2rad(δ), we have d > d′.
It follows: 4(µ′

2rad(δ) + 1) + µ′
2rad(δ) = 2q ⇒ 5µ′

2rad(δ) = 2(q + 2)

4(µ′
2rad(δ) + 1)− µ′

2rad(δ) = 2 ⇒ µ′
2rad(δ) = 2

⇒

 Then the contradiction as

3|δ.

** 1-2-2-9 Now, we consider the case d = 4u(µ′
2rad(δ) + 1) and d′ =

µ′
2rad(δ)

u
, where u > 1

is an integer divisor of µ′
2rad(δ). We have d > d′ and:

4u(µ′
2rad(δ) + 1) +

µ′
2rad(δ)

u
= 2q

4u(µ′
2rad(δ) + 1)− µ′

2rad(δ)
u

= 2

=⇒ 2u(µ′
2rad(δ) + 1) = µ′

2rad(δ) + 1 ⇒ 2u = 1

Then the contradiction.

In conclusion, we have found only one case (** 1-2-2-6 above) where there is no con-
tradictions a prior. As τ(N) is large and also [τ(N/4)/2], it follows the contradiction with
Q(N) ≤ 1 and the hypothesis (µ1, µ2) ̸= 1 is false.

** 2- We suppose that (µ1, µ2) = 1.

We recall that rad(c) = Y > rad1.63/1.37(a), δ + 1 = Y, rad(a) = r.rad(δ), (r, rad(δ)) =
1, δ = µ2rad(δ) and rµ1 = δ2 + 3X, it follows:

U(δ) = δ2 + 3δ + 3 − rµ1 = 0 (3.2.68)

** 2-1- We suppose 3|(3 − rµ1) and 32 ∤ (3 − rµ1), then we use the Eisenstein criterion [6] to
the polynomial U(δ) given by the equation (3.2.68), and the contradiction.

** 2-2- We suppose 3|(3 − rµ1) and 32|(3 − rµ1). From 3|(3 − rµ1) =⇒ 3|rµ1 =⇒ 3|r or 3|µ1.
- If 3|r =⇒ (3, radδ) = 1 =⇒ 3 ∤ δ. Then the contradiction with 3|δ2 by the equation

(3.2.68).
- If 3|µ1 =⇒ 3 ∤ µ2 =⇒ 3 ∤ δ, it follows the contradiction with 3|δ2 by the equation

(3.2.68).

** 2-3- We suppose 3 ∤ (3 − rµ1) =⇒ 3 ∤ rµ1 =⇒ 3 ∤ r and 3 ∤ µ1. From the equation (3.2.68),
U(δ) = 0 =⇒ rµ1 ≡ δ2(mod3), as δ2 is a square then δ2 ≡ 1(mod3) =⇒ rµ1 ≡ 1(mod3),
but this result is not all verified. Then the contradiction.

It follows that the case µa > rad2.26(a) ⇒ a > rad3.26(a) and c = rad3(c) is impossible.

II’-3-2-2- We consider the case µc = rad2(c) =⇒ c = rad3(c) and c = a + b. Then, we obtain
that Y = rad(c) is a solution in positive integers of the equation:

Y3 + 1 = c̄ (3.2.69)

89



Chapter 3 Is The Conjecture c < rad1.63(abc) True?

with c̄ = a + b + 1 = c + 1 =⇒ (c̄, c) = 1. We obtain the same result as of the case I-3-2-1-
studied above considering rad(c̄) > rad

1.63
1.37 (c).

II’-3-2-3- We suppose µa > rad2.26(a) ⇒ a > rad3.26(a) and c large and µc < rad2(c), we
consider c = a + b, b ≥ 1. Then a = rad3(a) + h, h > 0, h a positive integer and we can write
c + l = rad3(c), l > 0. As rad(c) > rad

1.63
1.37 (a) =⇒ rad(c) > rad(a) =⇒ h + l + b = m > 0, it

follows:

rad3(c)− l = rad3(a) + h + b > 0 =⇒ rad3(c)− rad3(a) = h + l + b = m > 0 (3.2.70)

We obtain the same result (a contradiction) as of the case I-3-2-3- studied above considering
rad(c) > rad

1.63
1.37 (a). Then, this case is to reject.

Then the cases µc ≤ rad2(c) and a > rad3.26(a) are impossible.
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Chapter 4

Is The abc Conjecture True?

