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Abstract

This monograph presents the last version (4.) of the proofs of 4 important conjectures in
the field of the number theory, namely:

- Beal’s conjecture.

- The Riemann Hypothesis.

- The ¢ < R'®3 conjecture is true.

- The abc conjecture is true.

We give the details of the different proofs.
Résumé

Cette monographie présente la derniere version (4.) des preuves des 4 conjectures impor-
tantes dans le domaine de la théorie des nombres a savoir:

- La conjecture de Beal.

- 'Hypothese de Riemann.

- La conjecture ¢ < R!'63 est vraie.

- La conjecture abc est vraie.

Nous donnons les détails des différentes démonstrations.
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Preface

This booklet is the fruit of ten years on working on four important conjectures in number
theory:

- Beal’s conjecture.

- The Riemann Hypothesis.

- The ¢ < R'“% conjecture is true.

- The abc conjecture is true.

It is an update of the last edition (December 2022) with many modifications added. I
had used elementary mathematics that can be understood by graduate and undergraduate
students. All the conjectures are under review by mathematical journals.

Tunis, Abdelmajid
July 2024 Ben Hadj Salem, Dipl.-Ing.
Ingénieur Général Géographe



Chapter 1

LA Complete Proof of Beal’s Conjecture

Abstract

In 1997, Andrew Beal announced the following conjecture: Let A, B, C,m,n, and | be positive
integers with m,n,1 > 2. If A™ + B" = C! then A, B, and C have a common factor. We begin to
construct the polynomial P(x) = (x — A™)(x — B")(x + C') = x3 — px + g with p, g integers
depending of A™,B" and C!. We resolve x> — px +¢g = 0 and we obtain the three roots
x1,x2,x3 as functions of p,q and a parameter 6. Since A", B", —C! are the only roots of
X3 — px +q = 0, we discuss the conditions that xj, x7, x3 are integers and have or not a
common factor. Three numerical examples are given.

Résumé

En 1997, Andrew Beal avait annoncé la conjecture suivante: Soient A,B,C,m,n, et | des
entiers positifs avec m,n,l > 2. Si A™ + B" = C! alors A, B, et C ont un facteur commun.

Je commence par construire le polyndme P(x) = (x — A™)(x — B")(x + C') = x® — px + ¢
avec p,q des entiers qui dépendent de A™, B" et C'. Nous résolvons x> — px +¢q = 0 et
nous obtenons les trois racines xi, X, x3 comme fonctions de p, g et d’un parametre 6.
Comme A", B", —C! sont les seules racines de x> — px + g = 0, nous discutons les
conditions pourque x1, x2, x3 soient des entiers. Trois exemples numériques sont présentés.

Contents
11 Introduction . .. ... ... ... i ittt ittt ittt 4
1.2 Trivial Case . . . . . v v i i ittt et e e e e e e e e e e e e e 5
121 Casel A1=1=C1=1.. ... ... 5
122 Case2 A1 >1=C1>1 ... ... ... 6
1.3 Preliminaries . . . . . . v v v v v v v i i ittt e ettt 6
1.3.1 Expressionsof theroots . . . . ... ... ... .. .. ... .. ... 8
1.4 Preamble of the Proof of the Main Theorem ................. 10
6 1
141 Case coszé A R I I IR 10



Chapter 1 A Complete Proof of Beal’s Conjecture

142 Casea > 1, COSZQ o 11
3 b
1.5 Hypothesis: {3|a and b|4p} ... v 12
151 Caseb=2and3|a . ...... ... ... 12
152 Caseb=4and3|a ........ ... ... ... ... ... 12
153 Caseb=pand3|a ...... ... ... ... ... ... 12
154 Caseb|p= p=bp,p>1,b#2,b#4and3|a ......... 16
155 Caseb=2pand3|a ......... .. ... 20
156 Caseb=4pand3|a ......... ... ... ... .. . ... 20
157 Case3|aandb=2p', b#2withp' |p ... .. ... ... . .... 25
158 Case3|aandb=4p, b#4withp' |p ... ... ... ... ... 28
159 Case3|aandb |4p .. ... ... . 30
1.6 Hypothesis: {3 |p and b|4p} ... v it 33
161 Caseb=2and3|p . ... ... ... 33
1.62 Caseb=4and3|p . ... ... 34
163 Case:b#2,b#4,b#3,b|pand3|p . ... ... ... ... .. 34
164 Caseb=3and3|p ... ... ... ... 37
165 Case3|pandb=p .. ... .. .. 38
166 Case3|pandb=4p ... ... .. ... 38
1.67 Case3|pandb=2p . ... ... ... . ... 38
1.6.8 Case3|pandb #3adivisorofp .. ....... ... ........ 38
169 Case3|pandb|4p .. ... .. . 47
1.7 Examplesand Conclusion. . . ... ... .. ... .. 58
171 Numerical Examples . . . . ... ....... ... ... ... ... 58
172 Conclusion . ... ...... . ... ... 59

1.1 Introduction

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 1.1.1. Let A, B,C, m,n, and | be positive integers with m,n,l > 2. If:
A" 4 B" = (1.1.1)

then A, B, and C have a common factor.

The purpose of this paper is to give a complete proof of Beal’s conjecture. Our idea is
to construct a polynomial P(x) of order three having as roots A™,B" and —C' with the
condition (1.1.1). We obtain P(x) = x® — px + g where p, q are depending of A™, B" and C'.
Then we express A", B", —C! the roots of P(x) = 0 in function of p and a parameter 6 that

4
depends of the A, B, C. The calculations give that A" = —pcoszg. As A% is an integer, it

0 . a e L :
follows that c052§ must be written as b where a, b are two positive coprime integers. Beside
the trivial cases, there are two main hypothesis to study:

4
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- the first hypothesisis: 3 |a and b |4p,
- the second hypothesisis: 3 | p and b |4p.

We discuss the conditions of divisibility of p,a,b so that the expression of A" is an
integer. Depending of each individual case, we obtain that A, B, C have or do have not a
common factor. Our proof of the conjecture contains many cases to study. there are many
cases where we use elementary number theory and some cases need more research to ob-
tain finally the solution. I think that my new idea detailed above overcomes the apparent
limitations of the methods I am using.

The paper is organized as follows. In section 1, it is an introduction of the paper. The
trivial case, where A™ = B", is studied in section 2. The preliminaries needed for the proof
are given in section 3 where we consider the polynomial P(x) = (x — A™)(x — B")(x +
C!) = x® — px + q. The section 4 is the preamble of the proof of the main theorem. Section
5 treats the cases of the first hypothesis 3 | a and b | 4p. We study the cases of the second
hypothesis 3 | p and b | 4p in section 6. Finally, we present three numerical examples and
the conclusion in section 7.

In 1997, Andrew Beal [1] announced the following conjecture :

~ a

Conjecture 1.1.2. Let A, B, C, m,n, and | be positive integers with m,n,l > 2. If:
A" 4 B" = (! (1.1.2)

then A, B, and C have a common factor.

1.2 Trivial Case

We consider the trivial case when A™ = B". The equation (1.1.2) becomes:
2A™ = C! (1.2.1)

then2 | C! = 2| C = C = 21.C; with g > 1,24 C; and 2A™ = 29/C} = A™ = 24-1CL.
Asl>2,g>1,then2 | A" = 2| A= A =2"A; withr > 1 and 2t A;. The equation
(1.2.1),becomes:

2 x 2mAM = 24 Cl (1.2.2)

As 2t Aj and 2 1 C1, we obtain the first condition :

There exists two positive integers r, gwithr.g > 1 so that|gl = mr + 1 (1.2.3)

Then from (1.2.2):
e (1.2.4)

121 CaselA1=1—C =1

Using the condition (1.2.3) above, we obtain 2.(2")" = (21)! and the Beal conjecture is veri-
tied.
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122 Case2 A1 >1—C; >1

From the fundamental theorem of the arithmetic, we can write:

Ay=ail..ay, m<ap<--<a= Al'=a"'. . .a™ (1.2.5)
I
Clchl...c?’, 61<cz<---<c]:Ci:cllﬁ1...c]ﬁ’ (1.2.6)

where g; (respectively ¢;) are distinct positive prime numbers and «; (respectively p;) are
integers > 0.

From (1.2.4) and using the uniqueness of the factorization of A}" and Ci, we obtain neces-
sary:

=]
a; = ¢, iZl,Z,...,I (1.2.7)
mo; = 1B;

Asonea; | A" = a; | B" = a; | Band a; = ¢; = a; | C' = a; | C, in this case, the Beal
conjecture is verified.

We suppose in the following that A™ > B".

1.3 Preliminaries
Let m,n,l € N* >2and A, B,C € IN* such:

A" 4+ B" = (1.3.1)
We call:

P(x) = (x — A™)(x — B")(x + C') = x® — x2(A™ + B" — C')
+x[A™B" — C!(A™ + B")] + C' A™B" (1.3.2)

Using the equation (1.3.1), P(x) can be written as:

P(x) = x® + x[A"B" — (A™ + B")?] + A"™B"(A™ + B") (1.3.3)

We introduce the notations:

p= (Am+Bn)2_AmBn :A2m+AmBn_'_B2n

As A™ # B", we have p > (A™ — B")? > 0. Equation (1.3.3) becomes:
P(x) =x>—px+gq
Using the equation (1.3.2), P(x) = 0 has three different real roots : A™, B" and —C'.

Now, let us resolve the equation:

P(x)=x>—px+g=0 (1.3.4)
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To resolve (1.3.4) let:
X=u+v

Then P(x) = 0 gives:
P(x):P(u—i—v):(u+v)3—p(u+v)—|—q:0:>u3—|—v3+(u+v)(3uv—p)+q20

To determine u and v, we obtain the conditions: (132
uw+ 0 = —g
uv =p/3 >0
Then 1 and o> are solutions of the second order equation:
X*+gX+p°/27=0 (1.3.6)
Its discriminant A is written as :
A=q?—4p>/27 = —27"22; i _ %
Let:
A =27¢* —4p> = 27(A™B"(A" + B"))* — 4[(A™ + B")> — A"B"?
= 27A%"B2"(A™ + B")? — 4[(A™ + B")? — A"B")? (1.3.7)
Denoting :
a=A"B">0
B=(A"+B")?
we can write (1.3.7) as:
A =274 —4(B —a)® (1.3.8)

As a # 0, we can also rewrite (1.3.8) as :

A=add (275—4(5—1)3>

We call t the parameter :

A becomes :
A=a®27t —4(t—1)%)
Let us calling :
y=vy(t) =27t —4(t — 1)
Since a > 0, the sign of A is also the sign of y(t). Let us study the sign of y. We obtain
y'(#):
v (t) =y =3(1+2t)(5—-2t)
Y =0=t = —1/2 and t, = 5/2, then the table of variations of y is given below:
The table of the variations of the function y shows that y < 0 for ¢t > 4. In our case, we are
interested for t > 0. For t = 4 we obtain y(4) = 0 and for t €]0,4[= y > 0. As we have
=L > 4a5 A™ # B

(A" —B")? > 0= B = (A" + B")? > 40 = 4A"B"

Theny < 0 = A <0 = A < 0. Then, the equation (1.3.6) does not have real solutions
u® and ©°. Let us find the solutions u and v with x = u + v is a positive or a negative real
and u.v = p/3.
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t - -172 52 4

1+2t - ’_0‘ + ‘ +

5-2t + T + 0 R

¥y

o] * [o §
N S

Figure 1.1: The table of variations

1.3.1 Expressions of the roots

Proof. The solutions of (1.3.6) are:

X — —q+ivV—A
! 2
o —q—iV=A
Xp =X = —
We may resolve:
W3 = —q+ iv—A
2
3_ - iv—A
V= ——
2
Writing X; in the form: ‘
X; = pe®
with:
g VI =B _PVP
2 33
and sind = v-4 >0
20
S
cosf = 20 <0

Then 6 [271] €] + g, +7[, let:

V3
2

E<0<—i—7'cz>z<Q<E:>1<cosg<—
2 6 3 3 2 3
and:
1<c0529<g
4 3 4

(1.3.9)

(1.3.10)



Chapter 1 A Complete Proof of Beal’s Conjecture

hence the expression of X»:

= pe ™" (1.3.11)
Let:
u=re? (1.3.12)
and j = # — ¥ (1.3.13)
[ +2“/§ —7 (13.14)

j is a complex cubic root of the unity <= j> = 1. Then, the solutions u and v are:

u = retfr = \/_e 5 (1.3.15)
1y = re'2 = Ypje's = ypel 3 (1.3.16)
u—re’4’3—\/—]e3—\/_e3e+13—\/_e+3 (1.3.17)

and similarly:
v =re P = \3/(—)(3*1'% (1.3.18)
vy = re V2 = \3/5]'26—1'2 = e/ﬁei%e_i% =3 pe"4ﬂ379 (1.3.19)
vy =re” V3 = \?yﬁje_’g = Wei%;g (1.3.20)

We may now choose u; and vy, so that uy + v;, will be real. In this case, we have necessary :

01 =17 (1.3.21)
vy =103 (1.3.22)
vy =103 (1.3.23)

We obtain as real solutions of the equation (1.3.5):

6
X1=1u+0v = 2\3/ﬁcos§ >0 (1.3.24)
Xp =Up+7p = 2\3/5005‘”% =—Jp (cosg + ﬁsing) <0 (1.3.25)
X3 = usz+ vz = 2\3/5005(”% = Jp (—cosg + \/§sin§) >0 (1.3.26)

We compare the expressions of x; and x3, we obtain:

?
ZWcosg > Q/ﬁ(—cosg+\/§sing>
3cos§ > \/§sin§ (1.3.27)

As g €]+ %, -!—%[, then sing and cosg are > 0. Taking the square of the two members of

the last equation, we get:
1 20

1 < cos 3 (1.3.28)
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0
which is true since = €]+ %,—i—%[ then x; > x3. As A", B" and —C' are the only real
solutions of (1.3.4), we consider, as A™ is supposed great than B", the expressions:

(
A" =x1 =u1 v = 23/5(:032
0+4r 0 . 0
B" = x3 = uz + v3 = 2/pcos +3 = Jp (—cosg + \/§sm§) (1.3.29)
—Cl=xy=uy+v, = 2\3/ﬁcose +327T =—Jp (cosg + ﬁsing)
\

1.4 Preamble of the Proof of the Main Theorem

Theorem 1.4.1. Let A, B,C, m,n, and | be positive integers with m,n,l > 2. If:
A" 4 B" = (1.4.1)

then A, B, and C have a common factor.

6 6
Proof. A™ = 2\3/(—)cos§ is an integer = A?" = 47/ pzcosz§ is also an integer. But :

Vo2 = g (1.42)

Then: 0 0 4 p
A% = 473/ 02c0s? = = 4—p. 22 = p.=.cos’ 1.4.

" p=cos 3 3 cos 3 3 cos 3 (1.4.3)

As A?™ is an integer and p is an integer, then cos? —g must be written under the form:

o 1 0 a
2 2

- 144
cos 371 or cos 371 ( )

with b € IN*; for the last condition 2 € IN* and a, b coprime.
Notations: In the following of the paper, the scalars 4,9, ...,z, a,B,..., A,B,C,... and

A, ®, ... represent positive integers except the parameters 6, p, or others cited in the text, are
reals.

0 1
1.4.1 Case coszg I

b
We obtain: A P
Y S 4 14,
P399 37 35 (145
1 0 3 1 1 3
ASZ<COS§<Z:>1<E<Z:>b<4<3b:b_1/2’3

10
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b=1

b =1 = 4 < 3 which is impossible.

b=2
- m_,2 1 _2p — 3y with o' in:
b=2= A =P35=73 = 3| p = p = 3p’ with p’ # 1 because 3 < p, we obtain:
Azm:(A’")zzzgp:Z.p'éZ\p':>p':2”‘p%
with 2{p;, a+1=2p
A™ = 2Pp, (1.4.6)
B"C! = i’/;<3—4coszg> =p' =2%3 (1.4.7)

From the equation (1.4.6), it follows that 2 | A" — A = 21A;,i>1and 2 1 Ay. Then, we
have B = i.m = im. The equation (1.4.7) implies that 2 | (B"C!) = 2 | B" or 2 | C%.

Case 2 | B": -If2 | B" = 2 | B = B = 2/B; with 2 { B;. The expression of B"C
becomes: ‘ ‘

Bil’lcl — 221m—1—]np%
-1f2im —1—jn > 1,2 | C' = 2| C according to C' = 2" A" 4 2/" B! and the conjecture
(3.1.1) is verified.
I 2im—1—jn<0=—2¢ C!, then the contradiction with C! = ZimA’ln + Zj”B?.

Case 2 | C!: If 2 | C: with the same method used above, we obtain the identical results.

b=3

41  4p

b:3:>A2m:p.§.§—?:>9|p:>p:9p’withp’7é1,as9<<pthenA2m:4;9’.pr’

is prime, it is impossible. We suppose that p’ is not a prime, as m > 3, it follows that 2 | p/,
then 2 | A™. But B"C! = 5p’ and 2 | (B"C!). Using the same method for the case b = 2, we
obtain the identical results.

0 a
14.2 Casea > 1, cos’~ = —
3 b
We have: 0 4 0 4
2V a, om _ % 20 =P.a
cos 353 p.3.cos 3 3D (1.4.8)
where a, b verify one of the two conditions:
{3la and b|4p}|or|{3|p and b|4p} (1.4.9)

and using the equation (1.3.10), we obtain a third condition:

b <4a<3b (1.4.10)
6
For these conditions, A?" = 4/ pzcoszg = 4§.c052§ is an integer.

Let us study the conditions given by the equation (1.4.9) in the following two sections.

11
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1.5 Hypothesis: {3 |a and b|4p}

We obtain :
3la= ' eN* /a=23d

1.5.1 Caseb=2and3|a

A2M is written as:

4 0 4pvpa 4pa 2.p.a
2m —p 2— = —p - = —p - = p
AT = s = T 3T 3
Using the equation (1.5.1), A2™ becomes :
42m _ 2.p.3d' o
3 .

6 3a’
but coszg = % = TQ > 1 which is impossible, then b # 2.

1.5.2 Caseb=4and3|a

A2M ig written :

which is impossible. Then the case b = 4 is impossible.

1.53 Caseb=pand3|a
We have :

and:

Jq” / al — al/Z
and B'Cl=p— AP =b—4d' = b — 4a"?
The calculation of A"B" gives :

A"B" = p.?sing — 24

3

or A"B"+ 24 = p.ésin@

(1.5.1)

(1.5.2)

(1.5.3)

(1.5.4)

(1.5.5)

(1.5.6)

(1.5.7)

(1.5.8)
(1.5.9)

(1.5.10)

(1.5.11)

3 3
o V320 .
The left member of (1.5.10) is an integer and p also, then 2?5171? is written under the
form :
ZQSin% = k—l
373 k

where ki, k, are two coprime integers and ky | p == p = b = kp.k3, k3 € IN*.

12
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We suppose that k3 # 1

We obtain :
A"(A™ +2B") = kq.k3 (1.5.12)

Let i be a prime integer with u | k3, then p | b and p | A"(A™ 4+ 2B") = u | A™ or
u| (A™+2B").

*A-1-1-If u | A" = p | Aand u | A%, but A>" =40’ = u | 4d' = (u=2,but2 | a)
or (i | a’). Then y | a it follows the contradiction with a,b coprime.

* A-1-2-1f u | (A" +2B") = u t A™ and pu t 2B" then u # 2 and u t B". We write
u| (A™+2B") as:
A™ 4 2B" = .t (1.5.13)

It follows :
A" 4+ B" = ut' — B" = A + B*" 4+ 2A"B" = u*t* — 2t'uB" + B*"
Using the expression of p:
p = t?u? —2¢'B"u+ B"(B" — A™) (1.5.14)
Asp=0b=kpkszand p | ks then p | b = Iy’ and b = up’, so we can write:
w'u = u(ut? —2t'B") + B"(B" — A™) (1.5.15)

From the last equation, we obtain y | B*(B" — A™) = u | B" or u | (B" — A™).
** A-1-2-1- If u | B" which is in contradiction with y 1 B".

** A-1-2-2-1f u | (B" — A™) and using that u | (A™ + 2B"), we arrive to :

u|B"
w|3B" < or (1.5.16)
p=3

** A-1-2-2-1-If u | B" = u | B, it is the contradiction with u 1 B cited above.

** A-1-2-2-2-If y = 3, then 3 | b, but 3 | a then the contradiction with a, b coprime.

We assume now k3 = 1

Then :
A?" L 2AMBY = [y (1.5.17)
b=k (1.5.18)
?sin? = % (1.5.19)
Taking the square of the last equation, we obtain:
4 . ,20 k3
373 TR
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16 . ,0 ,0 Kk
5517’1 §COS § = b—z
16 inZQ 3_51’ = k_%
3 3 b b2
Finally:

42d(p—a) =k (1.5.20)

but a’ = a”?, then p — a is a square. Let:
NM=p—a=b—-a=b—-3a"= A2 +3a"%=b (1.5.21)
The equation (1.5.20) becomes:
42002 = k3 = ky = 4a"A (1.5.22)
taking the positive root, but ky = A™(A™ +2B") = 2a”(A™ + 2B"), then :
A"+ 2B" =2\ = A =a" + B" (1.5.23)

* A-2-1- As A" = 20" = 2 | A" = 2 | A = A = 2'A;, withi > 1and 2 { Ay,
then A™ = 20”7 = 2MAN — ¢” = 2M~ 1AM butim > 3 = 4 | a”. As A = a” + B",
taking its square, we obtain A2 = a”? +2a”.B" 4+ B?* = A2 = B?>"(mod 4) = A?> = B¥' =
0(mod 4) or A?> = B** = 1(mod 4).

** A-2-1-1- We suppose that A2 = B*" = 0(mod 4) = 4| A2 = 2| (b —a). But 2 | a be-
cause a = 3a’ =3a"%2 =3 x 22(””_1)/1%’” and im > 3. Then 2 | b, it follows the contradiction
with a, b coprime.

** A-2-1-2- We suppose now that A2 = B2" = 1(mod 4). As A™ = 2""1A" and im —1 > 2,
then A" = 0(mod4). As B* = 1(mod4), then B" verifies B" = 1(mod4) or B" =
3(mod 4) which gives for the two cases B"C' = 1(mod 4).

We have also p = b = A¥" + A"B" + B¥" = 44’ + B".C! = 4a”> + B"C! = B"C! =
A2 — "% = B".C!, then A,a” € IN* are solutions of the Diophantine equation :

X —y*=N (1.5.24)

with N = B"C! > 0. Let Q(N) be the number of the solutions of (1.5.24) and 7(N) is the
number of suitable factorization of N, then we announce the following result concerning
the solutions of the equation (1.5.24) (see theorem 27.3 in [2]):

-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod 4), then Q(N) = [t(N)/2].

-If N =0(mod 4), then Q(N) = [t(N/4)/2].

[x] is the integral part of x for which [x] < x < [x] + 1.

In our case, we have N = B".C! = 1(mod 4), then Q(N) = [t(N)/2]. As A,a” is a
couple of solutions of the Diophantine equation (1.5.24), then 3 d,d’ positive integers with
d>d and N = d.d’ so that :

d+d =2A (1.5.25)
d—d =2a” (1.5.26)
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# A-2-1-2-1- As C! > B", we take d = C! and d’ = B". It follows:

C'4+B" =2\ = A" 4+ 2B" (1.5.27)
Cl—B"=27" = A™ (1.5.28)

Then the case d = C! and d’ = B" eives a priory no contradictions.
g priory

** A-2-1-2-2- Now, we consider the case d = B"C! and d' = 1. We rewrite the equations
(1.5.25-1.5.26):

B"C'+1=2A (1.5.29)
B"Cl -1 =24" (1.5.30)

We obtain 1 = A —a”, but from (1.5.23), we have A = a” 4+ B", it follows B" = 1 and
C! — A™ =1, we know [?] that the only positive solution of the last equation is C = 3, A =
2,m =3 and [ = 2 < 3, then the contradiction.

** A-2-1-2-3- Now, we consider the case d = clf 1Cl where c; is a prime integer with ¢1 1 C;
and C = ¢[Cy, r > 1. It follows that d’ = ¢;.B". We rewrite the equations (1.5.25-1.5.26):

cIr=1Ch 4 ¢1.B" =24 (1.5.31)
’f el —¢1.B" = 2a” (1.5.32)

As [ > 3, from the last two equations above, it follows that ¢; | (2A) and ¢; | (2a”). Then
ci=2,0rcy |Aand ¢y | a”.

** A-2-1-2-3-1- We suppose c; = 2. As 2 | A™ and 2 | C! because ! > 3, it follows 2 | B",
then 2 | (p = b). Then the contradiction with a,b coprime.

** A-2-1-2-3-2- We suppose ¢; # 2 and ¢; | a” and ¢; | A. ¢1 | a7 = ¢1 | a and
¢ | (A™ = 2a2”). B" = C' — A" = ¢; | B". Tt follows that ¢; | (p = b). Then the
contradiction with a, b coprime.

The other cases of the expressions of d and d’ with d, d’ not coprime so that N = B"C! =
d.d’ give also contradictions.

** A-2-1-2-4- Now, let C = ¢]C; with ¢ a prime, r > 1 and ¢;  C1, we consider the case
d = Cl and d' = ¢/!B" so that d > d’. We rewrite the equations (1.5.25-1.5.26):

Cl+ci'B" =27 (1.5.33)
Cl —c'B" = 2a” (1.5.34)

We obtain ¢''B" = A — g” = B" = ¢! = 1, then the contradiction.
1 1

** A-2-1-2-5- Now, let C = ¢|C; with c; a prime, r > 1 and ¢; { C;, we consider the case
d = CiB" and d’' = ¢! so that d > d’. We rewrite the equations (1.5.25-1.5.26):

CiB 4 ¢l =2 (1.5.35)
C!B! — ¢t =247 (1.5.36)

We obtain c{l =A—a”"=B" = ¢ | B", thenc; | A™ = 2a”. If ¢c; = 2, the contradiction
with B"C! = 1(mod 4). Thenc; | a” = ¢; | a = ¢; | (p = b), it follows a,b are not
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coprime, then the contradiction.

Cases like d’ < C! a divisor of C! or d’ < B! a divisor of B" withd’ < d and d.d’ = N =
B"C! give contradictions.

** A-2-1-2-6- Now, we consider the case d = b;.C! where by is a prime integer with by { By

and B = b[By, r > 1. It follows that d’ = b’frle’f. We rewrite the equations (1.5.25-1.5.26):
biC' + b 1B =27 (1.5.37)
byC' — b 1B = 2a” (1.5.38)

As n > 3, from the last two equations above, it follows that b; | 2A and by | (24”). Then
by =2,0rb; | Aand by | a”.

** A-2-1-2-6-1- We suppose by =2 =2 | B". As2 | (A" =24" = 2| a” = 2 | a, but
2| B"and 2 | A™ then 2 | (p = b). It follows the contradiction with a, b coprime.

** A-2-1-2-6-2- We suppose by # 2, then by | Aand by | a” = by | A" and by | a” = by | 4,
but by | B"* and by | A" then by | (p = D). It follows the contradiction with a,b coprime.

The other cases of the expressions of d and d’ with d,d’ not coprime and d > d’ so that
N = C!B™ = d.d’ give also contradictions.

Finally, from the cases studied in the above paragraph A-2-1-2, we have found one suit-
able factorization of N that gives a priory no contradictions, it is the case N = B".C! = d.d’'
withd = C!,d’ = B" but 1 < 7(N), it follows the contradiction with Q(N) = [t(N)/2] < 1.
We conclude that the case A-2-1-2 is to reject.

Hence, the case k3 = 1 is impossible.

Let us verify the condition (1.4.10) given by b < 4a < 3b. In our case, the condition becomes

p < 3AY < 3p with p= A" 4 B* 4 A"B" (1.5.39)
and 3A%" < 3p = A>™ < p that is verified. If :

?

p < 3AYT — DA% _ AMB" — B2 570

Studying the sign of the polynomial Q(Y) = 2Y? — B"Y — B** and taking Y = A™ > B",
the condition 2A%™ — A™B" — B2" > () is verified, then the condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b implies to
verify that A™ > B" which is true.

154 Caseb|p= p=0bp,p>1,b#2,b#4and3|a

!/ !/
_AbpSa (1.5.40)

4.p a
om _ =P 4
A 37D 3.b

We calculate B"C:
0 6 0
n~l _ 3/ .2 . 2V 2V ) 3/ .2 . 27
B"C' = {/p (35111 3~ Cos 3) = {/p (3 4cos 3> (1.5.41)

16



Chapter 1 A Complete Proof of Beal’s Conjecture

/
but \3/p = g, using coszg = 3'761, we obtain:

0 p 3.4 4.4/
nel 3/ 02 _ 27y P 47" ) = _ ") — (b — a4
B"C Y (3 4cos ) (3 4 b ) p. (1 b ) p (b 4a) (1.5.42)

Asp=10b.p/,and p’ > 1, so we have :

B"C' = p'(b — 4d’) (1.5.43)
and A*" =4.p'.d (1.5.44)

** B-1- We suppose that p’ is prime, then A?" = 4d'p’ = (A™)? = p’ | a’. But B"C! =
p'(b—4a") = p' | B"or p' | C\.

* B-1-1-If p' | B" = p' | B= B = p'B; with B; € N*. Hence : p" !'BIC! = b—4d'.
Butn >2= (n—1) > 1and p' | @, then p’ | b = a and b are not coprime, then the
contradiction.

** B-1-2-1f p’ | C' = p’ | C. The same method used above, we obtain the same results.

** B-2- We consider that p’ is not a prime integer.

** B-2-1- p/,a are supposed coprime: A*" = 44'p' = A™ = 2a”.p; with @’ = 4”2 and
p’ = p3, then a”, p; are also coprime. As A™ = 2a”.p; then 2 | a” or 2 | p;.

** B-2-1-1- 2 | a”, then 2 { p;. But p’ = p2.
** B-2-1-1-1- If p; is prime, it is impossible with A™ = 2a”.p;.

** B-2-1-1-2- We suppose that p; is not prime, we can write it as p; = W™ = p’ = w?",
then: B"C! = w?" (b — 4a’).

** B-2-1-1-2-1- If w is prime, it is different of 2, then w | (B"C!) = w | B" or w | C~.

*#* B-2-1-1-2-1-1- If w | B" = w | B = B = w/B; with w { By, then BI.C! = "~ " (b —
4a").

** B-2-1-1-2-1-1-1- If 2m — n.j = 0, we obtain Bl.C' = b—4d’. AsC' = A" + B" = w |
C'= w|C,and w | (b —4a’). But w # 2 and w is coprime with a’ then coprime with a,
then w 1 b. The conjecture (3.1.1) is verified.

** B-2-1-1-2-1-1-2- If 2m — nj > 1, in this case with the same method, we obtain w | Cl —=
w|Cand w | (b—4a") and w 1 a and w t b. The conjecture (3.1.1) is verified.

#* B-2-1-1-2-1-1-3-1f 2m — nj < 0 = W™/ ~2"BIL.C' = b—4a’. As w | C using C' = A™ + B"
then C = w'.C; = ™ 2mHhIBICl = b—4a'. M nj—2m+hl <0 = w | BIC], it

follows the contradiction that w t By or wt C1. Then if n.j —2m +h. > 0and w | (b — 4a’)
with w,a,b coprime and the conjecture (3.1.1) is verified.

** B-2-1-1-2-1-2- We obtain the same results if w | C.
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** B-2-1-1-2-2- Now, p’ = w?" and w not prime, we write w = w{ Q) with w; prime {1 Q and

f > 1 an integer, and w; | A. Then B"C! = w%f'mﬂzm(b —4a') = wy | (B"C) = wy | B"
or wy | CL.

** B-2-1-1-2-2-1- If wy | B" = w; | B = B = w{Bl with w1 { By, then B?.Cl =
w%mf*nlﬂzm(b —4a’):

** B-2-1-1-2-2-1-1- If 2f.m — n.j = 0, we obtain B}.C' = Q*"(b—4d’). As C' = A" + B" =
wy | C'= w; | C = w; | (b—4a"). But w; # 2 and w is coprime with a’, then coprime
with a, we deduce w; t b. Then the conjecture (3.1.1) is verified.

** B-2-1-1-2-2-1-2- If 2f.m — n.j > 1, we have w; | C! = w; | C = w; | (b —4a’) and
w1 1 a and wj 1 b. The conjecture (3.1.1) is verified.

# B-2-1-1-2-2-1-3- If 2f.m — n.j < 0 = w7 2"/ Br.Cl = 02" (b — 4d'). As w; | C using
Cl = A™ 4+ B", then C = wl.C; = w™/~2mfHhipncl = (b —4d"). If n.j—2m.f +
hl < 0 = w; | B?Ci, it follows the contradiction with w; t B; and wy 1 C;. Then if
nj—2m.f+hl > 0and wy | (b—4a") with wy,a,b coprime and the conjecture (3.1.1) is
verified.

** B-2-1-1-2-2-2- We obtain the same results if w; | C'.
* B-2-1-2-1f 2 | py, then 2 | py = 24a’ = 2{a. But p’ = p3.

** B-2-1-2-1- If p; = 2, we obtain A™ = 44” = 2 | a” as m > 3, then the contradiction with
a,b coprime.

** B-2-1-2-2- We suppose that p; is not prime and 2 | p1, as A™ = 2a”py, p; is written as
p1 = 2" lwm = p' = 222" Tt follows B"C! = 22" ~2w?" (b —4a') = 2 | B" or 2 | C.

** B-2-1-2-2-1-1f 2 | B* => 2 | B, as 2 | A, then 2 | C. From B"C! = 22"=2?" (b — 4a'), it
follows if 2 | (b —4a’) = 2 | bbut as 2 1 @/, there is no contradiction with a,b coprime and
the conjecture (3.1.1) is verified.

** B-2-1-2-2-2- 1f 2 | C!, using the same method as above, we obtain the identical results.
** B-2-2- p/,a’ are supposed not coprime. Let w be a prime integer so that w | ¢’ and w | p'.

** B-2-2-1- We suppose firstly w = 3. As A?" = 44'p’ = 3| A,but3 | p' = 3| p, as
p= A4 B> 4 A"B" = 3 | B2* = 3 | B, then 3 | C! = 3 | C. We write A = 3/A,
B = 3/B;, C = 3"C; and 3 coprime with A;,B; and C; and p = 32””/1%’" +32”jB%” +
3imtin Ampr = 3k.¢ with k = min(2im,2jn,im + jn) and 3 { g. We have also (w = 3) | a
and (w = 3) | p’ that gives a = 3%; = 3d' = 4’ = 3% la;, 31 a; and p’ = 3#p1, 3¢
with A2 = 4a'p’ = 3%MA = 4 x 3% g py = a+pu—1=2im. Asp = bp =
b.3¥p; = 3".b.p;. The exponent of the term 3 of p is k, the exponent of the term 3 of the left
member of the last equation is p. If 3 | b it is a contradiction with a,b coprime. Then, we
suppose that 3 1 b, and the equality of the exponents: min(2im,2jn,im + jn) = u, recall that
«+p—1 = 2im. But B"C' = p/(b — 4a’) that gives 3"+ BrCL = 3 p; (b — 4 x 31*"Vgy).
We have also A™ + B" = C! gives 3" AN + 3/"B! = 3"CL. Let € = min(im, jn), we have
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€ = hl = min(im, jn). Then, we obtain the conditions:

k = min(2im,2jn,im + jn) = u (1.5.45)
x+pu—1=2im (1.5.46)

€ = hl = min(im, jn) (1.5.47)

3t gl — 3ip, (b — 4 x 304 Vgy) (1.5.48)

* B-2-2-1-1- « = 1 = a = 3a; = 34’ and 3 1 a4, the equation (1.5.46) becomes:
y=2im
and the first equation (1.5.45) is written as:
k = min(2im,2jn,im + jn) = 2im

- If k = 2im, then 2im < 2jn = im < jn = hl = im, and (1.5.48) gives p = 2im =
nj+hl =im+nj = im = jn = hl. Hence 3 | A,3 | B and 3 | C and the conjecture (3.1.1)
is verified.

-If k = 2jn = 2jn = 2im = im = jn = hl. Hence 3 | A,3 | B and 3 | C and the conjecture
(3.1.1) is verified.

-If k =im+jn = 2im = im = jn = € = hl = im = jn case that is seen above and we
deduce that 3 | A,3 | B and 3 | C, and the conjecture (3.1.1) is verified.

#*B-2-2-1-2-a > 1= a >2and a’ = 3" 4.

-It k = 2im = 2im = p, but y = 2im + 1 — a that is impossible.

-If k= 2jn =y = 2jn = 2im +1 — . We obtain 2jn < 2im = jn < im = 2jn <
im+ jn, k = 2jn is just the minimum of (2im, 2jn, im + jn). We obtain jn = hl < im and the
equation (1.5.48) becomes:

BIC = pi(b — 4 x 30 Vgy)

The conjecture (3.1.1) is verified.

-lfk=im+jn <2im = jn <imand k = im+ jn < 2jn = im < jn = im = jn =
k =im+ jn = 2im = p but y = 2im + 1 — « that is impossible.

-If k =im+jn < 2im = jn < im and 2jn < im + jn = k that is a contradiction with
k = min(2im,2jn,im + jn).

** B-2-2-2- We suppose that w # 3. We write a = w*a; with w { a1 and p’ = w'p,
with w { p1. As A?" = 4a'p’ = 4w Hayp = w | A = A = w'Aj, w 1 A;. But
B"C! = p'(b—4d") = whp1(b—4d') = w | B"C' = w | B" or w | C.

# B-2-2-2-1- w | B" = w | B=> B = w/B; and w { By. From A" + B" = C! = w |
Cl= w | C. Asp = bp' = whbp; = WF(W?MkAIM 4 2in=kpB2n 4 im+in=k Ampny with
k = min(2im,2jn,im + jn). Then :

-If y =k, then w { b and the conjecture (3.1.1) is verified.

-If k > p, then w | b, but w | a we deduce the contradiction with a,b coprime.

- If k < p, it follows from :

wﬂbpl — wk(WZim—kA%m + ijn—kB%n + wim+jn_kATB?)

that w | Aj or w | B; that is a contradiction with the hypothesis.

*#* B2-222-Ifw | C! = w | C = C = ""C; with w { C;. From A" + B" = C! = w
(C! — A™) = w | B. Then, we obtain the same results as B-2-2-2-1- above.
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1.5.5 Caseb=2pand3|a
We have :

! 4pa  4p 34
coszQ:E:%iAzm:ﬂ:_p?ﬂ_

— =2 =(A"?=2|d =2
370 2p 3 3oy A=A =2ld=2]a

Then 2 | a and 2 | b that is a contradiction with 4, b coprime.

1.5.6 Caseb=4pand 3 |a
We have :

6
cos’= =

_E:3_a/ AZm_4p'a
3 b 4p 3b

— 4?’9_1—[1/ — a/ — (Am)z — a”z
with A™ =ga”
Let us calculate A" B", we obtain:

/
A"B" = —pg/g-sing 2pc 20 _ —p\/g.si 20

3 3 08 3 3 n3 2
A2 p/3 20
A"B" + —— = sin—
B" + > 3 szn3
Let:

A2 D AMBH — %—ﬁsin§

3 (1.5.49)

2 2
The left member of (1.5.49) is an integer and p is an integer, then gsin?19 will be written
as:
—2\/§sin§ _k
3 3 ko
where ki, k, are two integers coprime and ky | p = p = ka.ks.

** C-1- Firstly, we suppose that k3 # 1. Then :
A?" 4+ DAMB" = kskq
Let y be a prime integer and p | k3, then p | A™(A™ +2B") = u | A" or u | (A™ + 2B").

*C-1-1-Ifu | (A" =a") = u| (@?=d)= | Bd =a). Asu|ks=ul|p=pu|
(4p = D), then the contradiction with a,b coprime.

#*C-1-2-Ifu | (A" +2B") = ut A™ and p { 2B", then:
u#2 and u{B" (1.5.50)

i | (A™+2B"), we write:
A" +2B" = .t

Then:

Am+Bn :“l/lt/—Bn — A2m+BZn+2AmBn :yzt’z—Zt’yB”+B2”
—p= t/2y2_2t/Bny+Bn(Bn_Am)
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As b =4p = 4ky.k3 and p | k3 then u | b = Iy’ so that b = p.u’, we obtain:

W= u(4ut”” — 8¢'B") +4B"(B" — A™)
The last equation implies y | 4B"(B" — A™), but u # 2 then u | B or u | (B" — A™).
** C-1-1-1- If u | B" = then the contradiction with (1.5.50).

** C-1-1-2-If u | (B* — A™) and using p | (A™ + 2B"), we have :

u|B"
u|3B" =< or
p=3

** C-1-1-2-1- If u | B" then the contradiction with (1.5.50).
** C-1-1-2-2- If y = 3, then 3 | b, but 3 | a then the contradiction with a, b coprime.

** C-2- We assume now that k3 = 1, then:

AP 4L 2AMBY = g (1.5.51)
p =k
2V3 .20 Ky
—SIn— = —
3 3 p

We take the square of the last equation, we obtain :

Finally:
a'(4p —3d') = k3 (1.5.52)

but a’ = a”?, then 4p — 34’ is a square. Let :
AN =4p-3d =4p—a=b—a
The equation (1.5.52) becomes :
A\ =k =k =a"A (1.5.53)
taking the positive root. Using (1.5.51), we have:
ki = A"(A™ +2B") = a”" (A" +2B")

Then :
A™ +2B" = A
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Now, we consider that b —a = A2 = A2 + 34”2 = b, then the couple (A,a”) is a solution
of the Diophantine equation:

X2 +3Y>=b (1.5.54)

with X = A and Y = a”. But using one theorem on the solutions of the equation given by
(1.5.54), b is written under the form (see theorem 37.4 in [3]):

g 251 2sy

t
b:225x3t.p§1...pg<q1 gy

where p; are prime integers so that p; = 1(mod 6), the g; are also prime integers so that
q; = 5(mod 6). Then, as b = 4p :
-Ift > 1= 3|0, but 3| g, then the contradiction with a,b coprime.

** C-2-2-1- Hence, we suppose that p is written under the form:

t
p — pgl . e pggqisl .. .q%sr
with p; = 1(mod 6) and g; = 5(mod 6). Finally, we obtain that :
p = 1(mod 6) (1.5.55)

We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of p = A?" 4+ A™B" + B?" in function of
the values of A™, B"(mod 6). We obtain the table below:

Table 1.1: Table of p (mod 6)

AY,B" 0 1 2 3 4 5
0 0O 1 4 3 4 1
1 1 3 1 1 3 1
2 4 1 0 1 4 3
3 3 1.1 3 1 1
4 4 3 4 1 0 1
5 1 1 3 1 1 3

#* C-2-2-1-1- Case A™ = 0(mod 6) =2 | (A" =a”) = 2| (a' =a"®) = 2| a,but2 |,
then the contradiction with a, b coprime. All the cases of the first line of the table 1.1 are to
reject.

#* C-2-2-1-2- Case A™ = 1(mod 6) and B" = 0(mod 6), then 2 | B* = B" = 2B’ and p is
written as p = (A™ + B')? + 3B with (p,3) = 1, if not 3 | p, then 3 | b, but 3 | 4, then the
contradiction with a, b coprime. Hence, the pair (A™ + B’, B') verifies the equation:

(A" + B2 4+3B? =p (1.5.56)
that we can write it as:

(A" +B')2 —B? =p—4B? = A>" B 4 A"B" — B =C/A" =N (1.5.57)
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Then (A™ + B’, B’) is a solution of the Diophantine equation:
-y =N (1.5.58)

where N = C'A™ = 1(mod 6). Let Q(N) be the number of the solutions of (1.5.58) and
T(N) is the number of suitable factorization of N, then we recall the following result con-
cerning the solutions of the equation (1.5.58) (see theorem 27.3 in [2]):

-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [t(N)/2].

-If N =0(mod 4), then Q(N) = [t(N/4)/2].

As N = C'A™ = 1(mod 6) = N is odd, the cases Q(N) = 0 and Q(N) = [t(N/4)/2]
are rejected, then N = 1 or N = 3(mod 4), it follows Q(N) = [t(N)/2].

As A™ + B’, B’ is a couple of solutions of the Diophantine equation (1.5.58), then 3 d, 4’
positive integers with d > d’ and N = d.d’ so that :

d+d =2(A" +B) (1.5.59)
d—d =2B =B" (1.5.60)

We will use the same method used for the paragraph above A-2-1-2-.
** (C-2-2-1-2-1- As C! > A™, we take d = C! and d' = A™. Tt follows:
C'+ A" =2(A™ 4+ B') =2A™ + B"
C'— A" =B" = 2P

Then the case d = C' and d’ = A™ gives a priory no contradictions.

** (C-2-2-1-2-2- Now, we consider the case d = C!A™ and d’ = 1. We rewrite the equations
(1.5.59-1.5.60):

C'A™ +1=2(A"+B) (1.5.61)

clAm —1=2pB (1.5.62)

We obtain 1 = A™, it follows C! — B" = 1, we know [?] that the only positive solution of
the last equationis C = 3,B = 2,n = 3 and | = 2 < 3, then the contradiction.

** (C-2-2-1-2-3- Now, we consider the case d = cl{_lq where ¢; is a prime integer with

c11Cyand C = c{Cy, r > 1. Tt follows that d" = ¢1.A™. We rewrite the equations (1.5.59-
1.5.60):

cr1Ch 4 ¢.A™ = 2(A™ + B) (1.5.63)

clr=1cl — ¢;.A™ = 2B’ = B" (1.5.64)

As | > 3, from the last two equations above, it follows that ¢; | 2(A™ + B’) and ¢; | (2B').
Thenc; =2,0rcy | (A" +B')and ¢; | B.

** C-2-2-1-2-3-1- We suppose ¢; = 2. As | > 3, from the equation (1.5.64) it follows that

2| B", then2 | (A" =a”) = 2| (a”> =d’) = 2| (a = 3a’), but b = 4p (see 1.5.6), then
the contradiction with 4, b coprime.
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#* (C-2-2-1-2-3-2- We suppose ¢1 # 2, then ¢ | (A™ + B’) and ¢; | B'. It follows ¢; | A™ and
c1|(B"=2B")Y=c1|p=rc1|b=4p. Fromc| | (A" =a") =1 | (@? =4d') = ¢ |
(a = 3a’), then the contradiction with 4, b coprime.

The other cases of the expressions of d and d’ with d,d’ not coprime and d > d’ so that
N = C!A™ = d.d’ give also contradictions.

#* (C-2-2-1-2-4- Now, we consider the case d = a1.C! where a7 is a prime integer with a1 1 Ay
and A = a} Ay, r > 1. It follows that d’ = a’lm_lA’lﬂ. We rewrite the equations (1.5.59-1.5.60):

0 C' +al" LA = 2(A™ + B) (1.5.65)
a,C' —al"1AT = 2B’ = B" (1.5.66)

As m > 3, from the last two equations above, it follows that a; | 2(A™ + B’) and a7 | (2B').
Thena; =2,0ra; | (A" + B’) and a1 | B'.

* C-2-2-1-2-4-1- We suppose a1 =2 = 2 | (A" =d") = a1 | (@"? =d') = a1 | (a =
3a’). But b = 4p, then the contradiction with a,b coprime.

#* (C-2-2-1-2-4-2- We suppose a7 # 2, then a1 | (A™ + B’) and a1 | B'. It follows a; | A™ and
a; | (B*=2B) = a; |p=a; |b=4p. Froma; | (A" =d") = a; | (d'"* =d') = a; |
(a = 3a’), then the contradiction with a,b coprime.

The other cases of the expressions of d and d’ with d,d’ not coprime and d > d’ so that
N = C!'A™ = d.d’ give also contradictions.

** (C-2-2-1-2-5- Now, let C = ¢|C; with ¢; a prime, ¥ > 1 and ¢ 1 C;, we consider the case
d = Cl and d’ = ¢! A™ so that d > d’. We rewrite the equations (1.5.59-1.5.60):

Cl 4 cPA™ = 2(A™ + B') (1.5.67)
Ci —cilAm = 2B" = B" (1.5.68)
We obtain cql A" = A" — c{l =1, then the contradiction.
** C-2-2-1-2-6- Now, let C = ¢|C; with ¢; a prime, ¥ > 1 and ¢ { C;, we consider the case
d=ClA™ and d’ = ¢! so that d > d’. We rewrite the equations (1.5.59-1.5.60):
CtA™ 4l =2(A™ + B) (1.5.69)
CiA™ — ¢l =2B" = B" (1.5.70)

We obtain ¢}l = A" = ¢; | A", thenc; | A" =a” = ¢1 | (@? =4d') = ¢1 | (a =30d).
Ascy | Cand ¢y | A" = ¢1 | B", it follows ¢; | (p = b), then the contradiction with a,b
coprime.

The other cases of the expressions of d and d’ with d,d’ coprime and d > d’ so that
N = C'A™ = d.d’ give also contradictions.