Abstract

In this paper, we consider the abc conjecture. As the conjecture c < rad2(abc) is true, then
we give the proof of the abc conjecture for ϵ ≥ 1 and for the case ϵ ∈]0, 1[, we consider that
the abc conjecture is false, from the proof, we arrive in a contradiction.

Résumé

Dans cet article, nous considérons la conjecture abc. Comme la conjecture c < rad2(abc) est
vraie, nous donnons la preuve que la conjecture abc est vraie pour ϵ ≥ 1 et pour les cas
ϵ ∈]0, 1[, supposant que la conjecture est fausse nous arrivons à une contradiction.

4.1 Introduction and notations

Let a positive integer a = ∏i aαi
i , ai prime integers and αi ≥ 1 positive integers. We call

radical of a the integer ∏i ai noted by rad(a). Then a is written as :

a = ∏
i

aαi
i = rad(a). ∏

i
aαi−1

i (4.1.1)

We note:
µa = ∏

i
aαi−1

i =⇒ a = µa.rad(a) (4.1.2)

The abc conjecture was proposed independently in 1985 by David Masser of the University
of Basel and Joseph Œsterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes
the distribution of the prime factors of two integers with those of its sum. The definition
of the abc conjecture is given below:

Conjecture 4.1.1. (abc Conjecture): For each ϵ > 0, there exists K(ϵ) > 0 such that if
a, b, c positive integers relatively prime with c = a + b, then :

c < K(ϵ).rad1+ϵ(abc) (4.1.3)

where K is a constant depending only of ϵ.
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The idea to try to write a paper about this conjecture was born after the publication in
September 2018, of an article in Quanta magazine about the remarks of professors Peter
Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concern-
ing the proof of Shinichi Mochizuki [3]. The difficulty to find a proof of the abc conjecture
is due to the incomprehensibility how the prime factors are organized in c giving a, b with
c = a + b. So, I will give a simple proof that can be understood by undergraduate students.

We know that numerically,
Logc

Log(rad(abc))
≤ 1.629912 [1]. A conjecture was proposed

that c < rad2(abc) [4]. It is the key to resolve the abc conjecture. In the following, as
the conjecture c < rad2(abc) holds (chapter 3), I propose an elementary proof of the abc
conjecture.

4.2 The Proof of the abc conjecture

Proof. We note R = rad(abc) in the case c = a + b or R = rad(ac) in the case c = a + 1.

4.2.1 Case : ϵ ≥ 1

As c < R2 is true, we have ∀ϵ ≥ 1:

c < R2 ≤ R1+ϵ < K(ϵ).R1+ϵ, with K(ϵ) = e, ϵ ≥ 1 (4.2.1)

Then the abc conjecture is true.

4.2.2 Case: 0 < ϵ < 1

For the cases c < R, it is trivial that the abc conjecture is true. In the following we consider
that c > R. From the statement of the abc conjecture 4.1.1, we want to give a proof that
c < K(ϵ)R1+ϵ =⇒ LogK(ϵ) + (1 + ϵ)LogR − Logc > 0.

For our proof, we proceed by contradiction of the abc conjecture. We suppose that the
abc conjecture is false:

∃ ϵ0 ∈]0, 1[, ∀K(ϵ) > 0, ∃ c0 = a0 + b0; a0, b0, c0 coprime so that

c0 > K(ϵ0)R1+ϵ0
0 (4.2.2)

We choose the constant K(ϵ) = e
1
ϵ2 . Let :

Yc0(ϵ) =
1
ϵ2 + (1 + ϵ)LogR0 − Logc0, ϵ ∈]0, 1[ (4.2.3)

From the above explications, if we will obtain ∀ϵ ∈ ]0, 1[, Yc0(ϵ) > 0 =⇒ c0 < K(ϵ)R1+ϵ
0 =⇒

c0 < K(ϵ0)R1+ϵ0
0 , then the contradiction with (4.2.2).

About the function Yc0 , we have:

limϵ−→1Yc0(ϵ) = 1 + Log(R2
0/c0) = λ > 0

limϵ−→0Yc0(ϵ) = +∞
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The function Yc0(ϵ) has a derivative for ∀ϵ ∈ ]0, 1[, we obtain:

Y′
c0
(ϵ) = − 2

ϵ3 + LogR0 =
ϵ3LogR0 − 2

ϵ3 (4.2.4)

Y′
c0
(ϵ) = 0 =⇒ ϵ = ϵ′ = 3

√
2

LogR0
∈ ]0, 1[ for R0 ≥ 8.