Finally, from the cases studied in the above paragraph C-2-2-1-2, we have found one
suitable factorization of N that gives a priory no contradictions, it is the case N = C'.A™,
but 1 < T(N), it follows the contradiction with Q(N) = [t(N)/2] < 1. We conclude that
the case A™ = 1(mod 6) and B" = 0(mod 6) of the paragraph C-2-2-1-2 is to reject.
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** C-2-2-1-3- Case A™ = 1(mod 6) and B" = 2(mod 6), then B" is even, see C-2-2-1-2-.
#* C-2-2-1-4- Case A™ = 1(mod 6) and B" = 3(mod 6), then 3 | B* = B" = 3B’. As
p = A?" + A"B" 4+ B — p = 5(mod 6) #= 1(mod 6) (see (1.5.55)), then the contradic-

tion and the case C-2-2-1-4- is to reject.

** (C-2-2-1-5- Case A" = 1(mod 6) and B" = 5(mod 6), then C! = 0(mod 6) = 2 | C/, see
C-2-2-1-2-.

** C-2-2-1-6- Case A™ = 2(mod 6) = 2 | a” = 2 | a, but 2 | b, then the contradiction
with a, b coprime.

*#* (C-2-2-1-7- Case A = 3(mod 6) and B" = 1(mod 6), then C! = 4(mod 6) — 2 | C! —
Cl = 2C’, and C is even, see C-2-2-1-2-.

** C-2-2-1-8- Case A™ = 3(mod 6) and B" = 2(mod 6), then B" is even, see C-2-2-1-2-.
#* C-2-2-1-9- Case A™ = 3(mod 6) and B" = 4(mod 6), then B" is even, see C-2-2-1-2-.

** C-2-2-1-10- Case A™ = 3(mod 6) and B" = 5(mod 6), then C' = 2(mod 6) = 2 | C/,
and C is even, see C-2-2-1-2-.

#* (C-2-2-1-11- Case A™ = 4(mod 6) = 2 | a” => 2 | a, but 2 | b, then the contradiction
with a, b coprime.

** C-2-2-1-12- Case A™ = 5(mod 6) and B" = 0(mod 6), then B" is even, see C-2-2-1-2-.

*#* (C-2-2-1-13- Case A™ = 5(mod 6) and B" = 1(mod 6), then C! = 0(mod 6) = 2| C!, C
is even, see C-2-2-1-2-.

** (C-2-2-1-14- Case A™ = 5(mod 6) and B" = 3(mod 6), then C' = 2(mod 6) = 2 |
C! — c!l =2/, C is even, C-2-2-1-2-.

** C-2-2-1-15- Case A™ = 5(mod 6) and B" = 4(mod 6), then B" is even, see C-2-2-1-2-.
We have achieved the study all the cases of the table 1.1 giving contradictions.

Then the case k3 = 1 is impossible.

1.5.7 Case3|aandb=2p', b #2withp' |p
3|a=a=23d,b=2p" with p =k.p/, then:

We calculate B"C!:

0 6 0
n el 3/ 2 2 2V 2Y 3/ .2 _ 2Y
B"C' = {/p <3szn 3~ C0s 3> ={/p <3 4cos 3)
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3 2_ P ~ 20 _ 34
but {/p* = 3,’chen using cos®z = —=

/ !/
Bncl _ 3 pz (3 —4C0$2§) — g (3 _4?%) =p. (1 — 475!) = k(p/ _ 261/)

As p =0b.p/, and p’ > 1, then we have:

B"C! = k(p' —24") (1.5.71)
and AY" =2k.d (1.5.72)

** D-1- We suppose that k is prime.

** D-1-1- If k = 2, then we have p = 2p’ = 2 | b,but A?" = 4a' = (A")? = A" =
2a” with a’ = a”?, then 2 | a” = 2 | (a = 3a”?), it follows the contradiction with a,b
coprime.

** D-1-2- We suppose k # 2. From A?" = 2ka' = (A")> =k |d and 2 | d = d' =
2ka” = A" = 2ka”. Thenk | A" = k | A => A = K.A, withi > 1 and k { A,.
kmAM = 2ka” = 2a” = k" ~1A". From B"C' = k(p' —24a') = k | (B"C!) = k | B" or
k| CL

** D-1-2-1- We suppose that k | B" = k | B = B = K/.B; with j > 1 and k { By. It
follows k" ~1BIC! = p' — 24’ = p' —4ka”?. Asn >3 = nj—1 > 2, thenk | p/ but
k#2= k| (2p =b),butk|a = k| (3a =a). It follows the contradiction with a,b
coprime.

** D-1-2-2- If k | C! we obtain the identical results.

** D-2- We suppose that k is not prime. Let w be an integer prime so that k = w?® kj, with
s > 1, w t k1. The equations (1.5.71-1.5.72) become:

B"Cl = W’ ki (p' —24")
and A?" = 2w ky.a'

** D-2-1- We suppose that w = 2, then we have the equations:
AP =25t e ! (1.5.73)
B"Cl = 2%k (p' — 24) (1.5.74)
** D-2-1-1- Case: 2 | a’ = 2| a, but 2 | b, then the contradiction with a,b coprime.

** D-2-1-2- Case: 2 { a’. As 2 { kq, the equation (1.5.73) gives 2 | A?" = A = 2!A;, with
i >1and 21 A;y. It follows that 2im = s + 1.

** D-2-1-2-1- We suppose that 2 1 (p' —24") = 21 p’. From the equation (1.5.74), we obtain
that2 | B"C' =2 | B" or 2 | CL.

** D-2-1-2-1-1- We suppose that 2 | B* = 2 | B => B = 2/B; with 2 { B; and j > 1, then
BiC! = 25=inky (p' — 2d'):

-Ifs—jn>1,then2 | C' = 2| C, and no contradiction with C! = 2" Al + 2/"B", and
the conjecture (3.1.1) is verified.
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-If s —jn < 0, from BIC! = 257/"k;(p' — 2a’) = 2 1 C!, then the contradiction with
Cl=2mAm 42"y — 2| C.

** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical results if
2| Ch

** D-2-1-2-2- We suppose now that 2 | (p' —24') = p’ — 24" = 2F.Q), with y > 1 and 21 Q.
We recall that 2 1 a’. The equation (1.5.74) is written as:

B"Cl = 25T k1.0
This last equation implies that 2 | (B"C!) =2 | B" or 2 | C.

** D-2-1-2-2-1- We suppose that 2 | B* = 2 | B = B = 2/B; with j > 1 and 2 { B;. Then
BIC! = 25t1=in fey . Q:

-Ifs+u—jn>1,then?2 | Cl—=2 | C, no contradiction with cl = ZimAT + Zj”Bg’, and
the conjecture (3.1.1) is verified.

-Ifs+pu—jn <0, from B’fCl = 2S+P‘_j”k1.0 — 2 ¢ C!, then contradiction with
Cl = 2imAm 4 2inBt — 2 | Cl.

** D-2-1-2-2-2- We obtain the identical results if 2 | C*.

** D-2-2- We suppose that w # 2. We have then the equations:
A2 = 20° ky.a' (1.5.75)
B"C' = W' ky.(p' —24") (1.5.76)

As w # 2, from the equation (1.5.75), we have 2 | (ky.a’). If 2 | @’ = 2 | a, but 2 | b, then
the contradiction with a, b coprime.

** D-2-2-1- Case: 214’ and 2 | ky = ky = 2".Q) with u > 1 and 2 { ). From the equation
(1.5.75), we have 2 | A?" = 2| A = A = 2'A; withi > 1and 21 Ay, then 2im = 1+ .
The equation (1.5.76) becomes:

B"Cl = w* 2" .O.(p' — 24) (1.5.77)
From the equation (1.5.77), we obtain 2 | (B"C!) =2 | B" or 2 | C\.

** D-2-2-1-1- We suppose that 2 | B" = 2 | B = B = 2/B;, with j € N* and 21 B;.

** D-2-2-1-1-1- We suppose that 2 { (p’ — 2a’), then we have BIC! = w2t 1"Q(p' — 24'):
-Ifu—jn>1=2|C = 2| C, no contradiction with C' = 2/ A 4+ 2/"B? and the
conjecture (3.1.1) is verified.
-If 4 — jn <0 = 21 C! then the contradiction with C' = 20mAm 4 2]'”B’f.

** D-2-2-1-1-2- We suppose that 2 | (p' —24') = p’ — 24’ = 2P, withw € N* and 21 P. It
follows that BIC! = w®21+e=inQ).P:

-Ifu+a—jn>1=2]|C = 2| C, no contradiction with C! = 2" A" 4 2/"B" and
the conjecture (3.1.1) is verified.

-If u+a—jn <0=>24fC then the contradiction with C' = 2" A" 4 2/" Bl

** D-2-2-1-2- We suppose now that 2 | C" = 2 | C. Using the same method described
above, we obtain the identical results.
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158 Case3|aandb=4p’, b #4withp' |p

3|la=a=23d,b=4p' with p = k.p/, k # 1 if not b = 4p this case has been studied (see
paragraph 1.5.6), then we have :

We calculate B"C:
0 0 0
n~l _ 3/ 2 .2V 2V _ 3/ .2 _ 27
B"C' = /p (35111 3~ cos 3) ={/p (3 4cos 3>

3/ o P . 29 _ o0
but \/; = 3,’chem using cos 3 D

/ /
BiC!l = ¥/p2 (3 ~ 4c052§) — g (3 . 43'7‘1) =p. (1 — 4%) =k(p' —d)

Asp=0b.p/,and p’ > 1, we have :

B"C' = k(p' —a') (1.5.78)
and A" =k.a' (1.5.79)
** B-1- We suppose that k is prime. From A" = ka4’ = (A™)2 = k | a’ and 4’ =
ka”? = A" = ka”. Thenk | A" = k | A = A = k.A; withi > 1and k | A;.
KM AT = ka” = a” = k™ ~1 A", From B"C! = k(p' —a') => k| (B"C!) = k| B" ork | C\.
** E-1-1- We suppose that k | B" = k | B => B = k/.B; with j > 1 and k { B;. Then

Kk i-1BiCl = p' —a'. Asnj—1>2 = k| (p—d). Butk | @ = k| a, then
k| p = k| (4p’ = b) and we arrive to the contradiction that a,b are coprime.

** E-1-2- We suppose that k | C!, using the same method with the above hypothesis k | B",
we obtain the identical results.

** E-2- We suppose that k is not prime.
** E-2-1- We take k = 4 = p = 4p’ = b, it is the case 1.5.3 studied above.

** E-2-2- We suppose that k > 6 not prime. Let w be a prime so that k = w®.k;, with
s > 1, w t k1. The equations (1.5.78-1.5.79) become:

B'Cl = w'ky(p' —d) (1.5.80)
and A?" = w'ky.d (1.5.81)

** E-2-2-1- We suppose that w = 2.

#* E-2-2-1-1-1f2 | o’ = 2| (3’ = a), but 2 | (4p’ = b), then the contradiction with a,b
coprime.

** E-2-2-1-2- We consider that 2 { 2. From the equation (1.5.81), it follows that 2 | A" —>
2| A= A=2"A; with2{ A and:

B"C! = 25k, (p' — ')
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** E-2-2-1-2-1- We suppose that 2  (p’ —a’), from the above expression, we have 2 |
(B"C') =2 | B"or2 | C.

#* [-2-2-1-2-1-1-1f 2 | B* => 2 | B = B = 2/B; with 2 { By. Then B}'C! = 22m=i"k; (p' —a’):
-1f 2im — jn > 1 = 2| C' = 2| C, no contradiction with C! = 2" AT" + 2/"B" and the
conjecture (3.1.1) is verified.
- If 2im — jn < 0 = 2{ C!, then the contradiction with C! = 2" A" 4 2/"Bl — 2 | C'.

** F-2-2-1-2-1-2- If 2 | C! = 2 | C, using the same method described above, we obtain the
identical results.

** E-2-2-1-2-2- We suppose that2 | (p' —a'). As24d = 24p", 2| (p/—d') = p' —d' =
2% P with « > 1 and 2 { P. The equation (1.5.80) is written as :

B'Cl = 25t%k,.p = 2%mtap, p (1.5.82)
then2 | (B"C') =2 | B"or2| C.

** F-2-2-1-2-2-1- We suppose that 2 | B* = 2 | B = B = 2/By, with 2 { B;. The equation
(1.5.82) becomes BfC! = 2%im+a=jn, p;

-If 2im+a—jn > 1= 2 | C' = 2| C, no contradiction with C! = 2im A" 4 2i" Bl
and the conjecture (3.1.1) is verified.

-If 2im + « — jn < 0 == 2 C!, then the contradiction with C! = 2/ A 4 2/"B# = 2 |
cl.

** B-2-2-1-2-2-2- We suppose that 2 | C' = 2 | C. Using the same method described above,
we obtain the identical results.

** E-2-2-2- We suppose that w # 2. We recall the equations:

A" = @ ky.a' (1.5.83)
B"C' = w ki (p' —a') (1.5.84)

** E-2-2-2-1- We suppose that w, a’ are coprime, then w t a’. From the equation (1.5.83), we
have w | A" = w | A = A = w'A; with w{ A; and s = 2im.

** E-2-2-2-1-1- We suppose that w { (p’ — a’). From the equation (1.5.84) above, we have
w | (B"C') = w | B"orw | C.

#* B-2-2-2-1-1-1- If w | B" = w | B=> B = w/B; with w { By. Then BIC! = 22m=inj,(p’ —
a'):

-1f 2im — jn > 1 = w | C' = w | C, no contradiction with C! = w™A" + w/"B! and
the conjecture (3.1.1) is verified. . '

-If 2im—jn <0 = wt C!, then the contradiction with C! = WAl + W'"B} = w |
Ch.

** E-2-2-2-1-1-2- If w | Cl—= w | C, using the same method described above, we obtain the
identical results.
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** E-2-2-2-1-2- We suppose that w | (p' —a') = w { p’ as w and 4’ are coprime. w |
(p)—d') = p' —a’ = w*.P witha > 1 and w t P. The equation (1.5.84) becomes :

B"C! = w*t%%;.P = w?" TP (1.5.85)
then w | (B"C!) = w | B" or w | C.

** F-2-2-2-1-2-1- We suppose that w | B* = w | B = B = w/B;, with w { B;. The
equation (1.5.85) is written as B{ZCZ — p2imta=jnj p.

-If2im+a—jn > 1= w | C' = w | C, no contradiction with C! = w™ A" + w/" B}
and the conjecture (3.1.1) is verified.

-If2im+a—jn<0= wt C!, then the contradiction with C! = wi'”A’lﬂ + wj”B? —
w | ChL

** E-2-2-2-1-2-2- We suppose that w | C! = w | C, using the same method described
above, we obtain the identical results.

** [-2-2-2-2- We suppose that w,a’ are not coprime, then a’ = wPf.a” with w { a”. The
equation (1.5.83) becomes:
A" = Wkiad = W Pky.a”

We have w | A" = w | A = A = w'Ay with w { A; and s + B = 2im.

** E-2-2-2-2-1- We suppose that w t (p' —d') = w1 p) = w 1 (b = 4p’). From the
equation (1.5.84), we obtain w | (B"C!) = w | B" or w | C.

#* E-2-2-2-2-1-1-If w | B = w | B = B = w/B; with w { B;. Then BIC! = 25~k (p’ —
a'):

-Ifs—jn>1= w | C' = w | C, no contradiction with C' = w™ A" + w/"BY and the
conjecture (3.1.1) is verified. ' _

-If s — jn <0 = w{ C/, then the contradiction with C! = w™A" + w/"B! = w | C..

** E-2-2-2-2-1-2- If w | Cl—= w | C, using the same method described above, we obtain the
identical results.

** E-2-2-2-2-2- We suppose that w | (p' —a’ = p' —wP.a”) = w | p = w | (4p' = b), but
w | @ = w | a. Then the contradiction with 4, b coprime.

The study of the cases of 1.5.8 is achieved.

1.59 Case3|aandb|4p

/
a =3a" and 4p = k1b. As A?" = 4?pcoszg = %3% = kya’ and B"C":

6 6 6 3a’ k
nel 3/ 0 2V 2V P o 2% _ P I R WS W
B"C' = {/p <3szn 3~ C0s 3) 3 (3 4cos 3> 3 (3 4 2 ) 1 (b—4a")

As B"C! is an integer, we must obtain 4 | k1, or 4 | (b —4a’) or (2 | k; and 2 | (b — 4a")).
*F-1-If ky =1 = b = 4p : it is the case 1.5.6.
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*F-2-1f ky =4 = p = b :itis the case 1.5.3.

** F-3-1f ky = 2 and 2 | (b —4a’): in this case, we have A" =24’ = 2 |d = 2 | a.
2| (b—4a") = 2| b then the contradiction with a,b coprime.

*F4-1f2 | kyand 2 | (b—4a'): 2| (b—4a") = b—4a’ = 2"\, x and A € N* > 1 with
21 A;2 | kg = kg = 2!k} with t > 1 € N* with 2 { k] and we have:

A2 =2tk a (1.5.86)
B"Cl = 212K A (1.5.87)

From the equation (1.5.86), we have 2 | A" =2 | A = A =2/A;,i > 1and 21 A;.
** F-4-1- We suppose that t = « = 1, then the equations (1.5.86-1.5.87) become :

A% = 2K d! (1.5.88)
B"Cl = KA (1.5.89)

From the equation (1.5.88) it follows that2 | @' = 2| (a = 3a’). Butb =44’ + 21 = 2| b,
then the contradiction with a, b coprime.

** F-4-2- We suppose that t +a —2 > 1 and we have the expressions:

A2 =2tk a (1.5.90)
B"Cl = 212K A (1.5.91)

** F-4-2-1- We suppose that2 | @’ = 2 | a, but b = 2°A + 44’ = 2 | b, then the contradic-
tion with a, b coprime.

** F-4-2-2- We suppose that 2 { a’. From (1.5.90), we have 2 | A" =2 | A = A = 2/ A,
and B"C! = 2!**2k/A =2 | B"C' =2 | B" or 2 | C.

** F-4-2-2-1- We suppose that 2 | B". We have 2 | B=> B = 2/B;, j > 1 and 2 { B;. The
equation (1.5.91) becomes B}C! = 2f+a=2=/n/ A:

-Ift+a—2—jn>0=2|C = 2| C, no contradiction with C' = 2" A" 4 2i"B#
and the conjecture (3.1.1) is verified.

-Ift+a—2—jn<0=2|kjA but2{kj and 2 A. Then this case is impossible.

-Ift+a—2—jn =0 = B/C' = kKA = 2 { C! then it is a contradiction with
Cl =2mAm 4 2By

** F-4-2-2-2- We suppose that 2 | C!. We use the same method described above, we obtain
the identical results.

** F-5- We suppose that 4 | k; with k; > 4 = k; = 4k}, we have :

A% = 4ka’ (1.5.92)
B"C! = k(b — 4a") (1.5.93)

** F-5-1- We suppose that k), is prime, from (1.5.92), we have k5 | 4. From (1.5.93),
Ky | (B"C!) = kb | B" or k, | C.
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** F-5-1-1- We suppose that k), | B* = k) | B—=— B = k/Z’B.Bl with B > 1 and k; { By.

It follows that we have k’znﬁ _1B?Cl = b—4d" = Kk, | b then the contradiction with a,b
coprime.

** F-5-1-2- We obtain identical results if we suppose that k | C.
** F-5-2- We suppose that k) is not prime.

** F-5-2-1- We suppose that k) and a’ are coprime. From (1.5.92), k/, can be written under
the form k) = ¢7.g3 and g1 1 g2 and g1 prime. We have A% = 447 q2a' — ¢; | A and
B'C! = g7 .3 (b —4a") => q1 | B" or g | C'.

** F-5-2-1-1- We suppose that q; | B* = ¢q1 | B= B = q{.Bl with g1 { B;. We obtain
BIC! = g7 /"3 (b— 4a):

-If2j— fn>1=q; | C' = g1 | Cbut C' = A™ + B" gives also q; | C and the conjecture
(3.1.1) is verified.

-If 2j — fn = 0, we have BIC! = g3(b —4d’), but C' = A™ + B" gives q; | C, then
g1 | (b—4a’). As g1 and a’ are coprime, then g; 1 b, and the conjecture (3.1.1) is verified.
-If2j— fn < 0= qy | (b—4a’) = g, { bbecause a’ is coprime with g1, and C! = A™ + B"
gives q; | C, and the conjecture (3.1.1) is verified.

** F-5-2-1-2- We obtain identical results if we suppose that gq; | C.

** F-5-2-2- We suppose that k}, 4’ are not coprime. Let g1 be a prime so that g1 | k} and
q1 | a'. We write k) under the form qjl.qz with j > 1, g1 { q2. From A?" = 4kha' = ¢ |
A2 Z:> 71 | A. Then from B"C! = ¢ g2(b — 4a’), it follows that q; | (B"C!) = ¢1 | B" or
q|C.

** F-5-2-2-1- We suppose that g1 | B = q1 | B= B = qf.Bl with B > 1 and ¢ 1 B.
Then, we have qTﬁBTCl = qq2(b—4d") = BIC! = q]fnﬁqz(b —4a’).

-If j—nB >1,then g, | C' = g1 | C, but C! = A™ + B" gives q; | C, then the conjecture
(3.1.1) is verified.

-If j —nB = 0, we obtain BIC' = g,(b —4d’), but C' = A™ + B" gives q; | C, then
q1 | (b—4a") = q1 | b because q; | @ = g1 | a, then the contradiction with a, b coprime.
-lfj—np<0=q | (b—4a") = q1 | b, because q; | @ => g1 | 4, then the contradiction
with a, b coprime.

** F-5-2-2-2- We obtain identical results if we suppose that g; | C'.

* F-6-1f 41 (b —4a’) and 4 1 k; it is impossible. We suppose that 4 | (b —44’) = 4 | b, and
b—4a =4l¢,t > 1with4+1g, then we have :

A2m = kllll
B'Cl = k.47 1g

** F-6-1- We suppose that k; is prime. From A?" = kya’ we deduce easily that k; | a’. From
B"C! = k;.4'~1.¢ we obtain that k; | (B"C') = k; | B" or ky | CL.
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** F-6-1-1- We suppose that ky | B' = k; | B=—= B = k]i.Bl with j > 0 and k; { By, then
k{’BiC! = k4t 1g = k'lq']le’fCl =4"l¢ Butn >3andj > 1, thennj—1 > 2. We
deduce as ky # 2 thatky | g = k1 | (b —44’), but ky | a/ = k1 | b, then the contradiction
with a, b coprime.

** F-6-1-2- We obtain identical results if we suppose that k; | C'.
** F-6-2- We suppose that kj is not prime # 4, (k1 = 4 see case F-2, above) with 4 { k.

** F-6-2-1- If ky = 2k’ with kK’ odd > 1. Then A?" = 2k'a’ = 2 | a’ = 2| a,as4 | bit
follows the contradiction with a, b coprime.

** F-6-2-2- We suppose that k; is odd with k; and a’ _coprime. We write k1 under the form
k1 = q’.q2 with q1 1 g2, g1 prime and j > 1. B"C! = ¢}.qo4'1¢ = g1 | B" or q1 | C".

** F-6-2-2-1- We suppose that q; | B* = ¢1 | B= B = q{ B; with g1 { B;. We obtain
BIC! = g; Mpatly.

-Ifj—fn>1=q;|C' = g1 | C,but C! = A™ + B" gives also q; | C and the conjecture
(3.1.1) is verified.

-If j— f.n = 0, we have BIC! = qo4!~1g, but C' = A™ + B" gives q1 | C, then q; | (b — 44').
As g7 and a’ are coprime then g7 1 b and the conjecture (3 1.1) is verified.

-1fj— fn <0 =>qy | (b—4a") = g1 { b because qy,a’ are primes. C' = A™ + B" gives
g1 | C and the conjecture (3.1.1) is verified.

** F-6-2-2-2- We obtain identical results if we suppose that g1 | C'.

** F-6-2-3- We suppose that k; and a are not coprime. Let g1 be a prime so that g | k; and
g1 | a'. We write k; under the form ¢/.q, with g1 { go. From A*" = kja' = q; | A" =
1| A. From B"C! = g)qo(b — 4a’), it follows that q; | (B"C') = q1 | B or ¢q1 | C..

** F-6-2-3-1- We suppose that q; | B" = q1 | B— B = qlﬁ B; with > 1 and g1 { B1. Then
we have qlﬁB”Cl = qlqz(b 40"y = BIC! = ql nﬁqg(b 4a’):

-Ifj—nB >1,then q; | C' => g1 | C, but C' = A™ + B" gives q; | C, and the conjecture
(3.1.1) is verified.

-1f j — nB = 0, we obtain B/C' = qo(b —4a’), but g1 | A and g1 | B then q; | C and we
obtain g1 | (b —4a’") = g1 | b because q; | @ = ¢q1 | 4, then the contradiction with a,b
coprime.

-Ifj—np<0=q; | (b—4a") = g1 | b, then the contradiction with a,b coprime.

** F-6-2-3-2- We obtain identical results as above if we suppose that g; | C'.

1.6 Hypothesis: {3 |p and b |4p}

1.6.1 Caseb=2and3|p
3| p=p=23p with p’ # 1 because 3 < p, and b = 2, we obtain:

4pa  43p'a  4pa

2m __
AT =gy = T g TP
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As:
1 20 a a 3 _ 20 1
Z<cos§—5—2<4:1<2a<3$a—1:cos3—2

but this case was studied (see case 1.4.1).

1.6.2 Caseb=4and3|p
we have 3 | p = p = 3p’ with p’ € IN¥, it follows :

_4pa  43p'a

2m
AT =y T3k P
and: , p 3
2 a a
l 2 _Z_ZT_* 1 =2
4<c053 5 4<4:> <a<3=aua

as a,b are coprime, then the case b = 4 and 3 | p is impossible.

1.6.3 Case:b#2,b#4,b#3,b|pand3|p
As 3| p, then p =3p’ and :
o _ 4P 29_4_;96_4><3p’g_4p’a
R Rl Rl o A B

We consider the case: b | p’ = p’ = bp” and p” # 1 (If p” = 1, then p = 3, see paragraph
1.6.8 Case k' = 1). Finally, we obtain:

_ 4bp”a

AZI’VZ
b

4ap”; B"C'= p”.(3b — 4a)

** G-1- We suppose that p” is prime, then A?" = 4ap” = (A™)> = p” | a. But

B"C! = p”(3b —4a) = p” | B" or p” | C~.

# G-1-1-If p” | B" = p” | B == B = p”By with B; € N*. Then p”"~'BIC = 3b — 4a. As
n>2,then (n—1) > 1and p” | a, then p” |3b = p” =3 or p” | b.

* G-1-1-1- If p” = 3 = 3 | a, with a that we write as a = 34’2, but A" = 64 —
3| A" = 3| A = A =3A;, then3" A" =20 = 3 | d = d = 3a". As
p”"1BiC! = 3" 1BIC! = 3b —4a = 3" 2BIC! = b—36a"%. Asn >2=>n—2>1, then
3 | b and the contradiction with a,b coprime.

** G-1-1-2- We suppose that p”

b, as p” | a, then the contradiction with a,b coprime.
** G-1-2- If we suppose p” | C!, we obtain identical results (contradictions).

** G-2- We consider now that p” is not prime.

** G-2-1- p”,a coprime: A?™ = dap” = A™ = 24'.p; with a = a’? and p” = p?, then @/, p;
are also coprime. As A™ = 24a’.py, then2 | a’ or 2 | p;.

** G-2-1-1- We suppose that 2 | a’, then 2 | a’ = 21 py, but p” = p3.
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** G-2-1-1-1- If p; is prime, it is impossible with A™ = 24’.p;.

** (G-2-1-1-2- We suppose that p; is not prime so we can write p; = W™ = p” = w?™.
Then B"C! = w?"(3b — 4a).

** G-2-1-1-2-1- If w is prime, w # 2, then w | (B"C!) = w | B" or w | C~.

#* G-2-1-1-2-1-1- If w | B" = w | B=> B = w/B; with w { By, then B}.C' = w?"~"(3b —
4a).

** G-2-1-1-2-1-1-1- If 2m — n.j = 0, we obtain BI.C' = 3b—4a. As C' = A" + B" — w |
C'= w|C,and w | (3b —4a). But w # 2 and w, a’ are coprime, then w, a are coprime, it
follows w 1 (3b), then w # 3 and w 1 b, the conjecture (3.1.1) is verified.

** G-2-1-1-2-1-1-2- If 2m — nj > 1, using the method as above, we obtain w | Cl—= w | C
and w | (3b —4a) and w ta and w # 3 and w { b, then the conjecture (3.1.1) is verified.

#* G-2-1-1-2-1-1-3- If 2m — nj < 0 = ™/ ~2"B}.C' = 3b — 4a. From A" + B" = C! =
w | C' = w | C, then C = w".Cy, with w { C1, we obtain w"/~2m+1B1 Cl = 3p — 4a. If
nj—2m+hl < 0= w | BIC| then the contradiction with w { By or w { C;. It follows
n.j—2m+hl>0and w | (3b — 4a) with w, a,b coprime and the conjecture is verified.

** G-2-1-1-2-1-2- Using the same method above, we obtain identical results if w | C'.

** (G-2-1-1-2-2- We suppose that p” = w?" and w is not prime. We write w = w{ Q) with wq
prime Q, f > 1,and w; | A. Then B'C! = ™ 2"(3h — 4a) = w; | (B"C') = w, | B"
or wy | Ch.

¥ G-2-1-1-2-2-1- If wy | B" = w; | B = B = w)|B; with w; By, then BL.C! =
w2 (3b — 4a):

** G-2-1-1-2-2-1-1-If 2f.m — n.j = 0, we obtain B}.C! = QO?"(3b —4a). As C! = A" + B" =>

wy | C' = wy | C,and wy | (3b —4a). But w; # 2 and wy,a’ are coprime, then w, a are
coprime, it follows wy { (3b), then wy # 3 and w; 1 b, and the conjecture (3.1.1) is verified.

#* G-2-1-1-2-2-1-2- If 2f.m — n.j > 1, we have w; | C! = w; | C and w; | (3b — 4a) and
w1 1a and wy # 3 and w1 1D, it follows that the conjecture (3.1.1) is verified.

# G-2-1-1-2-2-1-3- If 2f.m — n.j < 0 —> /2" Br.Cl = 02" (3b — 4a). As w; | C using
Cl = A™ + B", then C = w.C; = ™I 2mfFhIpn Cl = Q2(3b — 4a). If n.j — 2m.f + h.l <
0= wq | B?Ci, then the contradiction with wq 1 By and wq 1 Cy. Then if n.j — 2m.f + h.l >
0 and wy | (3b — 4a) with wy, a,b coprime and the conjecture (3.1.1) is verified.

** G-2-1-1-2-2-2- Using the same method above, we obtain identical results if w; | C.

** (G-2-1-2- We suppose that 2 | py: then 2 | py => 2+d’ = 2t a, but p” = p3.

** G-2-1-2-1- We suppose that p; = 2, we obtain A™ = 44’ = 2 | 4/, then the contradiction
with a, b coprime.
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** G-2-1-2-2- We suppose that p; is not prime and 2 | p;. As A™ = 24a’p;, p1 can written as
p1 = 2" 1w = p” = 22""2?", Then B"C! = 22"~2w?"(3b — 4a) =2 | B" or 2 | C\.

** (G-2-1-2-2-1- We suppose that 2 | B" = 2 | B. As2 | A, then 2 | C. From B"C! =
22m=2.,2M(3b — 4a) it follows that if 2 | (3b — 4a) == 2 | b but as 2 { a there is no contradic-
tion with 4, b coprime and the conjecture (3.1.1) is verified.

** (G-2-1-2-2-2- We suppose that 2 | C!, using the same method above, we obtain identical
results.

** G-2-2- We suppose that p”,a are not coprime: let w be a prime integer so that w | a and
w|p”

** (G-2-2-1- We suppose that w = 3. As A% = dap” = 3 | A, but3 | p. Asp =
A% 4 B2 4 AMB" = 3 | B¥" = 3 | B, then 3 | C! = 3 | C. We write A = 3/A,
B = 3/By, C = 3"C; with 3 coprime with Ay,B; and C; and p = 32i””A%m +32”jB%” +
3imtjin AmBr = 3k.¢ with k = min(2im,2jn,im + jn) and 3 f g. We have also (w = 3) | a
and (w = 3) | p” that gives a = 3%y, 31 a; and p” = 3¥py, 3 | p; with A?" = dap” =
3AMA2M — 4 x 3%TH.a1.py => a+p = 2im. As p = 3p' = 3b.p” = 3b.3'p; = 3 Lbpy,
the exponent of the factor 3 of p is k, the exponent of the factor 3 of the left member of
the last equation is p + 1 added of the exponent § of 3 of the term b, with B > 0, let
min(2im,2jn,im + jn) = p+ 1+ B and we recall that a + y = 2im. But B"C' = p”(3b — 4a),
we obtain 3 BECE = 311y, (b — 4 x 304" Vay) = 30+ p (3P — 4 x 3¢ Vay), 3 | by.
We have also A" + B" = C! = 3mAm 4 3Bt = 3MCL. We call € = min(im, jn), we have
€ = hl = min(im, jn). We obtain the conditions:

k = min(2im,2jn,im+jn) = u+1+p (1.6.1)
a+p=2im (1.6.2)

€ = hl = min(im, jn)

3t gnct — 3141y, (3Ph) — 4 x 3 Vay)

** G-2-2-1-1- « = 1 = a = 3a; and 3 { 41, the equation (1.6.2) becomes:
1+p=2im
and the first equation (1.6.1) is written as:
k = min(2im,2jn,im + jn) = 2im + B

-If k = 2im = p = 0 then 3 { b. We obtain 2im < 2jn = im < jn, and 2im < im + jn =
im < jn. The third equation gives hl = im and the last equation gives nj +hl = y+1 =
2im = im = nj, then im = nj = hl and B{C! = p;(b —4a;1). As a,b are coprime, the
conjecture (3.1.1) is verified.

-If k = 2jn or k = im + jn, we obtain B = 0, im = jn = hl and B{C} = p;(b — 4a1). As
a,b are coprime, the conjecture (3.1.1) is verified.

*G-2-2-1-2-a > 1= a > 2.

-Ifk=2im = 2im=pu+1+B,buty =2im—athatgivesa =14+ >2 = B #
0 = 3| b, but 3 | a then the contradiction with a, b coprime.
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-tk =2n=u+1+p<2im = u+1+<puyta=14+p<a= p>11f
B>1=3|bbut3 | g, then the contradiction with a, b coprime.

-lfk=im+jn = im+jn < 2im = jn < im, and im + jn < 2jn = im < jn, then
im=jn. Ask=im+jn=2im=1+u+pfand a +y = 2im, weobtaina =1+ > 2 =
B > 1= 3| b, then the contradiction with a, b coprime.

** G-2-2-2- We suppose that w # 3. We write a = w®a; with w { a; and p” = w'p,
with w { p1. As A?" = dap” = 4w0*Map) = w | A = A = w'A;, w t A;. But
B"C! = p”(3b — 4a) = w!p1(3b —4a) = w | B"C' = w | B" or w | C.

** (G-2-2-2-1- We suppose that w | B = w | B = B = w/B; and w { B;. From
A"+ B'"=Cl = w | C' = w | C. As p = bp' = 3bp” = 3whbp; = wr(w?Mm-kAIm
W=k  yimtin=k Ampiy with k = min(2im,2jn,im + jn). Then:

-If k = p, then w 1 b and the conjecture (3.1.1) is verified.

-If k > p, then w | b, but w | a then the contradiction with a, b coprime.

- If k < p, it follows from:

360“19]91 _ wk(wZimka%m 4+ ijnka%n + wierjnkaanB?la)
that w | A; or w | By then the contradiction with w { A; or w 1 By.

* G-2-22-2-Ifw | C' = w | C = C = w"C; with w { C;. From A" + B" = C! = w |
(C! — A™) = w | B. Then, using the same method as for the case G-2-2-2-1-, we obtain
identical results.

1.64 Caseb=3and3|p
As 3| p = p =3p/, We write :

a2 4—pc052Q _4dpa _4X 3;9’5 _4p'a

3 3 3b 3 3 3

6
As A" is an integer and a,b are coprime and coszg < 1 (see equation (1.3.9)), then we

have necessary 3 | p/ = p' = 3p” with p” # 1, if not p = 3p’ = 3 x3p” =9, but
9 < (p = A?™ + B* + A™B"), the hypothesis p” = 1 is impossible, then p” > 1, and we

obtain:
_4p'a 4 x3p”a

A 3 3 = 4p”a; B"C' = p”.(9 —4a)
1 0 a a 3 .
As - <cos"==-==-<-=—=3<41<9=—asa>1,a=2and we obtain:
4 3 b 3 4
7 o 4
A — 4p”a = 8p”; B"C! = 3p”(9 — 4a) (93 a) =p” (1.6.3)

4

The two last equations above imply that p” is not a prime. We can write p” as : p” =
[Tic;p;" where p; are distinct primes, «; elements of N* and i € I a finite set of in-
dexes. We can write also p” = pi'.q1 with py { 1. From (1.6.3), we have p; | A and
P1 | B"C!l = pP1 | B" or P1 ‘ cl.

** H-1- We suppose that p; | B" = B = p;'.B; with p; { By and 1 > 1. Then, we obtain
BiC! = p‘fl*nﬁ '.q1 with the following cases:
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-Ifay —npy > 1= p; | C' = p1 | C, in accord with p; | (C! = A™ + B"), it follows
that the conjecture (3.1.1) is verified.

-lfag —np; =0= B?Cl = g1 = p1 1 Cl, itis a contradiction with p; | (A" — B") =
p1 | C'. Then this case is impossible.

- If &y —npB; < 0, we obtain p?ﬁl*alB’fCl = g1 = p1 | 41, it is a contradiction with
p1 1 q1. Then this case is impossible.

** H-2- We suppose that p; | C!, using the same method as for the case p; | B", we obtain
identical results.

1.6.5 Case3|pandb=yp

We have coszg = % _ 2 and:

AP = gCOSZQ = 4p

a

3 3 3p 3
As A?™ is an integer, it implies that 3 | 4, but 3 | p = 3| b. As a and b are coprime, then
the contradiction and the case 3 | p and b = p is impossible.

1.6.6 Case3|pand b =4p
3| p=p=3p,p #1because 3 < p, then b = 4p = 12p’.

4p 0 4pa a
AZm:_ 2____:
3053 =37 3:>3\a

as A?" is an integer. But 3 | p = 3 | [(4p) = b], then the contradiction with a,b coprime
and the case b = 4p is impossible.

1.6.7 Case3|pand b =2p
3| p=p=3p,p #1because 3 < p, then b =2p = 6p’.

AP — 4—pcoszg = 4PE = 2—”

g3 =75y =73 =—3la

as A?" is an integer. But 3 | p = 3 | (2p) = 3 | b, then the contradiction with a,b
coprime and the case b = 2p is impossible.

1.6.8 Case 3 | p and b # 3 a divisor of p
We have b = p’ # 3, and p is written as p = kp’ with 3| k== k =3k" and :
Azm:4p 29:419.” — 4gk’

B"C! = g. (3 _ 40052—) = K (3p' — 4a) = K'(3b — 4a)

#*11- k' # 1
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** 1-1-1- We suppose that k' is prime, then A?" = 4ak’ = (A")? = k' | a. But B"C! =
k'(3b —4a) = k' | B" or k' | C\.

# 11-1-1- If K | B" = k' | B => B = K'B; with B; € N*. Then k"~1BIC! = 3b — 4a. As
n>2then (n—1) >1and k' | a, thenk’ | 3b = k' =3 or k' | b.

** [-1-1-1-1- If K’ = 3 = 3 | a, with a that we can write it under the form a = 3a2. But
A" =61 = 3| A" = 3| A = A = 3A; with A} € N*. Then 3" 1AV = 24/ —>
3|a = a' =3a”. But k" 'BC' = 3" 1B/C! = 3b—4a = 3" 2BJC' = b—36a"%. As
n>3=n—22>1,then 3 | b. Hence the contradiction with a, b coprime.

**1-1-1-1-2- We suppose that k' | b, but k’ | a, then the contradiction with a, b coprime.

** [-1-1-2- We suppose that k¥’ | C!, using the same method as for the case k' | B", we obtain
identical results.

** I-1-2- We consider that k’ is not a prime.

** [-1-2-1- We suppose that k/,a coprime: A?" = 4ak’ = A™ = 2a'.p; with a = a’? and
k' = p3, then a/, p; are also coprime. As A™ = 2a’.p; then 2 | a’ or 2 | p;.

** [-1-2-1-1- We suppose that 2 | @/, then 2 | a' = 21 py, but K’ = p?.
** [-1-2-1-1-1- If p; is prime, it is impossible with A™ = 24’.p;.

#* [-1-2-1-1-2- We suppose that p; is not prime and it can be written as p; = w" = k' =
w?™. Then B"C! = w?"(3b — 4a).

** [-1-2-1-1-2-1- If w is prime # 2, then w | (B"C!) = w | B" or w | C".

#*1-1-2-1-1-2-1-1- If w | B" = w | B= B = w/B; with w { By, then B}.C! = w?"~"(3b —
4a).

-1f 2m — n.j = 0, we obtain B}.C' =3b—4a,as C' = A" + B" = w | C' = w | C, and
w | (3b —4a). But w # 2 and w, a’ are coprime, then w t (3b) = w # 3 and w 1 b. Hence,
the conjecture (3.1.1) is verified.

- If 2m — nj > 1, using the same method, we have w | C' = w | C and w | (3b — 4a)
and w {a and w # 3 and w 1 b. Then the conjecture (3.1.1) is verified.

-If2m—nj < 0 = W"2MBIC! = 3b—4a. As C' = A"+ B" = w | C then
C = whCy = wi~2mthipn cl = 3b —4a. If n.j —2m +hl < 0 = w | BJCl, then the
contradiction with w { By or w { C1. If n.j —2m+hl > 0 = w | (3b — 4a) with w,a,b
coprime, it implies that the conjecture (3.1.1) is verified.

** 1-1-2-1-1-2-1-2- We suppose that w | C!, using the same method as for the case w | B", we
obtain identical results.

** [-1-2-1-1-2-2- Now k' = w?" and w not a prime, we write w = w{ Q) with wj a prime 1 Q)

and f > 1 an integer, and w; | A, then B"C! = w%f'mﬂzm(% —4a) = w | (B"C!) = w |
B" or wy | C..
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#* [-1-2-1-1-2-2-1- If wy | B® = w; | B = B = w/B; with w; { By, then B/.C' =
w0 (3 — 4a).

-If 2f.m — n.j = 0, we obtain B}.C! = Q?"(3b — 4a). As C' = A" + B" = w, | C! =
wy | C,and wy | (3b — 4a). But wy # 2 and wy,a’ are coprime, then w, a are coprime, then
w1 1 (3b) = wy # 3 and wy t b. Hence, the conjecture (3.1.1) is verified.

~If2f.m —n.j > 1, we have w; | C' = w; | C and wy | (3b — 4a) and w; {a and w; # 3
and w1 1 b, then the conjecture (3.1.1) is verified.

ST 2fm —nj < 0 = TP Br.Cl = 2(3b — 4a). As Cl = A" 4+ B" — w; | C
, then C = w.C; = @"i=2mfThiBH Cl = 2" (3b — 4a). If n.j—2m.f +hl < 0 = w; |
BIC!, then the contradiction with w; { By and wj t C;. Then if n.j — 2m.f + h.l > 0 and
w1 | (8b — 4a) with w1, a,b coprime, then the conjecture (3.1.1) is verified.

** [-1-2-1-1-2-2-2- As in the case w; | B", we obtain identical results if w; | C'.
*[-1-2-1-2-1f 2 | py: then 2 | py = 2{a’ = 2t a, but k' = p3.

#* 1-1-2-1-2-1- If p; = 2, we obtain A™ = 44’ =—> 2 | @/, then the contradiction with 2 { a’.
Case to reject.

** [-1-2-1-2-2- We suppose that p; is not prime and 2 | p;. As A™ = 2a'py, py is writ-
ten under the form p; = 2" lw™ = p? = 222" Then B"C! = K'(3b — 4a) =
22m=20y2M(3h — 4a) =2 | B" or 2 | C.

#*1.1-2-12-2-1-If 2 | B" = 2 | B,as 2 | A = 2 | C. From B"C! = 222" (3b — 4a) it
follows that if 2 | (3b —4a) = 2 | b but as 2 1 a, there is no contradiction with a, b coprime
and the conjecture (3.1.1) is verified.

** [-1-2-1-2-2-2- We obtain identical results as above if 2 | C'.

** [-1-2-2- We suppose that k’, a are not coprime: let w be a prime integer so that w | a and
2
w | pi-

** 1-1-2-2-1- We suppose that w = 3. As A" = 4ak’ = 3 | A, but3 | p. Asp =
AP 4 B2 4 AMB" — 3 | B = 3 | B, then 3 | C' = 3 | C. We write A = 3/A;,
B = 3/B;, C = 3"C; with 3 coprime with Ay, B; and C; and p = 32imA%m —|—32”le%” +
3imtin AMBl = 3%.¢ with s = min(2im,2jn,im + jn) and 3 { g. We have also (w = 3) | a
and (w = 3) | k' that give a = 3%y, 3 { a; and k' = 3#p,, 3 { po with A?" = dak’ =
BAMA2M — 4 x 3%FH gy.py = a+yu = 2im. As p = 3p’ = 3bk' = 3b.3"'p, = 3 Lb.p,.
The exponent of the factor 3 of p is s, the exponent of the factor 3 of the left member of
the last equation is y + 1 added of the exponent  of 3 of the factor b, with g > 0, let
min(2im,2jn,im + jn) = u+ 1+ B, we recall that « + ¢ = 2im. But B"C' = K/ (4b — 3a)
that gives 30+ BICL = 3#+1p,y (b — 4 x 3~ Vay) = 3#F1p,y(3Fhy — 4 x 36~ Vay), 31 by. We
have also A™ + B" = C! that gives 3™AM + 3/"B? = 3/Cl. We call € = min(im, jn), we
obtain € = hl = min(im, jn). We have then the conditions:

s = min(2im,2jn, im+jn) = pu+1+p (1.6.4)

&+ u=2im (1.6.5)

€ = hl = min(im, jn) (1.6.6)

3t gl — 3#+1y) (3Phy — 4 x 312" Vay) (1.6.7)
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#* [-1-2-2-1-1- « = 1 = a = 3a; and 3 { a1, the equation (1.6.5) becomes:
1+u=2im
and the first equation (1.6.4) is written as :
s = min(2im,2jn, im + jn) = 2im + p

-Ifs =2im = B =0 = 3 1b. We obtain 2im < 2jn = im < jn, and 2im <
im + jn => im < jn. The third equation (1.6.6) gives hl = im. The last equation (1.6.7)
gives nj + hl = p+ 1 = 2im = im = jn, then im = jn = hl and BI'C} = pa(b — 4a1). As
a,b are coprime, the conjecture (3.1.1) is verified.

-If s = 2jn or s = im + jn, we obtain B = 0, im = jn = hl and B/C! = pa(b — 4a;). Then
as a,b are coprime, the conjecture (3.1.1) is verified.

*1-1-2-2-1-2-a > 1= a > 2.

-lfs =2im = 2im=pu+1+B,buty =2im—aitgivesa =1+ >2 = B #
0 = 3| b, but 3 | a then the contradiction with a,b coprime and the conjecture (3.1.1) is
not verified.

-lfts=2m=pu+1+B<2m=—= pu+1+<pt+ta=1+p<a= p=11If
B =1=3|bbut3 | a, then the contradiction with a,b coprime and the conjecture (3.1.1)
is not verified.

-lf s =im+jn = im+ jn < 2im = jn < im, and im + jn < 2jn = im < jn, then
im=jn. Ass=im+jn=2im=1+pu+Banda+u =2imitgivesa =1+ >2 = B >
1 = 3| b, then the contradiction with a, b coprime and the conjecture (3.1.1) is not verified.

** 1-1-2-2-2- We suppose that w # 3. We write a = w"a; with w { a; and k' = wtp,
with w | pp. As A?" = 4ak’ = 4w Haypy = w | A = A = w'A;, w | A;. But
B"C! = k'(3b — 4a) = w*p,(3b — 4a) = w | B"C' = w | B" or w | C.

*#1.12-22-1-w | B" = w | B= B" = w/B; and w { B;. From A" + B" = C! = w |
Cl= w | C. As p = bp’ = 3bk' = 3whbpy = w*(W?M=S A 4 W2N—S B3N 4 yimtin=s Ampn)
with s = min(2im,2jn,im + jn). Then:

-If s = y, then w 1 b and the conjecture (3.1.1) is verified.

-If s > y, then w | b, but w | a then the contradiction with 4,b coprime and the
conjecture (3.1.1) is not verified.

- If s < p, it follows from:

360”[9}71 — W (wZim—sA%m + w2jn—sB%n + wim—kjn—sATB?)

that w | A1 or w | By that is the contradiction with the hypothesis and the conjecture (3.1.1)
is not verified.

#1-1-2-2-22-If w | C!' = w | C = C = w"C; with w { C;. From A" + B" = C' = w |
(C! — A™) = w | B. Then we obtain identical results as the case above I-1-2-2-2-1-.