Figure 4.1: Table of variations

Discussion from the table (Fig.: 4.1):

- If Yc0(ϵ
′) ≥ 0, it follows that ∀ϵ ∈ ]0, 1[, Yc0(ϵ) ≥ 0, then the contradiction with Yc0(ϵ0) <

0 =⇒ c0 > K(ϵ0)R1+ϵ0
0 and the supposition that the abc conjecture is false can not hold.

Hence the abc conjecture is true for ϵ ∈ ]0, 1[.

- If Yc0(ϵ
′) < 0 =⇒ ∃ 0 < ϵ1 < ϵ′ < ϵ2 < 1, so that Yc0(ϵ1) = Yc0(ϵ2) = 0. Then we obtain:

c0 = K(ϵ1)R1+ϵ1
0 = K(ϵ2)R1+ϵ2

0 (4.2.5)

We recall the following definition:

Definition 4.2.1. The number ξ is called algebraic number if there is at least one
polynomial:

l(x) = l0 + l1x + · · ·+ lmxm, lm ̸= 0 (4.2.6)

with integral coefficients such that l(ξ) = 0, and it is called transcendental if no such
polynomial exists.

We consider the equality :

c0 = K(ϵ1)R1+ϵ1
0 =⇒ c0

R0
=

µc0

rad(a0b0)
= e

1
ϵ2

1 Rϵ1
0 (4.2.7)

i) - We suppose that ϵ1 = β1 is an algebraic number then β0 = 1/ϵ2
1 and α1 = R0 are also

algebraic numbers. We obtain:

c0

R0
=

µc0

rad(a0b0)
= e

1
ϵ2

1 Rϵ1
0 = eβ0 .αβ1

1 (4.2.8)

From the theorem (see theorem 3, page 196 in [2]):
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Theorem 4.2.1. eβ0α
β1
1 . . . α

βn
n is transcendental for any nonzero algebraic numbers

α1, . . . , αn, β0, . . . , βn.

we deduce that the right member eβ0 .αβ1
1 of (4.2.8) is transcendental, but the term

µc0

rad(a0b0)
is an algebraic number, then the contradiction and the case Yc0(ϵ

′) < 0 is impossible. It
follows Yc0(ϵ

′) ≥ 0 then the abc conjecture is true.

ii) - We suppose that ϵ1 is transcendental, then 1/(ϵ2
1) is transcendental. If not, 1/(ϵ2

1) is an
algebraic number and from the definition (4.2.1) above, we find a contradiction. As R0 is
an algebraic number, then LogR0 is transcendental. We rewrite the equation (4.2.5) as:

c0

R0
= e

1
ϵ2

1 Rϵ1
0 = e

1
ϵ2

2 Rϵ2
0 =⇒ c0

R0
= e

1
ϵ2
1
+ϵ1LogR0

= e
1

ϵ2
2
+ϵ2LogR0

(4.2.9)

As e is transcendental and ex is transcendental, it follows the contradiction with c0/R0 an
algebraic number. It follows that Yc0(ϵ

′) ≥ 0 and the abc conjecture is true.

Then the proof of the abc conjecture is finished. As c < R2 is true, we obtain that ∀ϵ > 0,
∃K(ϵ) > 0, if c = a + b with a, b, c positive integers relatively coprime, then :

c < K(ϵ).rad1+ϵ(abc) (4.2.10)

and the constant K(ϵ) depends only of ϵ.

Q.E.D

Ouf, end of the mystery!

4.3 Conclusion

As c < R2 is true, we have given an elementary proof of the abc conjecture. We can
announce the important theorem:

Theorem 4.3.1. The abc conjecture is true:
For each ϵ > 0, there exists K(ϵ) > 0 such that if a, b, c positive integers relatively prime
with c = a + b, then:

c < K(ϵ).rad1+ϵ(abc) (4.3.1)

where K is a constant depending of ϵ.

Acknowledgments. The author is very grateful to Professors Mihăilescu Preda and
Gérald Tenenbaum for their comments about errors found in previous manuscripts con-
cerning proofs proposed of the abc conjecture.
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