** ]-2- We suppose k' = 1: then k' = 1 = p = 3b, then we have A?" = 4q = (24')? =
A™ = 24', then a = a'? is even and :

A"B" = 2\3/ﬁcosg.\3/ﬁ (\/gsing — cos%) = %gsinzg)—e —2a
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and we have also:
A2M D AMBH — 2’” V32 o3 zn— (1.6.8)

260
The left member of the equation (1.6.8) is a naturel number and also b, then 2\/§sin? can

be written under the form :

2+/3sin —:k—
ko

where k1, ky are two natural numbers coprime and ky | b = b = ky.ks.

“*[-2-1- k' = 1 and k3 # 1: then A*" +2A™B" = k3.k;. Let u be a prime integer so that
plks. If yu=2=2|b, but2]a,itis a contradiction with a,b coprime. We suppose that
u#2and p | ks, then u | A"(A™ +2B") = u | A" or u | (A™ +2B").

12 1-1-pu | A Ifu | A" = u | A = y |4a = pu|a Asu| ks = u| Db, the
contradiction with a, b coprime.

*1-2-1-2-pu | (A" +2B"): If u | (A™ +2B") = p{ A™ and u 1 2B", then p # 2 and yu { B".
u | (A™+2B"), we can write A™ + 2B" = u.t'. It follows:

A™ 4+ B" = ut' — B" = A®" + B 4 2A"B" = y*t* — 2t'uB" + B>"
Using the expression of p, we obtain:
p = t?u> —2¢'B"u+ B"(B" — A™)
As p =3b = 3kp.kz and p | k3 then u | p = p = u.)/, then we obtain:
Wy = pu(ut? —2¢'B") + B"(B" — A™)
and y | B"(B" — A™) = u | B" or u | (B" — A™).
#*[-2-1-2-1- u | B": If u | B = | B, that is the contradiction with I-2-1-2- above.

#[-2-1-2-2- u | (B — A™): If u | (B" — A™) and using that u | (A™ + 2B"), we obtain :

p|B"=pu|B
u|3B" =< or
u=3

#* [-2-1-2-2-1- p | B*: If u | B* = u | B, that is the contradiction with I-2-1-2- above.

1-2-1-2-2-2- p = 3: If y =3 = 3 | ks = k3 = 3k}, and we have b = kyks = 3kykj, it
follows p = 3b = 9kyk5, then 9 | p, but p = (A™ — B")?2 + 3A™B" then:

9kyky — BA™B" = (A™ — B"")?

that we write as:
3(3koky — A™B") = (A™ — B")? (1.6.9)
then:
3 (3k2k§—AmB”) = 3| A"B"=3]| A" or 3| B"
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#*[-2-1-2-2-2-1-3 | A™: If 3| A™ = 3 | A and we have also 3 | A?", but A>" = 4a = 3 |
4a = 3| a. As b = 3kyk} then 3 | b, but 4, b are coprime, then the contradiction and 3 { A.

#* [-2-1-2-2-2-2- 3 | B™: If 3 | B* = 3 | B, but the equation (1.6.9) implies 3 | (A™ —
B")? = 3| (A" — B") = 3 | A" = 3 | A. The last case above has given that 3 | A.
Then the case 3 | B" is to reject.

Finally the hypothesis k3 # 1 is impossible.

** ]-2-2- Now, we suppose that k3 = 1 = b = k; and p = 3b = 3k,, then we have:

2
2\/§sin—9 _hk (1.6.10)
3 b
with kq, b coprime. We write (1.6.10) as :
.0 0 Ik
4\/5517150055 =%

6
Taking the square of the two members and replacing coszg by %, we obtain:

3x4%a(b—a) =k} =k} =3 x4%4%*(b—a)
it implies that :
b—a=230% a e N* = b=0a?+30> =k = 124«

As:
ki =12d'a = A" (A" +2B") = 3a =a' + B"

We consider now that 3 | (b —a) with b = a’? + 3a%. The case a = 1 gives a’ + B" = 3
that is impossible. We suppose « > 1, the pair (4, &) is a solution of the Diophantine
equation:

X?+3Y2=b (1.6.11)
with X = 4’ and Y = a. But using a theorem on the solutions of the equation given by
(1.6.11), b is written as (see theorem in [2]):

¢ 251 25,

t
b:225><3t.p§1...pgq1 qr

where p; are prime numbers verifying p; = 1(mod 6), the g; are also prime numbers so
that g; = 5(mod 6), then :

-Ifs >1=2|b,as 2| a, then the contradiction with a,b coprime.

-Ift >1=3|b,but3 | (b —a) = 3| a, then the contradiction with a,b coprime.

** ]-2-2-1- We suppose that b is written as :

b — ptil RN pfggq%sl .. .q%sf’

with p; = 1(mod 6) and g; = 5(mod 6). Finally, we obtain that b = 1(mod 6). We will
verify then this condition.
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Table 1.2: Table of C!(mod 6)

A",B" 1 2 4 5
1 2 3 5 0
2 3 4 0 1
4 5 0 2 3
5 0O 1 3 4

** [-2-2-1-1- We present the table below giving the value of A™ + B" = C! modulo 6 in
function of the value of A™, B"(mod 6). We obtain the table below after retiring the lines
(respectively the colones) of A™ = 0(mod 6) and A™ = 3(mod 6) (respectively of B" =
0(mod 6) and B" = 3(mod 6)), they present cases with contradictions:

** 1-2-2-1-1-1- For the case C' = 0(mod 6) and C' = 3(mod 6), we deduce that 3 | C! —
3| C = C =3"Cy, withh > 1and 3 1 Cy. It follows that p — B"C! = 3b — 3"'C!B" =
AP — 3| (A2 = 4a) = 3 | a = 3 | b, then the contradiction with a, b coprime.

** [-2-2-1-1-2- For the case C' = 0(mod 6), C! = 2(mod 6) and C! = 4(mod 6), we de-
duce that 2 | C' = 2 | C = C = 2"Cy, with h > 1 and 2 { C;. It follows that
p =3b= A?"+ B"C! = 4a +2""CIB" = 2 | 3b = 2 | b, then the contradiction with a,b
coprime.

** [-2-2-1-1-3- We consider the cases A” = 1(mod6) and B" = 4(mod 6) (respectively
B" =2(mod 6)): then 2 | B" = 2 | B = B = 2By with j > 1 and 2 { B;. It follows from
3b = A" + B"C! = 4a + 2/"B/C! that 2 | b, then the contradiction with a,b coprime.

** 1-2-2-1-1-4- We consider the case A™ = 5(mod 6) and B" = 2(mod 6): then 2 | B" =
2| B=> B = 2/B; with j > 1 and 2 { B;. It follows that 3b = A?" + B"C! = 4a + 2/"B}C/,
then 2 | b and we obtain the contradiction with a,b coprime.

** 1-2-2-1-1-5- We consider the case A™ = 2(mod 6) and B" = 5(mod 6): as A™ = 2(mod
6) = A™ = 2(mod 3), then A™ is not a square and also for B". Hence, we can write A”
and B" as:

A" = qy.uA?
B" = bouB?

where ag (respectively by) regroups the product of the prime numbers of A" with exponent
1 (respectively of B") with not necessary (ag, #A) = 1 and (bp, uB) = 1. We have also
p =3b = A 4+ A"B" 4+ B¥" = (A™ — B")? + 3A"B" = 3 | (b — A™B") = A"B"
b(mod 3) but b = a+3a> => b = a = a’?(mod 3), then A"B" = a’?(mod 3). But A" =
2(mod 6) = 24’ = 2(mod 6) = 44> = 4(mod 6) = a’> = 1(mod 3). It follows that
A™B" is a square, let A"B" = uN? = uA2.uB?.a9.by. We call uN? = ag.by. Let p; be a prime
number so that py | a9 = a9 = p1.a1 with p1 f a1. p1 | uNZ = p1 | uNy = ulN; = piuN;
with t > 1 and p; { uNj, then p2 " 'uNP? = ay.by. As2t > 2 =2t —1> 1= p; | a1.bp
but (p1,41) = 1, then p; | by = p1 | B = p1 | B. But p; | (A™ = 24'), and p; # 2
because p; | B" and B" is odd, then the contradiction. Hence, py | @ = p1 | a. If p; = 3,
from 3 | (b —a) = 3 | b then the contradiction with a,b coprime. Then p; > 3 a prime
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that divides A™ and B", then p;1 | (p = 3b) = p1 | b, it follows the contradiction with a,b
coprime, knowing that p = 3b = 3(mod 6) and we choose the case b = 1(mod 6) of our
interest.

** ]-2-2-1-1-6- We consider the last case of the table above A™ = 4(mod6) and B" =
1(mod 6). We return to the equation (1.6.11) that b verifies :
b= X>+3Y? (1.6.12)
with X=d; Y=u
and 3x =a’ + B"
But p = A?" 4+ A"B" 4+ B?" = 3b = 3(3a% + a’?) = A?" + C'B" = 32’2 4+ 9a%. As A?" =
(2a")? = 4a'?, we obtain:
94> —a'* = C'.B"

Then the pair (3a,4’) € IN* x IN* is a solution of the Diophantine equation:
-y =N (1.6.13)
where N = C/.B™ > 0.

Let Q(N) be the number of the solutions of (1.6.13) and 7(N) the number of ways to
write the factors of N, then we announce the following result concerning the number of
the solutions of (1.6.13) (see theorem 27.3 in [2]):

Theorem 1.6.1. Let Q(N) be the number of the solutions of (1.6.13) and T(N) the number

of ways to write the factors of N, then the number of the solutions of (1.6.13) :

-If N =2(mod 4), then Q(N) = 0.

-IfFN =1or N =3(mod 4), then Q(N) = [t(N)/2].

-If N =0(mod 4), then Q(N) = [t(N/4)/2].
As A" = 24a/,m > 3 = A" = 0(mod4). Concerning B", for B" = 0(mod4) or
B" = 2(mod4), we find that 2 | B* = 2 | « = 2 | b, then the contradiction with
a,b coprime.

For the last case B" = 3(mod4) = C! = 3(mod4) = N = B"C! = 1(mod4) —
Q(N) = [t(N)/2].

As (3a,4’) is a couple of solutions of the Diophantine equation (1.6.13) and 3« > 4/, then
3 d,d’ positive integers with d > d’ and N = d.d’ so that :

d+d = 6a (1.6.14)
d—d =2d (1.6.15)

We will use the same method used in the above paragraph A-2-1-2-
#* [-2-2-1-1-6-1- As C! > B", we take d = C! and d’ = B". It follows:

C!' 4+ B" = 6a = 24’ +2B" = A™ 4 2B" (1.6.16)
Cl—B"=24 = A™ (1.6.17)

Then the case d = C! and d’ = B" gives a priory no contradictions.
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** [-2-2-1-1-6-2- Now, we consider the case d = B"C! and d’ = 1. We rewrite the equations
(3.2.24-3.2.25);

B'"C'+1=6a (1.6.18)
B"Cl —1 =24 (1.6.19)
We obtain 1 = B", it follows C! — A™ = 1, we know [?] that the only positive solution of

the last equation is C =3, A =2,m =3 and | = 2 < 3, then the contradiction.

** 1-2-2-1-1-6-3- Now, we consider the case d = cl{_lq where c; is a prime integer with
c11Cyand C = c[Cy, r > 1. It follows that d' = ¢1.B". We rewrite the equations (3.2.24-
3.2.25):

"1Ch 4 ¢1.B" = 6u (1.6.20)
cr71Cl — ¢1.B" = 24' (1.6.21)

As | > 3, from the last two equations above, it follows that ¢; | (6a) and c; | (24’). Then
ci=20rci=3and3|ad orc; #3|awand ¢y | 4.

** 1-2-2-1-1-6-3-1- We suppose c; = 2. As 2 | (A" =24') = 2| (a = a’? and 2 | C! because
I > 3, it follows 2 | B", then 2 | (p = 3b). Then the contradiction with a,b coprime.

** [-2-2-1-1-6-3-2- We suppose c; = 3 = ¢; | 24’ = ¢1 | @ = ¢1 | (a = a’?). It follows that
(c1 =3) | (b = a'? + 3a2), then the contradiction with a, b coprime.

#* [-2-2-1-1-6-3-3- We suppose ¢; # 3 and ¢; | 3a and ¢; | 4. It follows that ¢; | a and
c1 | (b = a’? + 3a?, then the contradiction with a, b coprime.

The other cases of the expressions of d and d’ not coprime so that N = B"C! = d.d’ give
also contradictions.

** 1-2-2-1-1-6-4- Now, let C = ¢]C; with ¢; a prime, r > 1 and ¢; { C;, we consider the case
d = Cl and d’ = ¢/!B" so that d > d’. We rewrite the equations (3.2.24-3.2.25):

Cl +ci'B" = 6u (1.6.22)
Ch —ci'B" = 24’ (1.6.23)
We obtain c{lB” = B" — c{l =1, then the contradiction.

** 1-2-2-1-1-6-5- Now, let C = ¢|C; with ¢; a prime, ¥ > 1 and ¢; { C;, we consider the case
d = CIB" and d' = ¢}/ so that d > d’. We rewrite the equations (3.2.24-3.2.25):

CiB 4 ¢! = 6a (1.6.24)
CiB! — il = 24’ (1.6.25)
We obtain cgl =B" = ¢y | B", asc¢; | C then ¢ | A" = 24’. If ¢c; = 2, the contradiction

with B"C! = 1(mod 4). Then ¢; | @' = ¢ | (a = a’?) = ¢; | (p = b), it follows a, b are
not coprime, then the contradiction.

Cases like d’ < C! a divisor of C! or d’ < B! a divisor of B" withd’ < d and d.d = N = B"C!
give contradictions.
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#+ 1-2-2-1-1-6-6- Now, we consider the case d = b;.C! where b; is a prime integer with by 1 B
and B = b[By, r > 1. It follows that d’ = b;”le’f. We rewrite the equations (3.2.24-3.2.25):

biC' + b 1B = 6 (1.6.26)
biC' — b 1BY = 24’ (1.6.27)

As n > 3, from the last two equations above, it follows that by | 6a and by | (24). Then
by =2,0orb; |aand by |a’ orby =3 and 3 | 4.

#* [-2-2-1-1-6-6-1- We suppose by =2 =2 | B". As2 | (A" =24’ =2 |a' = 2| a, but
2| B"and 2 | A™ then 2 | (p = 3b). It follows the contradiction with a, b coprime.

** [-2-2-1-1-6-6-2- We suppose by # 2,3, then by | a« and by | @/ = by | (a = a'?), then
b1 | (b = 3a? + a'?), it follows the contradiction with a,b coprime.

** 1-2-2-1-1-6-6-3- We suppose by = 3 = 3 | 6a, and 3 | (A" = 24’) = 3 | (a = a’?), then
3| (b = 3a? + a'?), it follows the contradiction with a, b coprime.

The other cases of the expressions of d and d’ with d,d’ not coprime and d > d’ so that
N = C!B™ = d.d’ give also contradictions.

Finally, from the cases studied in the above paragraph 1-2-2-1-1-6-, we have found
one suitable factorization of N that gives a priory no contradictions, it is the case N =
B"C! = dd with d = C',d = B" but 1 < 7(N), it follows the contradiction with
Q(N) = [1(N)/2] < 1. The last case A" = 4(mod 6) and B" = 1(mod 6) gives con-
tradictions.

It follows that the condition 3 | (b — a) is a contradiction.

The study of the case 1.6.8 is achieved.

1.6.9 Case3|pandb|4p

The following cases have been soon studied:

*3|p, b=2=b|4p: case 1.6.1,

*3|p, b=4=b|4p: case 1.6.2,
*Blp=p=3p,b|p = p =bp”, p” #1: case 1.6.3,
*3|p,b=3=0b|4p: case 1.6.4,
*3|lp=p=3p,b=p = b|4p: case 1.6.8.

** J-1- Particular case: b = 12. In fact 3 | p = p = 3p’ and 4p = 12p’. Taking b = 12, we
have b | 4p. But b < 4a < 3b, that gives 12 < 42 <36 =3 <a<9. As2|band 3 | ], the
possible values of a are 5 and 7.

_ 5bp" 5p

4p a
**——— = = = /: ! Zm:——_ —_—
J1-1-a =5and b = 12 = 4p = 12p’ = bp’. But A 3D 3 3 = 3|

p' = p' = 3p” with p” € IN*, then p = 9p”, we obtain the expressions:

A% = 5p” (1.6.28)
B"C! = g (3 — 4coszg) = 4p” (1.6.29)
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As n,1 > 3, we deduce from the equation (1.6.29) that 2 | p” == p” = 2%p; with & > 1 and
2 1 p1. Then (1.6.28) becomes: A?" = 5p” =5x2%p; = 2 | A = A = 2/A,i > 1 and
21 A;. We have also B"C! = 2%*2p; =2 | B" or 2 | C\.

** J-1-1-1- We suppose that 2 | B* = B = 2/Bj, j > 1 and 2 { B;. We obtain B/C' =
2a+27jnp1:

-Ifa+2—jn >0 =2|C, there is no contradiction with C! = 2" A" 4 2/"Bl — 2 |
C! and the conjecture (3.1.1) is verified.

-Ifa+2—jn=0= BIC' = p;. From C=2™mAM 4+ 2/"B} — 2 | C' that implies that
2| p1, then the contradiction with 2 1 p;.

-Ifa+2—jn < 0= 2""*"2B2Cl = p,, it implies that 2 | p;, then the contradiction as
above.
** J-1-1-2- We suppose that 2 | C!, using the same method above, we obtain the identical
results.

** ]-1-2- We suppose that a = 7 and b = 12 = 4p = 12p’ = bp/. But A" = 4?;7% =
12p" 7 _7p B .
3 - 3 = 3| p' = p = 9p”, we obtain:

Azm — 7p//
B"C! = g (3 - 4coszg) =2p”

The last equation implies that 2 | B"C. Using the same method as for the case J-1-1- above,
we obtain the identical results.

We study now the general case. As3 | p = p = 3p’ and b | 4p = Tk; € N* and
4p = 12p’ = k1b.

*J2-ky =1:1Ifky = 1thenb = 12p/, (p/ # 1, if not p = 3 < A?™ + B> + A™B"). But
4p 6 12p'a 4p'a a

AZT}’Z = —. 2— = e = —
3°°37 3 b 120 3

contradiction with a, b coprime.

= 3| a because A" is a natural number, then the

13-k = 3: If k; = 3, then b = 4p’ and A?" = 43p coszg = ]% —a=(A"?=4?—=
A™ =4'. The term A™B" gives A"B" = P\/— ? - E , then:
2 20
A2m g AmBH — p f 3 = 2p'V3sin (1.6.30)

20
The left member of (1.6.30) is an integer number and also p’, then 2\/§sin? can be written

under the form:

2\/551'712:_5—19 = I;—i

where ky, k3 are two integer numbers and are coprime and k3 | p’ = p’ = k3.ky.
** J-3-1- kg # 1 : We suppose that k4 # 1, then:
AP 4 2AMBY = kyky (1.6.31)
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Let yu be a prime number so that y | k4, then u | A"(A™ +2B") = u | A" or u |
(A™+ 2B™").

3 1-1-pu | A" U u | A" = u | A2 =y |a. Aspulky= ul|p = ul| 4p =0).
But a, b are coprime, then the contradiction.

#7]-3-1-2-p | (A" +2B") : If u | (A" +2B") = u{ A™ and u { 2B", then u # 2 and yu { B".
i | (A™+2B"), we can write A™ +2B" = u.t'. It follows:

Am+Bn :“l/lt,—Bn:>A2m+B2n+2AmBn :‘u2t/2_2t/an_’_B2n

Using the expression of p, we obtain p = +?u? — 2¢/B"u + B*(B" — A™). As p = 3p’ and
wlp =ul|Bp') = u|p, wecan write: Iy’ and p = uy’, then we arrive to:

Wop = p(ut™ = 2¢'B") + B"(B" — A™)
and u | B"(B" — A™) = u | B"or u | (B" — A™).
#*J-3-1-2-1- u | B" : If y | B" = u | B, it is in contradiction with J-3-1-2-.

#*J-3-1-2-2-u | (B* — A™) : If u | (B" — A™) and using y | (A™ + 2B"), we obtain :

wlB"
i|3B" = < or
p=3

#*J-3-1-2-2-1- p | B* : If u | B* = | B, it is in contradiction with J-3-1-2-.

*]-3-12-2-2-y =3 : If y =3 = 3 | ky = k4 = 3k}, and we have p’ = ksks = 3ksk), it
follows that p = 3p’ = 9k3k), then 9 | p, but p = (A™ — B")? +3A™B", then we obtain:

9ksky —3A™B" = (A" — B")?

that we write : 3(3ksk), — A™B") = (A™ — B")?, then: 3 | (3ksk), — A"B") = 3| A"B" =
3| A™or 3| B".

#]-3-1-2-2-2-1-3 | A" : If 3 | A" =3 | A?™ = 3 |a,but3|p' = 3| (4p') = 3| b, then
the contradiction with a, b coprime and 3 { A.

** J-3-1-2-2-2-2- 3 | B" : If 3 | B" but A" = ut' —2B" = 3t —2B" — 3 | A", itis in
contradiction with 3 1 A.

Then the hypothesis k4 # 1 is impossible.

** J-3-2- kg = 1: We suppose now that ky = 1 = p’ = k3ks = k3. Then we have:

2V/3sin2d = k—z, (1.6.32)
3
with ky, p’ coprime, we write (1.6.32) as :
4\/§sin§cos§ = %
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a

b

Taking the square of the two members and replacing coszg by - and b = 4p’, we obtain:

3.a(b—a) = k3
As AP = g = a'?, it implies that :
3|(b—a), and b—a="b—a?=3a>

As ky = A™(A™ + 2B") following the equation (1.6.31) and that 3 | k, = 3 | A™(A™ +
2B") = 3| A™or 3| (A™ +2B").

*]-32-1-3 | A" If 3 | A" = 3 | A% = 3 | a,but3 | (b—a) = 3 | b, then the
contradiction with a, b coprime.

*]-3-2-2-3 | (A™ +2B") = 31 A™ and 31 B". As k3 = 9aa® = 9a"%a> = ky = 3d'a =
A™(A™ 4 2B"), then :

30 = A™ + 2B" (1.6.33)
As b can be written under the form b = a2 + 342, then the pair (a’,a) is a solution of the

Diophantine equation:
X2 +37=b (1.6.34)

Asb = 4p/, then:
**J-3-2-2-1- If x,y are even, then 2 | a/ = 2| 4, it is a contradiction with 4, b coprime.

#* ]-3-2-2-2- If x,y are odd, then 4/, « are odd, it implies A™ = 4’ = 1(mod 4) or A™ =
3(mod 4). If u, v verify (1.6.34), then b = u? 4 302, with u # a’ and v # «, then u, v do not
verify (1.6.33): 30 # u +2B", if not, u = 3v — 2B" = b = (3v — 2B")? + 30 = a’? 4 3a2,
the resolution of the obtained equation of second degree in v gives the positive root v; = «,
then u = 3v — 2B" = 3a — 2B" = 4/, then the uniqueness of the representation of b by the
equation (1.6.34).

*#* J-3-2-2-2-1- We suppose that A” = 1(mod 4) and B" = 0(mod 4), then B" is even and
B" = 2B’. The expression of p becomes:

p=a?+2a'B'+4B”? = (a' + B')>+3B? =3p' = 3| (¢’ + B') = a' + B’ = 3B”
p' = B?+3B"2 = b =4p' = (2B')* 4+ 3(2B")? = a'? + 3a?

as b has an unique representation, it follows 2B’ = B" = a’ = A™, then the contradiction
with A™ > B".

** J-3-2-2-2-2- We suppose that A” = 1(mod 4) and B" = 1(mod 4), then C' is even and
C! = 2C’. The expression of p becomes:

p=C?—CIB"+ B> = 4C"> —2C'B" + B> = (C' — B")2 4+ 3C"?> = 3p’
— 3| (C'—B") = C'— B" =3C"
p'=C?+3C"7 = b=4p = (2C')24+3(2C")* = a4 3a*

as b has an unique representation, it follows 2C’ = C! = a’ = A™, then the contradiction.
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** J-3-2-2-2-3- We suppose that A” = 1(mod 4) and B" = 2(mod 4), then B" is even, see
J-3-2-2-2-1-,

** ]-3-2-2-2-4- We suppose that A™
J-3-2-2-2-2-.

1(mod 4) and B" = 3(mod 4), then C' is even, see

*#* J-3-2-2-2-5- We suppose that A” = 3(mod 4) and B" = 0(mod 4), then B" is even, see
J-3-2-2-2-1-.

** ]-3-2-2-2-6- We suppose that A™
J-3-2-2-2-2-.

3(mod 4) and B" = 1(mod 4), then C' is even, see

** ]-3-2-2-2-7- We suppose that A™
J-3-2-2-2-1-.

3(mod 4) and B" = 2(mod 4), then B" is even, see

** J-3-2-2-2-8- We suppose that A” = 3(mod 4) and B" = 3(mod 4), then C' is even, see
J-3-2-2-2-2-.

We have achieved the study of the case J-3-2-2- . It gives contradictions.

** J-4- We suppose that k; # 3 and 3 | ky = k1 = 3k} with k| # 1, then 4p = 12p' =
4pc0526 _ 3kiba

kib = 3kib = 4p’ = kjb. A*" can be written as A*" = 3 C0s"3 3 p = kia and
k/
B"C! = g (3 —400522) = Zl(Bb —4a). As B"C! is an integer number, we must have

4| (3b—4a)or4|kjor[2]kand 2| (3b—4a)].
** J-4-1- We suppose that 4 | (3b — 4a).

** J-4-1-1- We suppose that 3b —4a =4 =4 | b => 2| b. Then, we have:
A?M = Ka
B"C =K,
** J-4-1-1-1- If k] is prime, from B"C! = k/, it is impossible.
** J-4-1-1-2- We suppose that k} > 1 is not prime. Let w be a prime number so that w | k.
** J-4-1-1-2-1- We suppose that k] = w®, with s > 6. Then we have :

A" = wia (1.6.35)
B"C! = w* (1.6.36)

** J-4-1-1-2-1-1- We suppose that w = 2. If g, k) are not coprime , then 2 | 4, as 2 | b, it is the
contradiction with a, b coprime.

** J-4-1-1-2-1-2- We suppose w = 2 and a, k’1 are coprime, then 2 { a. From (1.6.36), we
deduce that B = C =2 and n+1 = s, and AZ" = 254, but A™ = 2! — 2" — A2m —
(28 —2m)2 = 22 - 22n _p(2HHn) = 221 1 22n _ D x5 = 25 g — 22 1 22" = 25(g 4 2). If| = n,
we obtain a = 0 then the contradiction. If [ # n, as A™ = Qs 00=—=n<l=2n<s,
then 22 (1 4 22=20 —ps+1=2n) — 2mpl g We call | = n+ny = 1422720 _ps+1-2n — om g

51



Chapter 1 A Complete Proof of Beal’s Conjecture

but the left member is odd and the right member is even, then the contradiction. Then the
case w = 2 is impossible.

** J-4-1-1-2-1-3- We suppose that k} = w® with w # 2:

** J-4-1-1-2-1-3-1- Suppose that a, k] are not coprime, then w | 4 = a = w'.ay and ¢ 1 a;.
Then, we have:

AP = 5t gy (1.6.37)
B"C! = &° (1.6.38)

From (1.6.38), we deduce that B" = w", C" = ws=n+land A" = — " >0=1>
n. We have also A?" = w'tta; = (0 —w")? = W + 0" -2 x W'. Asw # 2 = wis
odd, then A?" = w*tt.a; = (w! — w™")? is even, then 2 | ay = 2 | g, it is in contradiction
with a, b coprime, then this case is impossible.

** J-4-1-1-2-1-3-2- Suppose that a, k) are coprime, with :

AP = wia (1.6.39)
B"C! = ° (1.6.40)

From (1.6.40), we deduce that B" = w", C! = w!and s = n +1. As w # 2 = w is odd and
AP = w%.a = (w' — w")? is even, then 2 | a. It follows the contradiction with a,b coprime
and this case is impossible.

** J-4-1-1-2-2- We suppose that k’1 = w’.ky, with s > 6, w 1 kp. We have :

AP = w® ko.a
BnCl = ws.kz

** J-4-1-1-2-2-1- If ky is prime, from the last equation above, w = ky, it is in contradiction
with w 1 k. Then this case is impossible.

** J-4-1-1-2-2-2- We suppose that k'1 = w®.ky, with s > 6, w t kp and kj not a prime. Then,
we have:

AP = W ky.a
B"C! = W’ ky (1.6.41)

** J-4-1-1-2-2-2-1- We suppose that w,a are coprime, then w { a. As A% = wSkypa =
w| A= A= w.A withi > 1and w 1 Ay, then s = 2i.m. From (1.6.41), we have
w | (B"C') = w | B"orw | C.

** J-4-1-1-2-2-2-1-1- We suppose that w | B = w | B == B = w/.B; with j > 1and w { B;.
then :
Bizcl — CuZimfjnkz
-1f 2im —jn > 0, w | C' = w | C, no contradiction with C! = ™A' + w/"B! and the
conjecture (3.1.1) is verified.
- If 2im — jn = 0 = BIC! = ky, as w { kp => w { C!, then the contradiction with
w | (Cl =A™+ B").
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-1t 2im—jn < 0 = wj”_%mB?Cl = ky = w | kp, then the contradiction with w 1 k.

** J-4-1-1-2-2-2-1-2- We suppose that w | C!. Using the same method used above, we obtain
identical results.

** J-4-1-1-2-2-2-2- We suppose that 4, w are not coprime, then w | 4 = a = w'.a; and
w 1 ai. So we have :

A2 = Wt kym (1.6.42)
B"C! = w®ky (1.6.43)

As A" = wttkoa = w | A = A = w'A; withi > 1 and w | Ay, then s +t = 2im.
From (1.6.43), we have w | (B"C!) = w | B" or w | C".

** ]-4-1-1-2-2-2-2-1- We suppose that w | B* = w | B== B = w/B; with j > 1 and w { B;.
then:
B?Cl — wZimft—jnkz

-1f 2im —t — jn > 0, w | C' = w | C, no contradiction with C' = ™ A" + w/"B! and the
conjecture (3.1.1) is verified.

-If 2im —t — jn = 0 => B{C! = ky, As w } ko => w { C!, then the contradiction with
w | (Ct = A™ + B").

-lf2im—t—jn <0 = wj”“Lt_ZimB’fCl = ko = w | ky, then the contradiction with
w J[ kz.

** J-4-1-1-2-2-2-2-2- We suppose that w | C. Using the same method used above, we obtain
identical results.

**]-4-1-2-3b —4a # 4 and 4 | (3b —4a) = 3b — 4a = 4°Q with s > 1 and 4 1 Q). We obtain:

A?M = Ka (1.6.44)
B"Cl = #71K,0 (1.6.45)
** J-4-1-2-1- We suppose that ki = 2. From (1.6.44), we deduce that 2 | a. As 4 |

(3b —4a) = 2 | b, then the contradiction with 4,b coprime and this case is impossi-
ble.

** J-4-1-2-2- We suppose that kj = 3. From (1.6.44) we deduce that 3> | A*". From
(1.6.45), it follows that 3% | B" or 3% | C'. In the last two cases, we obtain 3> | p. But
4p = 3kib = 9b = 3 | b, then the contradiction with a,b coprime. Then this case is
impossible.

** J-4-1-2-3- We suppose that k) is prime > 5:

** J-4-1-2-3-1- Suppose that k| and a are coprime. The equation (1.6.44) gives (A™)? = k}.a,
that is impossible with k} { a. Then this case is impossible.

** J-4-1-2-3-2- Suppose that k| and a are not coprime. Let k| | 4 = a = k{*a; witha > 1
and k] 1 a;. The equation (1.6.44) is written as :

AP = Kha = Kt gy
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The last equation gives k; | A2" = k| | A = A = k. Ay, with K} { Ay. If 2im # (a + 1),
it is impossible. We suppose that 2i.m = a + 1, then k} | A™. We return to the equation
(1.6.45). If k] and Q) are coprime, it is impossible. We suppose that k} and Q) are not co-
prime, then k} | Q) and the exponent of k| in Q) is so the equation (1.6.45) is satisfying. We
deduce easily that k] | B". Then k7 | (p = A?" + B*" 4+ A™B"), but 4p = 3kib = k| | b,
then the contradiction with a, b coprime.

** J-4-1-2-4- We suppose that kj > 4 is not a prime.

** J-4-1-2-4-1- We suppose that k} = 4, we obtain then A?" = 44 and B"C! = 3b —4a =
3p’ — 4a. This case was studied in the paragraph 1.6.8, case ** I-2-.

** J-4-1-2-4-2- We suppose that k] > 4 is not a prime.

** J-4-1-2-4-2-1- We suppose that 4,k are coprime. From the expression A*" = k/.a, we
deduce that a = a? and k| = k”2. It gives :

A" = lll.k”l
Bncl — 45_1]{”%.0

Let w be a prime so that w | k”; and k"1 = w'k”, with w t k5. The last two equations
become :

A" = g0t k") (1.6.46)
B"C' = 471w k3.0 (1.6.47)

From (1.6.46), w | A" = w | A = A = w'.A; with w { A; and im = t. From (1.6.47), we
obtain w | B"C! = w | B" or w | C\.

**7.4-1-2-4-2-1-1-If w | B" = w | B = B = w/.B; with w { B;. From (1.6.46), we have
BiC! = ¥ in4s1 k2.0

**J-4-1-2-4-2-1-1-1- If w = 2 and 2 1 Q, we have BIC! = 22+25—jn=2k"2 ()
-If2t+2s —jn—2 < 0 then 2 ¢ C!, then the contradiction with C! = a)imAT + wj”Bil.
-If 2t +2s—jn —2 > 1= 2| C' = 2| C and the conjecture (3.1.1) is verified.

#* J-4-1-2-4-2-1-1-2- If w = 2 and if 2 | Q = Q = 2.0 because 4 1 Q, we have BIC! =

22t+25+17j.n72k"%01: | |
-If2t+2s —jn—3 < 0 then 2 ¢ C!, then the contradiction with C! = w'™ A" + w"BY.
-If 2t +2s —jn —3>1=2| C! = 2| C and the conjecture (3.1.1) is verified.

** J-4-1-2-4-2-1-1-3- If w # 2, we have BI'C! = w? =457 1 k"2 (:
-If 2t — jn <0 = w { C it is in contradiction with C! = w™ AT + w/"BY.

-If 2t — jn > 1 = w | C' = w | C and the conjecture (3.1.1) is verified.

**J-4-1-2-4-2-12-If w | C' = w | C = C = w".Cy, with w { C;. Using the same method
as in the case J-4-1-2-4-2-1-1 above, we obtain identical results.
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** J-4-1-2-4-2-2- We suppose that 4,k are not coprime. Let w be a prime so that w | a and
w | kj. We write:
a = w".a
kll = CL)‘u.k”l
with aq,k”; coprime. The expression of A?" becomes AZ" = w*T#.a1.k";. The term B"C!
becomes:
B"C! = 4571wt k"1.0 (1.6.48)

** J-4-1-2-4-2-2-1-If w =2 = 2 | a, but 2 | b, then the contradiction with a, b coprime, this
case is impossible.

** J-4-1-2-4-2-2-2- If w > 3, we have w | a. If w | b then the contradiction with 4, b coprime.
We suppose that w { b. From the expression of A%, we obtain w | A?" — w | A= A =
w'.Ay with w1t A1, i > 1and 2i.m = « + p. From (1.6.48), we deduce that w | B" or w | C.

** J-4-1-2-4-2-2-2-1- We suppose that w | B* = w | B= B = w/B; with w { By and j > 1.
Then, B’fCl = 45— 1h=1m k7 .0

w1

- If ])/(l —jn > 1, we have w | C' = w | C, there is no contradiction with C' = w™A}' +
a)]'”B{Z and the conjecture (3.1.1) is verified.

-If p —jn <0, then w 1 C! and it is a contradiction with C! = w™Al' + w/"B}. Then
this case is impossible.

*w | Q: we write Q = wP.O with > 1and w { Q. As3b—4a = 4°.Q = £.wP.0 =
3b = 4a + 4°.wP.Oy = dw*.a; + 4 .0P.0 = 3b = dw(w* Lag + 4 LwP L)) Ifw =3
and B = 1, we obtain b = 4(3*"la; + 4°~1();) and B?Cl = 45— 1gputl=jn g7 ().

-If y — jn+1>1, then 3 | C! and the conjecture (3.1.1) is verified.

-If y—jn+1<0, then 34 C' and it is the contradiction with C! = 3" A" 4 3i"BI.

Now, if B > 2 and & = im > 3, we obtain 3b = 4w?(w*2a; + 4 1wP=20Q). If w = 3 or
not, then w | b, but w | a, then the contradiction with a,b coprime.

**J-4-1-2-4-2-2-2-2- We suppose that w | C' = w | C = C = «""C; withw { C; and h > 1.
Then, B”Ci = g5~ 1yr—H k”1.0). Using the same method as above, we obtain identical re-
sults.

** J-4-2- We suppose that 4 | k}.

** J-4-2-1- k| = 4 = 4p = 3kjb = 12b = p = 3b = 3p/, this case has been studied (see
case I-2- paragraph 1.6.8).

J-4-2-2- k) > 4 with 4 | k| =k} = 4°k”; and s > 1, 41 k”1. Then, we obtain:

AZm — 4Sk”1ﬂ — 225ku1a
B"C! = 45~ k"1 (3b — 4a) = 2%2k"1(3b — 4a)

** J-4-2-2-1- We suppose that s = 1 and k| = 4k”; with k"1 > 1, s0 p = 3p’ and p’ = k"1D,
this is the case 1.6.3 already studied.
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** J-4-2-2-2- We suppose that s > 1, then k| = 4°k”y = 4p = 3 x 4°%k”1b and we obtain:

A2 = 45k 1a (1.6.49)
B"CH = 4571k (3b — 4a) (1.6.50)

** J-4-2-2-2-1- We suppose that 2 { (k"1.a) = 2t k"1 and 2 a. As (A™)? = (25)2.(k"1.a), we
call d? = k”1.a, then A" = 25d = 2 | A" —= 2| A= A =2'A; with2t Ay and i > 1,
then: 2 A = 25.d = s = im. From the equation (1.6.50), we have 2 | (B"C!) = 2 | B"
or2 | CL

** ]-4-2-2-2-1-1- We suppose that 2 | B* = 2 | B== B = 2/.B;, with j > 1 and 2 B;. The
equation (1.6.50) becomes:

BTCZ — 225—jn—2k111 (3b - 4[1) — 22im—jn—2kul (3b o 46!)

* We suppose that 2 { (3b — 4a):

-If 2im —jn —2 > 1, then 2 | C!, there is no contradiction with C! = ZimA’ln + Zf”Bf and
the conjecture (3.1.1) is verified.

-If 2im — jn — 2 < 0, then 2 ¢ C!, then the contradiction with C! = ZimAT + Zf”B?.

* We suppose that 2# | (3b —4a), u > 1:

-If 2im + p — jn —2 > 1, then 2 | C, no contradiction with C! = 2im Am 4 2/"Bl and the
conjecture (3.1.1) is verified.

-1f 2im +p — jn —2 < 0, then 2/ C/, then the contradiction with C! = 21" A 4 2/" B2,

** J.4-2-2-2-1-2- We suppose that 2 | C! = 2| C = C = 2".C;, with h > 1 and 2 { C;.
With the same method used above, we obtain identical results.

** J-4-2-2-2-2- We suppose that 2 | (k”71.a):
** J-4-2-2-2-2-1- We suppose that k”; and a are coprime:

** J-4-2-2-2-2-1-1- We suppose that 2 f a and 2 | k”y = k"1 = 2%".k”3 and a = a3, then the
equations (1.6.49-1.6.50) become:

AP = 452250 = A™ = 21 Ky (1.6.51)

B"C! = 457 1221k"3(3b — 4a) = 225F22k"3(3b — 4a) (1.6.52)

The equation (1.6.51) gives 2 | A" = 2 | A = A = 2/.A; with 2 Ay, i > 1 and
im = s + y. From the equation (1.6.52), we have 2 | (B"C!) =2 | B" or 2| C'.

** J-4-2-2-2-2-1-1-1- We suppose that 2 | B" = 2| B= B = 2/.By, 2 1By and j > 1, then
BIC! = 225124 =n=2k"2(3b — 4a):

* We suppose that 2 1 (3b — 4a): '

-If 2im +2u — jn —2 > 1 = 2| C, then there is no contradiction with C! = 2MAT +
2/n B} and the conjecture (3.1.1) is verified.

-If2im4+-2u—jn—2<0=2¢ C!, then the contradiction with C! = ZimA’lﬂ + 2j”B¥.

* We suppose that 2* | (3b —4a), « > 1 so that a4, b remain coprime:
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-1f 2im 4+ 2u +a — jn —2 > 1 = 2 | C!, then no contradiction with C! = ZimA’lﬂ + Zj”B{l
and the conjecture (3.1.1) is verified. ' '
-If 2im 4 2pu +a — jn —2 < 0 = 21 C, then the contradiction with C! = 2/ At 4 2i" Bl

** J-4-2-2-2-2-1-1-2- We suppose that 2 | C! =2 | C = C = 2".C;, with h > 1 and 2 C;.
With the same method used above, we obtain identical results.

** J-4-2-2-2-2-1-2- We suppose that 2 { k"1 and 2 | a => a = 2%.42 and k”; = k"3, then the
equations (1.6.49-1.6.50) become:

AP = 45 222k — A™ = 25T g1 k5. (1.6.53)

B"C! = 4" 'k"3(3b — 4a) = 2% %k"5(3b — 4a) (1.6.54)

The equation (1.6.53) gives 2 | A" = 2 | A = A = 20.A; with2 { A, i > 1 and
im = s + p. From the equation (1.6.54), we have 2 | (B"C') =2 | B" or 2 | C\.

** J-4-2-2-2-2-1-2-1- We suppose that 2 | B = 2 | B= B = 2/.B;, 2{ By and j > 1. Then
we obtain ByC! = 225-/"~2k"3(3b — 4a):

* We suppose that 21 (3b —4a) = 21 b:

-1f 2im — jn —2 > 1 = 2| C!, then no contradiction with C! = 2™ A 4 2/"B" and the
conjecture (3.1.1) is verified.

-If2im—jn—2<0=2¢ Cl, then the contradiction with C! = ZimA’lﬂ + 2]'”B’f.

* We suppose that 2% | (3b —4a), « > 1, in this case a, b are not coprime, then the con-
tradiction.

** ]-4-2-2-2-2-1-2-2- We suppose that 2 | C' = 2 | C = C = 2".Cy, with h > 1 and 21 C;.
With the same method used above, we obtain identical results.

** J-4-2-2-2-2-2- We suppose that k”; and a are not coprime 2 | a and 2 | k”1. Let a = 2.4

and k"1 = 2#k” and 2 { a1 and 2 { k”. From (1.6.49), we have y +t = 2A and a1.k", = w?.
The equations (1.6.49-1.6.50) become:

AP = &5k a = 225 20k 2y = 25T WP = A =25 w (1.6.55)

B"Cl = 457 12Vk",(3b — 4a) = 2% T#2k",(3b — 4a) (1.6.56)

From (1.6.55) we have 2 | A" =— 2| A = A = 2/A,i > 1 and 2 | A;. From(1.6.56),
25 + 1 —2 > 1, we deduce that 2 | (B"C!) = 2| B" or 2| C.

** J-4-2-2-2-2-2-1- We suppose that 2 | B" = 2 | B = B = 2/.B;,2{ By and j > 1. Then
we obtain By C! = 22+#=in=2k"2(3p — 4a):

* We suppose that 2 1 (3b — 4a):

-If2s+pu—jn—2>1= 2| Cl, then no contradiction with C! = 2imAm 4 2/" B and
the conjecture (3.1.1) is verified. ‘ .

-If2s+pu—jn—2 < 0= 24C/, then the contradiction with C! = 2" A" 4 2/" ",

* We suppose that 2% | (3b — 4a), for one value « > 1. As 2 | a, then 2* | (3b — 4a) =
2| (3b—4a) = 2| (3b) = 2| b, then the contradiction with a, b coprime.
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** 1.4-2-2-2-2-2-2- We suppose that 2 | C! = 2 | C = C = 2".C;, with h > 1 and 2 1 C;.
With the same method used above, we obtain identical results.

**J-4-3-2 | k% and 2 | (3b — 4a): then we obtain 2 | K} = k} = 2".k”; with t > 1 and 2 1 k"y,
2| (3 —4a) = 3b—4a =2"dwithpy >1and 2{d. We havealso2 | b. If 2 | g, itis a
contradition with a, b coprime.

We suppose, in the following, that 2 { a. The equations (1.6.49-1.6.50) become:

AP =2t k7 0 = (A™)? (1.6.57)
B"Cl = 2tk 2t = 22k d (1.6.58)
From (1.6.57), we deduce that the exponent ¢ is even, let t = 2. Then we call w? = k”1.4, it

gives A" =2 w =2 | A" = 2| A= A =2 .A; withi >1and 2{ A;. From (1.6.58),
we have 2A + 4 —2 > 1,then 2 | (B"C!) =2 | B" or 2 | C%:

** J-4-3-1- We suppose that 2 | B* => 2 | B => B = 2/B;, with j > 1 and 2 { B;. Then we
obtain BC! = 22A+n=in=2 k7, 4.
- 2A4+u—jn—2>1= 2| C = 2| C, there is no contradiction with C' =
2M A"+ 2/" B and the conjecture (3.1.1) is verified.
-If2s+t+u—jn—2<0=21C, then the contradiction with C! = 2" A + 2/" 1.

** J-4-3-2- We suppose that 2 | C! = 2 | C. With the same method used above, we obtain

identical results.
]

The Main Theorem is proved.

1.7 Examples and Conclusion

1.7.1 Numerical Examples
Example 1:

We consider the example : 6% + 3% = 3° with A™ = 63, B* = 3% and C! = 3°. With the
notations used in the paper, we obtain:

p=3"%x73, g=8x3", A=4x318(3"x42-73%) <0

3% x 73v/73 4x3%x+/3
= 0= ——"— "~ (1.7.1)
V3 73v/73
2m 4

As A% = %.coszg — coszg = 32}9 = 3 ;32 = % — a1 =3x2% b = 73; then we

obtain: /3

0 4+/3
cos— = ——, p=23°%h 1.7.2
3= o P (172)

We verity easily the equation (1.7.1) to calculate cost using (1.7.2). For this example, we can
use the two conditions from (1.4.9) as 3 | a,b | 4p and 3 | p. The cases 1.5.4 and 1.6.3 are
respectively used. For the case 1.5.4, it is the case B-2-2-1- that was used and the conjecture
(3.1.1) is verified. Concerning the case 1.6.3, it is the case G-2-2-1- that was used and the
conjecture (3.1.1) is verified.
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Example 2:

The second example is: 74 + 7% = 143. We take A" = 74,B" = 7% and C! = 143. We obtain
p=57x7=3x19x7%, g=8x70, A=27¢>—4p> =27 x4 x78(16 x 49 —193) =

4x7 4p L6
27X AXTBX6075 <0, p=19%x7"x V19, cosb = —— L As A =P 027 —

, ) 194/19 3 3

m

coszg = 34 = 7 _ 7 —a="7%2b=4x19, then cosg = 7 and we have the
3 4p 4x19 b 3 219

two principal conditions 3 | p and b | (4p). The calculation of cos® from the expression of

cosz is confirmed by the value below:

0 0 7 \° 7 4x7
cos0 = c0s3(0/3) = 4cos®~ — 3cos— = 4 (—) -3 = —
( ) 3 3 2v/19 24/19 194/19

Then, we obtain 3 | p = p = 3p/, b | (4p) with b # 2,4 then 12p' = kb = 3 x 7°.
It concerns the paragraph 1.6.9 of the second hypothesis. As k; = 3 x 7° = 3k} with
ki = 7% # 1. 1t is the case J-4-1-2-4-2-2- with the condition 4 | (3b — 4a). So we verify :

3bh—4a =3x4x19-4x7>=32=4| (3b — 4a)

with A?" = 78 = 76 x 72 = k{.a and K| not a prime, with a and k] not coprime with
w =71 Q(=2). We find that the conjecture (3.1.1) is verified with a common factor equal
to 7 (prime and divisor of k] = 7°).

Example 3:

The third example is: 19* + 38% = 57° with A” = 19%, B" = 38% and C' = 575. We obtain
p=19x577, g=8x27x199, A =274>—4p% =4 x198(27% x 16 x 19> - 577°) <

19° x 577+/577 4 x3*x19v/3 4 6 0
0, p= . , C0s6 = — kit \/_ As A?" = ZP 027 — o2 =
33 577+/577 3 3 3
2m 2
34 = 3x19 _4 — 0 =3x19, b:4><577,thencosg = Mandwehave’che
4p ~ 4x577 b 3 2577

first hypothesis 3 | a and b | (4p). Here again, the calculation of cosf from the expression

of cosz is confirmed by the value below:

3
4
cosf = cos3(0/3) = 1c03? _ 3005 — 4 19v3 )\ 3 19v3 _ 4x3'x19V3
3 2V/577 2\/577 577\/577

3
Then, we obtain 3 | 2 = a = 34’ =3 x 192, b | (4p) with b # 2,4 and b = 4p’ with p = kp’
soit p’ = 577 and k = 19°. This concerns the paragraph 1.5.8 of the first hypothesis. It is
the case E-2-2-2-2-1- with w = 19, a’,w not coprime and w = 19t (p' — a’) = (577 — 19?)
withs —jn =6 —1x 3 =3 > 1, and the conjecture (3.1.1) is verified.

1.7.2 Conclusion

The method used to give the proof of the conjecture of Beal has discussed many possibles
cases, using elementary number theory and the results of some theorems about Diophan-
tine equations. We have confirmed the method by three numerical examples. In conclusion,
we can announce the theorem:
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Theorem 1.7.1. Let A, B,C, m,n, and | be positive natural numbers with m,n,1 > 2. If :
A" 4+ B" = (1.7.3)

then A, B, and C have a common factor.
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Chapter 2

LIS The Riemann Hypothesis True? Yes It
Is

Abstract

In 1859, Georg Friedrich Bernhard Riemann had announced the following conjecture, called
Riemann Hypothesis : The nontrivial roots (zeros) s = o + it of the zeta function, defined by:

+001

I(s)=Y_ et for R(s) >1

n=1

1
have real part o = 5

1 . . . ,
We give a proof that o = 5 using an equivalent statement of the Riemann Hypothesis concern-
ing the Dirichlet 1 function.

Résumé

En 1859, Georg Friedrich Bernhard Riemann avait annoncé la conjecture suivante, dite
Hypothese de Riemann: Les zéros non triviaux s = o + it de la fonction zeta définie par:

400 1
I(s) =) 5, pour R(s) >1

n=1

. 1
ont comme parties réelles o = 5

On donne une démonstration que o = 5 en utilisant une proposition équivalente de I’'Hypothese de

Riemann.

'] feel that these aren’t the right techniques to solve the Riemann hypothesis itself, it’s
going to need some big idea from somewhere else.’
James Maynard (07/15/2024) [1]
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2.1 Introduction

In 1859, G.E.B. Riemann had announced the following conjecture [2]:

Conjecture 2.1.1. Let {(s) be the complex function of the complex variable s = ¢ + it
defined by the analytic continuation of the function:

+o0 1
Gu(s) =) — for R(s) =0 >1

n=1
over the whole complex plane, with the exception of s = 1. Then the nontrivial zeros

of {(s) = 0 are written as :

s—l—|—it
2

In this paper, our idea is to start from an equivalent statement of the Riemann Hypoth-
esis, namely the one concerning the Dirichlet 7 function. The latter is related to Riemann’s
¢ function where we do not need to manipulate any expression of {(s) in the critical band
0 < R(s) < 1. In our calculations, we will use the definition of the limit of real sequences.

1
We arrive to give the proof that o = 5

2.1.1 The function (.

We denote s = o + it the complex variable of C. For R(s) = o > 1, let {7 be the function
defined by :
paa |
Ti(s) =) — for R(s) =0 >1

n=1

We know that with the previous definition, the function {; is an analytical function of s.
Denote by ((s) the function obtained by the analytic continuation of {i(s) to the whole
complex plane, minus the point s = 1, then we recall the following theorem [3]:

63



Chapter 2 Is The Riemann Hypothesis True? Yes It Is

Theorem 2.1.2. The function {(s) satisfies the following :

1. {(s) has no zero for R(s) > 1;

2. the only pole of {(s) is at s = 1, it has residue 1 and is simple;

3. {(s) has trivial zeros at s = —2,—4,.. ;

4. the nontrivial zeros lie inside the region 0 < R(s) < 1 (called the critical strip) and are

symmetric about both the vertical line R(s) = 5 and the real axis S(s) = 0.

The vertical line R(s) = % is called the critical line.

The Riemann Hypothesis is formulated as:

Conjecture 2.1.3. (The Riemann Hypothesis,[3]) All nontrivial zeros of {(s) lie on the
critical line R(s) = %

In addition to the properties cited by the theorem 2.1.2 above, the function {(s) satisfies
the functional relation [3] called also the reflection functional equation for s € C\{0,1} :

{(1—s)= 21_S7t_scos%rl"(s)g(s) (2.1.1)
where I'(s) is the gamma function defined only for R(s) > 0, given by the formula :
I'(s) = / e 't7ldt, R(s) >0
0

So, instead of using the functional given by (2.1.1), we will use the one presented by G.H.
Hardy [4] namely Dirichlet’s eta function [3]:

+00 (_1 n—1

U _ 1 ats)gs)

n

=
@
N—
[
g

The function eta is convergent for all s € C with R(s) > 0 [3].

We have also the theorem (see page 16, [4]):

[ Theorem 2.1.4. Forall t € R, {(1+it) # 0.

So, we take the critical strip as the region defined as 0 < R(s) < 1.

2.1.2 A Equivalent statement to the Riemann Hypothesis.

Among the equivalent statements to the Riemann Hypothesis is that of the Dirichlet func-
tion eta which is stated as follows [3]:
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Equivalence 2.1.5. The Riemann Hypothesis is equivalent to the statement that all
zeros of the Dirichlet eta function :

n(s) = Jio =0 = (1-21"%¢(s), o>1 (2.1.2)
n=1 ne

that fall in the critical strip 0 < R(s) < 1 lie on the critical line R(s) = %

The series (2.1.2) is convergent, and represents (1 —2!7%)Z(s) for R(s) = o > 0 ([4],
pages 20-21). We can rewrite:

pa (_1)71—1 1—s
nis)=)Y_ — = (1-2"57(s), R(s)=0c>0 (2.1.3)
n=1

1(s) is a complex number, it can be written as :

7(s) = p.e® = p* = 5(s).11(s) (2.14)
and 77(s) =0 <= p = 0.

2.2 Preliminaries of the proof

Proof. . We denote s = o + it with 0 < ¢ < 1. We consider one zero of #(s) that falls in
critical strip and we write it as s = ¢ + it, then we obtain 0 < ¢ < 1 and 7(s) = 0 <
(1 —217%)(s) = 0. We verifies easily the two propositions:

s, is one zero of 1(s) that falls in the critical strip, is also one zero of {(s) (2.2.1)

Conversely, if s is a zero of {(s) in the critical strip, let (s) = 0 = 75(s) = (1 —-21"%)7(s) =
0, then s is also one zero of #(s) in the critical strip. We can write:

s, is one zero of ((s) that falls in the critical strip, is also one zero of 1(s) (2.2.2)

Let us write the function #:

© (_1)n—1 © n—1_,—sLogn - n—1,—(o+it)Logn
n(s) =) 5 — = L ()" e =) (1) e =
n=1 n=1 n=1
_ —io(_l)n—le—ULogn.e—itLogn
n=1
—+o00
= Y (—1)""le=7Lo8" (cos(tLogn) — isin(tLogn))
n=1

The function 7 is convergent for all s € C with R(s) > 0, but not absolutely convergent.
Let s be one zero of the function eta, then :

+0co ¢ 1\n—1
ns
n=1

65



Chapter 2 Is The Riemann Hypothesis True? Yes It Is

or:

ve' >0 dng, VN > ny,

We definite the sequence of functions ((Wn)ne]N*( )) as
—y =
k=1

with s = o + it and t # 0.

- (—1)"*1M _; 2(_1)k71M

1 k7 k=1 k7

1=

k

Let s be one zero of 7 that lies in the critical strip, then #(s) = 0, with 0 < ¢ < 1. It
follows that we can write i, cotn(s) = 0 = #(s). We obtain:

) 1 _.cos(tLogk

limy o0 Y (—1)F 1# —0
k=1 k

) L _.sin(tLogk

lity—s 4o Z(_l)k 1(k—ag) =0

k=1

Using the definition of the limit of a sequence, we can write:

Ve; > 03n,, YN > n,, |R(n(s)n)| < e1 = R(5(s)n)? < €12 (2.2.3)
Ver > 03n;, YN > n;, |S(11(s)n)| < €2 = S(17(s)n)? < €2 (2.2.4)
Then:
N N _1)kHK /
Z cos? cos”(tLogk) 20y (—1)*"*cos(tLogk).cos(tLogk’) <&
k2(7 kok'o

= kK =1;k<k

N sin?(tLogk) N (=1)"¥sin(tLogk).sin(tLogk')
0<ZT+2 Z kok'o <&

k=1 k' =1k<k

Taking € = €1 = €2 and N > max(n,, n;), we get by making the sum member to member of
the last two inequalities:

Noq N rcos(tLog(k/ Kk
0<Y ——+2 Y (-1k* ( Ug,(a ) < e (2.2.5)
= k kk'=1k<k' K7k

We can write the above equation as :
0< p% < 2¢? (2.2.6)

or p(s) =0.
2.3 Caseo =

We suppose that o = ~. Let’s start by recalling Hardy’s theorem (1914) ([3], page 24):

NI>—‘ I\.)lb—\

Theorem 2.3.1. There are infinitely many zeros of {(s) on the critical line.
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From the propositions (2.2.1-2.2.2), it follows the proposition :

Proposition 2.3.2. There are infinitely many zeros of #(s) on the critical line.

Let s; = I+ it; one of the zeros of the function 7(s) on the critical line, so #(s;) = 0.
The equation (2.2.5) is written for s;:

3 S cos(t;Log(k/K
0< 21+2 Z (_1)k+kCOS(] og( /K)) 2
e ViV
or: N ) |
Y. ! <2*-2 Y (—1)k+¥ cos(tjLog(k/k'))
=g Kk =Tk<k VkVi

N
1
If N — +oo, the series ) 7 is divergent and becomes infinite. then:
k_

w1 <02 5 w2 (1) cos(tjLog(k/k'))
Lpso? b VEVE
k=1 kK =T k<K

Hence, we obtain the following result:

N ,cos(tiLog(k/k"))
limN—s 4o (—1)ktk I — — (2.3.1)
k,k/:;,-k<k' ViV

if not, we will have a contradiction with the fact that :

N
1 1
limN_— 100 Z(—l)k_lﬁ = 0 <= 1(s) is convergent for s; = 5T it
k=1

24 Case 0 < R(s) <

N =

1
2.4.1 Case where there are zeros of 77(s) withs = o +itand 0 < 0 < >

Suppose that there exists s = o + it one zero of 7(s) or 77(s) = 0 = p?*(s) = 0 with
0<o< % = s lies inside the critical band. We write the equation (2.2.5):

N N /
1 ik cos(tLog(k/k")) »
0< Z k20 +2 Z (=D kok'o <2
k=1 kK =Tk <k

or:
N1 N rcos(tLog(k/k"))
Z f-2 Z (_1)k+k kok!o

k=1 kK =1k<k
N

But 20 < 1, it follows that limy_ 1« Z 2 — 400 and then, we obtain :
k=1

f (_1)k+k,cos(tLog(k/k’)) o
kok!o o
k k' =Tk <k’

(2.4.1)

67



Chapter 2 Is The Riemann Hypothesis True? Yes It Is

1
2.5 Case 5 < R(s) <1

Let s = o + it be the zero of 77(s) in 0 < R(s) < 3, object of the previous paragraph.
From the proposition (2.2.1), {(s) = 0. According to point 4 of theorem 2.1.2, the complex
number s’ =1— o +it =0¢' +it' witho' =1—0, ¥ =tand < o/ < 1 verifies {(s') =0,
so s’ is also a zero of the function {(s) in the band 1 < R(s) < 1, it follows from the
proposition (2.2.2) that 77(s’) = 0 = p(s’) = 0. By applying (2.2.5), we get:

N N ! /
1 ki cos(t'Log(k/K")) ’
O<ZW+2 Z ( 1) 1 Ko < 2e" =
k=1 kK =1;k<k’
1 Y1 N rcos(t'Log(k/k")) 1
—. < (—1)k+F o < —Z. , (2.5.1)
2 k=1 k2 k' ;c<k’ ko k' 2 k=1 k2o

1
As0 <o <l=2>20 =2(1-0) > 1, then the series Y} , 2 is convergent to a
positive constant not null C(¢”). As 1/k*> < 1/ k27" for all k > 0, then :

400 1 +o00 1
0<(2 = Z 7 < Z P = {1(207) = {(20')

From the equation (2.5.1), it follows that :

(—1) e e (2.5.2)

+Z°;° ek cos(t'Log(k/K)) _ C(o") _ §(20)

kK =1k<k

Caset =0

We suppose that t = 0 = t' = 0. We known the following proposition:

[ Proposition 2.5.1. For all s = o real with 0 < 0 < 1, 5(s) > 0 and {(s) <0

We deduce the contradiction with the hypothesis s’ = ¢’ is a zero of #(s) and:

The equation (2.5.2) is false for the case ' =t = 0. (2.5.3)

Caset' =t #0
We suppose that ' # 0. Let s’ = ¢’ +it' =1 — o + it a zero of y(s), we have:

+oo / ’ / /
- 1)k+k/cos(tlf;ig/</k ) _ _C(;T) _ _§(22‘7) > —oo (2.5.4)

kK =1k<k

the left member of the equation (2.5.4) above is finite and depends of ¢’ and ¢, but the right
member is a function only of ¢’ equal to —{(20”) /2.

We recall the following theorem (see page 140, [4]):
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Theorem 2.5.2.

0 1 T Y74 . 77 7 1
limr oo /1 (0" +it) PdT=720") (0" > 3) (2.5.5)

Let ty so that tp > 1. As the integral of the left member of the above equation is
convergent, the equation (2.5.5) can be written as:

. LT, . ”
lzmT_,Jroo?/t (07 +iT)[PdT = {(207)
0

and {(20”) is independent of any f( then in particular for ty = t'. As ¢” isany ¢” > 1/2,1
choose ¢” = ¢’ and ty = t, it follows that {(20’) does not depend of #' so that s’ = ¢’ + it’
is a root of 17. Hence, the contradiction with equation (2.5.2). Then the equation (2.5.4) is
false.

It follows that the equation (2.5.4) is false for the case ¢’ # 0. (2.5.6)

It follows that the equation (2.5.2) is false and 7(s") does not vanish for ¢’ €]1/2,1].

From (2.5.3-2.5.6), we conclude that the function #(s) has no zeros for all s’ = ¢’ + it/
with ¢’ €]1/2,1], it follows that the case of the section (2.4) above concerning the case

1
0 < R(s) < 5 is false too. Then, the function 7(s) has all its zeros on the critical line

1
v=3- From the equivalent statement (2.1.5), it follows that the Riemann hypothesis is
verified. O]

We therefore announce the important theorem as follows:

Theorem 2.5.3. The Riemann Hypothesis is true:
1
All nontrivial zeros of the function {(s) with s = o + it lie on the vertical line R(s) = ~.
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Chapter 3 I

Is The Conjecture ¢ < rad'%(abc) True?

Abstract
In this paper, we consider the abc conjecture, we will give the proof that the conjecture
¢ < rad'®3(abc) is true. It constitutes the key to resolve the abc conjecture.
Résumé:
Dans cet article, nous considérons la conjecture abc. Nous donnons la preuve de la con-

jecture ¢ < rad*%3(abc) qui constitue la clé pour résoudre la conjecture abc.

To Prof. A. Nitaj for his work on the abc conjecture

Contents
3.1 Introductionand Notations . . . . . . . ... ..., 71
3.2 The Proof of The c < rad'%3(abc)Conjecture . .. ... vvuuueenn. 72
321 Trivial cases: . . . . . o o oo 72
3.2.2  We suppose py, > rad®%3(c) and p, > rad®®3(a) ... ... ... 73

3.1 Introduction and Notations

Let a be a positive integer, a = []; a?‘i, a; prime integers and a; > 1 positive integers. We
call radical of a the integer [; a; noted by rad(a). Then a is written as:

a= Ha?‘i = md(a).]_—.[a?"*l (3.1.1)
1 1

We denote:
o =65 = a = parad(a) (3.1.2)
i

71



Chapter 3 Is The Conjecture ¢ < rad'%®(abc) True?

The abc conjecture was proposed independently in 1985 by David Masser of the University
of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes
the distribution of the prime factors of two integers with those of its sum. The definition
of the abc conjecture is given below:

Conjecture 3.1.1. (abc Conjecture): For each € > 0, there exists K(€) such that if a, b, c
positive integers relatively prime with c = a + b, then :

¢ < K(e).rad' ¢ (abc) (3.1.3)

where K is a constant depending only of €.

L
We know that numerically, 08¢ < 1.629912 [2]. It concerned the best example
Log(rad(abc))
given by E. Reyssat [2]:
2 +319.109 = 23° = ¢ < rad"**°'2(abc) (3.1.4)

A conjecture was proposed that ¢ < rad?(abc) [3]. In 2012, A. Nitaj [4] proposed the
following conjecture:

Conjecture 3.1.2. Let a, b, c be positive integers relatively prime with c = a + b, then:

¢ < rad"%(abc) (3.1.5)
abc < rad**?(abc) (3.1.6)

In this paper, we will give the proof of the conjecture given by (3.1.5) that constitutes
the key to obtain the proof of the abc conjecture using classical methods with the help of
some theorems from the field of the number theory.

3.2 The Proof of The ¢ < rad'®3(abc)Conjecture

Let a,b, ¢ be positive integers, relatively prime, with ¢ = a+b, b < a and R = rad(abc),
jl:]/

=11

c
j'=1

In the following, we will give the proof of the conjecture ¢ < rad'®3(abc).

]éjl,ﬁj/ > 1, ¢y > 2 prime integers.

Proof. :

3.2.1 Trivial cases:

- We suppose that ¢ < rad(abc), then we obtain:

¢ < rad(abc) < rad"®(abc) =

and the condition (3.1.5) is satisfied.

- We suppose that ¢ = rad (abc), then a, b, ¢ are not coprime, case to reject.
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In the following, we suppose that ¢ > rad(abc) and a, b and ¢ are not all prime numbers.

- We suppose i, < rad®%(a). We obtain :

c=a+b<2a<2rad"®(a) < rad“%(abc) = ¢ < rad'®3(abc) =

Then (3.1.5) is satisfied.

- We suppose i < rad®%3(c). We obtain :

¢ = perad(c) < rad*®3(c) < rad"®3(abc) =

and the condition (3.1.5) is satisfied.

3.2.2 We suppose p. > rad*®(c) and u, > rad®(a)
Case : rad*%(c) < uc < rad%(c) and rad®®3(a) < u, < rad"®3(a)
We can write:

e < rad®3(c) = ¢ < rad*®3(c)
— ac < rad*%(ac) = a® < ac < rad*®3(ac)

1o < rad"%(a) = a < rad*%3(a)

— a < rad™3Y (ac) = ¢ < 2a < 2rad*3(ac) < rad'®®(abc)

—|c=a+b< R

Case : rad"%3(c) < pc or rad'®3(a) < u,

I - We suppose that rad'3(c) < u. and rad'®3(a) < u, < rad?(a):

I-1- Case rad(a) < rad(c):
In this case a = pg.rad(a) < rad®(a) < rad'%(a)rad'¥(a) < rad'%(a).rad'¥(c) = c <

2a < 2radtB(a).rad¥ (c) < rad"®3(abc) = m.

I-2- Case rad(c) < rad(a) < radi¥(c): As a < rad"$(a).rad ¥ (a) < rad'®3(a).rad3(c)
= ¢ < 2a < 2rad"®3(a).rad'%3(c) < R — .

I-3- Case rad%(c) < rad(a):

I-3-1- We suppose rad%3(c) < u. < rad*?%(c), we obtain:

¢ < rad®?%(c) = ¢ < rad'%3(c).rad"%3(c) =
¢ < rad¥%(c).rad"¥ (a) < rad"%(c).rad"%(a).rad"(b) = R1"6> —

1-3-2- We suppose p > rad>?°(c) = ¢ > rad>?®(c).

I-3-2-1- We consider the case y, = rad*(a) = a = rad>(a) and ¢ = a + 1. Then, we obtain
that X = rad(a) is a solution in positive integers of the equation:

X*+1=c (3.2.1)
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Chapter 3 Is The Conjecture ¢ < rad'%®(abc) True?

I-3-2-1-1- We suppose that ¢ = rad"(c) with n > 4, we obtain the equation:
rad"(c) — rad®(a) =1 (3.2.2)

But the solutions of the equation (3.2.2) are [5] :(rad(c) = 3,n = 2,rad(a) = +2), it follows
the contradiction with n > 4 and the case ¢ = rad"(c),n > 4 is to reject.

I-3-2-1-2- In the following, we will study the cases y. = A.rad"(c) with rad(c) 1 A,n > 0.
The above equation (3.2.1) can be written as :

(X+1D(X2=X+1)=c (3.2.3)

Let 6 one divisor of ¢ so that :
X+1=9 (3.2.4)
XZ—X+1:§:m:(52—3X (3.2.5)

We recall that rad(a) > rad%(c).

I-3-2-1-2-1- We suppose 6 = l.rad(c). We have é = l.rad(c) < ¢ = pc.rad(c) =1 < pc. As
€ _ peradc) _pe _ o i 15— 2
5" Trad(e) T =m = 6"—3X = . = l.m = 1(6* — 3X). From m = 6 — 3X) and

X = rad(a), we obtain:
m = I>rad*(c) — 3rad(a) = 3rad(a) = *rad*(c) —m

A- Case 3lm = m = 3m/, m" > 1. As u. = ml = 3m’'l = 3|rad(c) and (rad(c),m’) not
coprime. We obtain:

rad(a) = lzrad(c).Md?)j —m’

It follows that a4, ¢ are not coprime, then the contradiction.

B-Casem =3 = . = 3l = ¢ = 3lrad(c) = 36 = 6(6*> —3X) = 6* = 3(1+ X) =
30 =6=1Irad(c) =3=c=30=9=a+1=0a=8=c=9< (2x3)'% ~18.55,
it is a trivial case and the conjecture is true.

1-3-2-1-2-2- We suppose 6 = l.rad?(c),I > 2. If n = 0 then . = A and from the equation
above (3.2.5):
¢ perad(c) Arad(c) A

5 Irad’(c) — Irad®(c) ~ lIrad(c)
It follows the contradiction with the hypothesis above rad(c) 1 A.

m = = rad(c)|A

1-3-2-1-2-3- We suppose 6 = Irad*(c),] > 2 and in the following n > 0. As m =

perad(c)  pe
Irad?(c) Irad(c)

e = m.rad(c), with m, rad(c) not coprime, then % =m = 6> — 3rad(a).

> a

, if Irad(c) t p. then the case is to reject. We suppose lrad(c)|p. =

C-Casem =1=c/6 = 6>—3rad(a) =1 = (6 —1)(6 +1) = 3rad(a) = rad(a)(é +
1) = § = 2 = Lrad?(c), then the contradiction.
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D - Case m = 3, we obtain 3(1 + rad(a)) = 6> = 36 = 6 = 3 = Irad*(c). Then the
contradiction.

E - Case m # 1,3, we obtain: 3rad(a) = I>rad*(c) — m = rad(a) and rad(c) are not co-
prime. Then the contradiction.

I-3-2-1-2-4- We suppose 6 = Lrad"(c),l > 2 with n > 3. ¢ = pcrad(c) = lrad"(c)(5* —
3rad(a)) and m = 6% — 3rad(a) = 6% — 3X.

F - As seen above (paragraphs C,D), the cases m = 1 and m = 3 give contradictions, it
follows the reject of these cases.

G - Case m # 1,3. Let g be a prime that divides m (g can be equal to m), it follows
ql(pe =Lm) = q=cy = cj6|(52 —> ¢j;|3rad(a). Then rad(a) and rad(c) are not coprime.
It follows the contradiction.

I-3-2-1-2-5- We suppose 6 = [y, ij , Bj > 1 with at least one jo € J; with:
Bj, >2, rad(c)td (3.2.6)
We can write:
0 =usrad(5), rad(c) =rorad(s), r>1, (r,us) =1 (3.2.7)
Then, we obtain:

¢ = ycrad(c) = perrad(8) = 6(6%* — 3X) = ug.rad () (6> — 3X) =
rpe = us(6% — 3X) (3.2.8)

- We suppose pi. = s = r = 6> —=3X = (pc.rad(8))> =3X. As 6 < 6> —3X = r > 6 =
rad(c) > r > (pc.rad(8) = A.rad"(c)rad(5)) = 1 > A.rad"~1(6), then the contradiction.

- We suppose . < ps. As rad(a) =6 —1 = psrad(é) — 1, we obtain:
rad(a) > perad(d) —1 >0 = rad(ac) > c.rad(é) —rad(c) >0
As ¢ = 1+ a and we consider the cases ¢ > rad(ac), then:

¢ > rad(ac) > c.rad(6) —rad(c) > 0= c > c.rad(6) — rad(c) > 0 =
rad(c)

1> rad(d) — -

>0, rad(d) > 2 = The contradiction (3.2.9)

- We suppose . > . In this case, from the equation (3.2.8) and as (r, i5) = 1, it follows
we can write:

He = p1-p2, i, pi2 > 1,
¢ = ycrad(c) = yy.pp.rad(8).r = 5.(6% — 3X),
We do a choice so that — yp = s, 1.y = 6% —3X = & = pp.rad(d).

** 1- We suppose (i1, i2) # 1, then J¢;; so that cj[p1 and cj,|po. But ps = po = CJZO\(S. From

3X = 6% —ru1 = ¢;y|3X = ¢j| X or ¢j, = 3.
-If ¢jy| (X = rad(a)), it follows the contradiction with (c,a) = 1.
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-If ¢j, = 3. We have ruy = 02 —3X = 6> —3(6—1) = 62 =36 +3—ruy; = 0. As
3|1 = w1 = 3%u4, 31 1y, k > 1, we obtain:

62 —-364+3(1-3"1ru}) =0 (3.2.10)

** 1-1- We consider the case k > 1 == 3 { (1 — 3*"1ru}). Let us recall the Eisenstein criterion

[6]:

Theorem 3.2.1. (Eisenstein Criterion) Let f = ag+ - - - + a, X" be a polynomial € Z[X].
We suppose that 3 p a prime number so that p { ay, pla;, (0 <i<n—1), and p? 1 ag, then
f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:
R(Z) = 7% -3Z +3(1—3"1ru)) (3.2.11)
then:
-311,-3|(=3),-3|3(1 — 3" 1ruy), and - 3% § 3(1 — 3 1rph).

It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with R() =
0.

** 1-2- We consider the case k = 1, then py = 3y and (y,3) = 1, we obtain:
6% —36+3(1—ruy) =0 (3.2.12)

** 1-2-1- We consider that 3 { (1 —r.u}), we apply the same Eisenstein criterion to the
polynomial R'(Z) given by:

R'(Z) =Z*—3Z+3(1—r})
and we find a contradiction with R'($) = 0.
** 1-2-2- We consider that:
3|(1—rpy) = ruy —1=3"h,i>1,3th,h € N* (3.2.13)
d is an integer root of the polynomial R'(Z):
R(Z)=27?-3Z4+3(1—ru}) =0 (3.2.14)

The discriminant of R'(Z) is: ,
A=324+3% " x4pn

As the root § is an integer, it follows that A = 2 > 0 with t a positive integer. We obtain:

A=3%1+3""1 x4h) =+ (3.2.15)
— 143" ' x4h=¢*>>1,9c N* (3.2.16)

We can write the equation (3.2.12) as :

rad(9)

5(6 —3) =3t = 3% 3 (#hrad(6) —1) =3 h = (3.2.17)
ygm‘;((s). (#yrad(8) —1) = h (3.2.18)
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We obtain i = 2 and g2 = 1+ 12k = 1 + 4p)rad(5)(u|rad(5) — 1). Then, q satisfies :

7> — 1 =12h = 4yrad(8) (uyrad(6) — 1) = (3.2.19)
(q%.( Uo3p= (pirad(8) —1).ujrad(5) = (3.2.20)
q—1=2ujrad(5) —2 (3.2.21)
q+1=2ujrad(s) (3.2.22)

It follows that (g = x,1 = y) is a solution of the Diophantine equation:
x>—y*=N (3.2.23)

with N = 4pjrad(5)(pirad(6) —1) = 12h > 0. Let Q(N) be the number of the solutions
of (3.2.23) and 7(N) is the number of suitable factorization of N, then we announce the
following result concerning the solutions of the Diophantine equation (3.2.23) (see theorem
27.3 in [7]):

-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod 4), then Q(N) = [t(N)/2].

-If N =0(mod 4), then Q(N) = [t(N/4)/2].

[x] is the integral part of x for which [x] < x < [x] + 1.

As N = 4pjrad(6)(pirad(6) —1) = N = 0(mod 4) = Q(N) = [t(N/4)/2]. As (4,1)
is a couple of solutions of the Diophantine equation (3.2.23), then 3 d,d’ positive integers
with d > d’ and N = d.d" so that :

d+d =2q (3.2.24)
d—d =21=2 (3.2.25)

#7.2.2-1 As N > 1, we take d = N and 4’ = 1. It follows:
N+1=2g - .
= N = 3 = then the contradiction with N = 0(mod 4).
N-1=2

** 1-2-2-2 Now, we consider the case d = 2y rad(6)(pujrad(5) — 1) and d’ = 2. It follows:

= 2uyrad(6)(pyrad(8) —1) =g +1

2urad(8) (uirad(6) — 1) +2 =2q
2uirad(6)(pyrad(6) —1) —2=2

As g+ 1 = 2pujrad (), we obtain yjrad(5) = 2, then the contradiction with 3|0.

** 1-2-2-3 Now, we consider the case d = pjrad(5)(pirad(6) —1) and d’ = 4. It follows:
pirad(6)(pirad(6) —1) +4 =2q
pirad(6)(pyrad(8) —1) —4 =2 = pirad(6)(pyjrad(6) —1) =6

As phrad(8) > 0 = pjrad(6) =3 =y} =1, rad(5) =3 and g = 5. From g> = 1+ 12k,

we obtain h = 2. Using the relation (3.2.13) ru} —1 = 3'h as p} = 1,i = 2,h = 2, it gives
r—1=9h = 18. As ¢ is the positive root of the equation (3.2.12):

72 -372431-1r)=0=6=9=3°
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Butd =14 X =1+ rad(a) = rad(a) = 8 = 23, then the contradiction.

** 1-2-2-4 Now, let Cjy be a prime integer so that c]-0|rad(5, we consider the case d =

, rad(d)
1

(u1rad(d) —1) and d’ = 4cj,. It follows:

Jo
rad (6
| ( )(yﬁrad(é) —1) 4 4cj, = 2q rad(8)
= U] (pyrad(8) —1) = 2(1+ 2c;,) =

Jo
1
,1rad(5) (yrad(8) — 1) — 4c;, = 2 %o

Jo
Then the contradiction as the left member is greater than the right member 2(1 + 2c;, ).

** 1-2-2-5 Now, we consider the case d = 4y rad(d) and d’ = (pjrad(s) — 1). It follows:

4y irad(6 trad(6) —1) =2
{ prad(0) + (prrad(6) = 1) = 2q — 3jrad(6) = 1 = Then the contradiction.

4pirad(0) — (pyrad(6) — 1) =2

** 1-2-2-6 Now, we consider the case d = 2y rad(d) and d’ = 2(p/rad(6) —1). It follows:

2urad(6) + 2(uyrad(8) — 1) = 2q = 2prad(6) —1 =4
2uirad(6) — 2(pjrad(6) —1) =2 =2=2

It follows that this case presents no contradictions a priori.

= .
** 1-2-2-7 yyrad(d) and pjrad(5) — 1 are coprime, let pjrad(d) —1 = H/\]-%, we consider the
=1
trad(6) —1
case d = 2Aypyrad(d) and d' = 2%. It follows:
( frad(6) — 1
2Ajpyrad(6) + 2% =2g

]

/
1
2034} rad(8) — 2%
\ j'

=2

** 1-2-2-7-1 We suppose that vy = 1. We consider the case d = 2Aypjrad(5) and d' =
2;4’1md(5) -1

]'/

. It follows:

( trad(8) — 1
2/\j/y’1rad(5) + 2% =2q
]/
= dAppyrad(0) = 2(q+1) = 2Appyrad(d) = g +1

trad(6) — 1
2Ajpyrad(d) —2%

N ]

=2

But from the equation (3.2.22), g + 1 = 2u{rad(¢), then Ay = 1, it follows the contradiction.
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/

** 1-2-2-7-2 We suppose that 7y > 2. We consider the case d = ZA;j/_rj/yﬁrad(é) and
J_pphrad(9) 1
r,
]
)\«j/

. It follows:

( i /-/ ! d o) —1
2/\;] L pyrad(6) + 2% =2q
A

J 'Y]‘/*r/-/
— 4A, "uirad(6) =2(qg+1)

i /-/ ! d o) —1
2/\;1 g whrad () — zw

/ =2
T
/\].,

Yyl
— ZAj,’ Tujrad(8) =g +1

As above, it follows the contradiction. It is trivial that the other cases for more factors
Y 1" ..

H A i give also contradictions.

]'/l

** 1-2-2-8 Now, we consider the case d = 4(yjrad(5) —1) and d’ = pjrad(5), we haved > d'.
It follows:

{ 4(pyrad(6) — 1) + pirad(d) = 2q = 5ujrad(s) = 2(q+2) N { Then the contradiction as

4(pyrad(6) — 1) — pirad(d) =2 = pjrad(s) =2 3|9.
trad (6
** 1-2-2-9 Now, we consider the case d = 4u(pjrad(é) —1) and d’ = %(), where u > 1
is an integer divisor of pjrad(5). We have d > d’ and:
trad(é
4u(pirad(6) — 1) + H=20 ©) _y

= 2u(pjrad(8) — 1) = pirad(6)

!/
4u(pjrad(s) — 1) — %d(é) =2

Then the contradiction as p)rad(é) and (ujrad(5) — 1) are coprime.
In conclusion, we have found only one case (** 1-2-2-6 above) where there is no contra-

dictions a priori. As T(N) is large and also [T(N/4)/2], it follows the contradiction with
Q(N) <1 and the hypothesis (p1, p2) # 1 is false.

** 2- We suppose that (u1, pu2) = 1.

From the equation ry; = 6> — 3X and the condition rad(a) = X > rad"%/1%(¢c) <=
5 —1 =X > rad"¥(c), we obtain the following inequality:
§—1> (rrad(6)) = —3(6 — 1) < —3r.rad(6).(r.rad(s))* =
rup = 6% —3(6 —1) < (r.rad(6))? — 3r.rad(6).(r.rad(5))%? =
u1 < r.orad*(8) — 3.rad(6).(r.rad ()" =

1y < r.rad®(5) <1 — W) (3.2.26)
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As a = rad®(a) < c, we can write:

rad3(a) < pqpprad(c) < yz.rad(é).radz(c) <1 - W)

but (r,rad(6)) = 1, r.rad(8) > 6 = (r.rad(6))*8 > (698! ~ 4.26) and § = uo.rad(9), it
follows:

rad®(a) < pypprad(c) < pp.rad(8).rad*(c) = rad®(a) < 6.rad*(c) < 1.6rad(a).rad?(c)

As rad(a) > (rad'®?/137(c) = rad"1%(c)) = rad"(c) < rad(a) < 1.27rad(c), then we
obtain:

rad'1?(c) < 1.27rad(c) = rad(c) < 3.5 = rad(c) < 3, but rad(c) = r.rad(8) > 6

Then the contradiction.
It follows that the case u. > rad®>?%(c) = ¢ > rad®>?%(c) and a = rad®(a) is impossible.

I-3-2-2- We consider the case u, = rad*(a) = a = rad®(a) and ¢ = a + b. Then, we obtain
that X = rad(a) is a solution in positive integers of the equation:

X+1=c¢ (3.2.27)
withc=c—b+1=a+1= (¢,a) = 1. We obtain the same result as of the case I-3-2-1-

studied above considering rad(a) > radi$ (€).

I-3-2-3- We suppose y. > rad>?(c) = ¢ > rad*?%(c) and c large and u, < rad’(a), we
consider ¢ = a +b,b > 1. Then ¢ = rad>(c) + h,h > rad>(c), h a positive integer and we can
write a + 1 = rad®(a), I > 0. Then we obtain :

rad®(c) +h = rad*(a) — 1+ b= rad®(a) —rad*(c) =h+1-b>0 (3.2.28)
as rad(a) > radi$ (c). We obtain the equation:
rad®(a) —rad®(c) =h+1—-b=m >0 (3.2.29)
Let X = rad(a) — rad(c), then X is an integer root of the polynomial H(X) defined as:
H(X) = X3 +3rad(ac)X —m =0 (3.2.30)

To resolve the above equation, we denote X = u + v, It follows that us, o3

the polynomial G(t) given by:

are the roots of

G(t) = t2 —mt — rad®(ac) =0 (3.2.31)
The discriminant of G(t) is A = m? + 4rad®(ac) = &>, « > 0. As m = rad®(a) — rad>(c) >
0, we obtain that « = rad®(a) + rad®(c) > 0, then from the expression of the discriminant
A, it follows that the couple (« = x, m = y) is a solution of the Diophantine equation:

-y =N (3.2.32)

with N = 4rad®(ac) = 4rad®(a).rad®(c) > 0. Here, we will use the same method that is
given in the above sub-paragraph ** 1-2-2- of the paragraph I-3-2-1-2-5-. We have the two
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terms rad®(a) and rad>(c) coprime. As («,m) is a couple of solutions of the Diophantine
equation (3.2.32) and a > m, then 3 d,d’ positive integers with d > d’ and N = d.d’ so that

d+d =2 (3.2.33)
d—d =2m (3.2.34)

I-3-2-3-1- Let us consider the case d = 2rad®(a), d’ = 2rad®(c). It follows:
2rad®(a) + 2rad®(c) = 2a = a = rad®(a) + rad®(c)
2rad>(a) — 2rad®(c) = 2m = m = rad®(a) — rad®(c)

It follows that this case presents a priori no contradictions.

1-3-2-3-2- Now, we consider for example, the case d = 4rad®(a) and d’' = rad>(c) = d > d'.
We rewrite the equations (3.2.33-3.2.34):

4rad®(a) + rad®(c) = 2(rad>(a) + rad®(c)) = 2rad®(a) = rad®(c))
4rad®(a) — rad®(c) = 2(rad®(a) — rad®(c)) = 2rad®(a) = —rad®(c))

Then the contradiction.

I-3-2-3-3- We consider the case d = 4rad®(c)rad>(a) and d' = 1 = d > d’. We rewrite the
equations (3.2.33-3.2.34):

4rad>(c)rad®(a) + 1 = 2(rad®(c) + rad®(a)) =
2(2rad®(c)rad®(a) — rad®(c) — rad®(a)) = —1 = a contradiction
4rad®(c)rad®(a) — 1 = 2(rad®(c) — rad®(a))

Then the contradiction.

I-3-2-3-4- Let c; be the first factor of rad(c). We consider the case d = 4cjrad®(a) and

d3
=" () = d > d’. We rewrite the equation (3.2.33):

€1
dcyrad®(a) + @ = 2(rad>(a) + rad®(c)) =
2rad’(a)(2c1 — 1) = rad:(C) (2¢1 — 1) = 2rad®(a) = radZ(C)-‘ra[Z(C)
! 1

c1 = 2 or not, there is a contradiction with a, c coprime.

The other cases of the expressions of d and d’ not coprime so that N = d.d’ give also
contradictions.

Let Q(N) be the number of the solutions of (3.2.32), as N = 0(mod 4), then Q(N) =
[T(N/4)/2]. From the study of the cases above, we obtain that Q(N) < lis < [(T(N)/4)/2].

It follows the contradiction.

Then the cases u, < rad*(a) and ¢ > rad>2%(c) are impossible.
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I1- We suppose that rad'%3(c) < u. < rad®(c) and p, > rad>%3(a):

I1-1- Case rad(c) < rad(a) : Asc < rad®(c) = rad"%3(c).rad"¥ (c) = ¢ < rad"%3(c).rad"¥ (a) <

rad'®3(ac) < rad'%®(abc) = .

I1-2- Case rad(a) < rad(c) < rad%(a):
As ¢ < rad®(c) < rad"®3(c).rad'¥(c) = ¢ < rad'®3(c).rad"®3(a) < rad'®3(abc) =

cere]
I1-3- Case rad1s/ (a) < rad(c):

I1-3-1- We suppose rad'®(a) < u, < rad**®(a) = a < rad"S(a).rad'%(a) = a <
rad'®3(a).rad¥ (c) = ¢ = a+b < 2a < 2rad"%3(a).rad"S(c) < radS(abc) = c <

R — [ <19

I1-3-2- We suppose y, > rad**(a) = a > rad®>*(a) and . < rad?(c). Using the same
method as it was explicated in the paragraphs I-3-2- (permuting a, c see in Appendix II’-3-
2-), we arrive at a contradiction. It follows that the cases . < rad?(c) and p, > rad*2%(a)
are impossible.

Case 1, > rad'®3(a) and p. > rad'%3(c):

Taking into account the cases studied above, it remains to see the following two cases:
- e > rad?(c) and p, > rad'%3(a),
- 1y > rad®(a) and p. > rad%(c).

III- We suppose y. > rad*(c) and p, > rad'%3(a) = ¢ > rad®(c) and a > rad*%(a). We
can write ¢ = rad>(c) + h and a = rad®(a) + [ with h a positive integer and | € Z.

II1-1- We suppose rad(c) < rad(a). We obtain the equation:
rad>(a) —rad®(c) =h—1—b=m >0 (3.2.35)
Let X = rad(a) — rad(c), from the above equation, X is a real root of the polynomial:
H(X) = X® +3rad(ac)X —m =0 (3.2.36)

As above, to resolve (3.2.36), we denote X = u + v, It follows that 13,73 are the roots of the
polynomial G(t) given by :

G(t) = > — mt — rad>(ac) = 0 (3.2.37)
The discriminant of G(t) is:
A =m?+4rad®(ac) = a®, «>0 (3.2.38)

As m = rad®(a) — rad®(c) > 0, we obtain that & = rad®(a) + rad®(c) > 0, then from the
equation (3.2.38), it follows that (¢ = x,m = y) is a solution of the Diophantine equation:

X —y*=N (3.2.39)
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with N = 4rad®(ac) > 0. Let Q(N) be the number of the solutions of (3.2.39) and T(N) is
the number of suitable factorization of N, and using the same method as in the paragraph
I-3-2-3- above, we obtain a contradiction.

II1-2- We suppose rad(a) < rad(c). We obtain the equation:
rad>(c) — rad®(a) =b+1—h=m >0 (3.2.40)

Let X be the variable X = rad(c) — rad(a), we use the similar calculations as in the para-
graph above 1-3-2-3- permuting c, 4, we find a contradiction.

It follows that the case y. > rad?(c) and p, > rad'®3(a) is impossible.

IV - We suppose u, > rad®(a) and p, > rad'%3(c), we obtain a > rad®(a) and ¢ > rad*®3(c).
We can write a = rad®(a) + h and ¢ = rad®(c) + | with & a positive integer and | € Z.

The calculations are similar to those in the cases of the paragraph III. We obtain a contra-
diction.

It follows that the case u. > rad®3(c) and u, > rad?(a) is impossible.

All possible cases are discussed. O

We can state the following important theorem:

Theorem 3.2.2. Let a,b,c positive integers relatively prime with ¢ = a+ b, then ¢ <
rad"%3 (abc).

From the theorem above, we can announce also:

Corollary 3.2.2.1. Let a, b, c positive integers relatively prime with ¢ = a 4 b, then the
conjecture ¢ < rad?(abc) is true.

Appendix
II’-3-2- We suppose 1, > rad>?%(a) = a > rad>?%(a).

II-3-2-1- We consider the case y. = rad*(c) = ¢ = rad®(c) and ¢ = a + 1. Then, we obtain
that Y = rad(c) is a solution in positive integers of the equation:

Y’ —1=a (3.2.41)
IT’-3-2-1-1- We suppose that a = rad" (a) with n > 4, we obtain the equation:
rad®(c) — rad"(a) = 1 (3.2.42)

But the solutions of the Catalan equation [5] x¥ — ¥ = 1 where the unknowns x,y, p and ¢
take integer values, all > 2, has only one solution (x, vy, p,q) = (3,2,2,3), but the solution of
the equation (3.2.42) are (rad(c) = 3,rad(a) = 2,3 # 2,n > 4), it follows the contradiction
with n > 4 and the case a = rad"(a),n > 4 is to reject.
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II’-3-2-1-2- In the following, we will study the cases y, = A.rad"(a) with rad(a) 1 A,n > 0.
The above equation (3.2.41) can be written as :

Y-1D(Y?*+Y+1)=a (3.2.43)

Let ¢ one divisor of a so that :
Y-1=9¢ (3.2.44)
Y2+Y+1:§:m:52+3y (3.2.45)

We recall that rad(c) > rad%(a).

II’-3-2-1-2-1- We suppose § = l.rad(a). We have § = l.rad(a) < a = pgrad(a) = 1 < y,.
As ¢ is a divisor of 4, then [ is a divisor of yu,, 1 _ M _ Ha _ m = 6% + 3Y, then
0  Lrad(a) !

o = L.m. From p, = (6% 4+ 3Y), we obtain:
m = 1>rad?(a) + 3rad(c) = 3rad(c) = m — *rad?(a)

A- Case 3|m = m = 3m’', m" > 1. As u, = ml = 3m’l = 3|rad(a) and (rad(a),m’) not
coprime. We obtain:
rad(a)
3
It follows that 4, ¢ are not coprime, then the contradiction.

rad(c) = m' — *rad(a).

B’ -Case m =3 = yu, = 3l = a = 3lrad(a) = 35 = §(82 +3Y) = 6 =3(1-Y) =
—36 < 0, then the contradiction.

II’-3-2-1-2-2- We suppose § = l.rad?(a),] > 2. If n = 0 then u, = A and from the equation
above (3.2.45):

et porad(a) Arad(a) A
6 Ilrad%(a)  Irad*(a)  lrad(a)

= rad(a)|A

It follows the contradiction with the hypothesis above rad(a) t A.

I1-3-2-1-2-3- We suppose & = Irad?(a),] > 2 and in the following n > 0. As m =

Ua.rad(a) o . i .
= h, .
radZ(a) Trad(a)’ if Irad(a) { u, then the case is to reject. We suppose lrad(a)|p, =

to = m.lrad(a), with m, rad(a) not coprime, then g = m = 62 + 3rad(c).

C' -Casem =1=a/5 = 6>+ 3rad(c) = 1, then the contradiction.

> Q

D’ - Case m = 3, we obtain 3(1 — rad(c)) = 6> = 6% < 0. Then the contradiction.

E’ - Case m # 1,3, we obtain: 3rad(c) = m — [>rad*(a) = rad(a) and rad(c) are not co-
prime. Then the contradiction.

II’-3-2-1-2-4- We suppose & = lrad"(a),l > 2 with n > 3. From a = pyrad(a) =
Irad" (a)(6? + 3rad(c)), we denote m = §2 + 3rad(c) = 6% + 3Y.
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F’ - As seen above (paragraphs C’,D’), the cases m = 1 and m = 3 give contradictions, it
follows the reject of these cases.

G’ - Case m # 1,3. Let q be a prime that divides m (g can be equal to m), it follows
e = q = ay = aj6|(52 —> ay[3rad(c). Then rad(a) and rad(c) are not coprime. It
follows the contradiction.

II-3-2-1-2-5- We suppose ¢ = [];¢j, afi , Bj = 1 with at least one jy € J; with:
Bj, =2, rad(a)to (3.2.46)
We can write:
0 =usrad(s), rad(a)=rrad(d), r>1, (r,rad(d))=1= (r,us) =1 (3.2.47)
Then, we obtain:

a = pgrad(a) = pg.rrad(8) = 5(6% + 3Y) = pus.rad(5) (6> +3Y) =
r.pa = pus(6% +3Y) (3.2.48)

- We suppose pg = pts = 1 = 6> +3Y = (yg.rad(6))> +3Y. As 8§ < 2 +3Y = r > 6 =
rad(a) > r > (pg.rad(8) = A.rad"(a)rad(5)) = 1 > A.rad"~1(5), then the contradiction.

- We suppose pg < ps. As rad(c) = pusrad(d) + 1, we obtain:
rad(c) > pg.rad(6) +1 >0 = rad(ac) > a.rad(6) + rad(a) > 0
As ¢ = 1+ a and we consider the cases ¢ > rad(ac), then:
¢ > rad(ac) > arad(8) +rad(a) >0 = a+1> a.rad(é) 4+ rad(a) > 0 =

a>arad(d) +rad(d) = 1> rad(d) + miﬂ >0, rad(d) > 2 = The contradiction

- We suppose y; > pgs. In this case, from the equation (3.2.8) and as (7, jt5) = 1, it follows
we can write:

Mo =12, p 2 > 1 (3.2.49)
a = ygrad(a) = py.pp.r.rad(8) = 6.(6* 4 3Y) (3.2.50)
sothat 7.y =62 +3Y, o= s = 0= pp.rad(d) (3.2.51)

** 1- We suppose (u1,42) # 1, then Jaj, so that a]-0|;41 and ajo\yz. But us = pp = a]ZO|(5.
From 3Y = ryy — 62 = a;|3Y = a;,|Y or a;, = 3.

-If aj |(Y = rad(c)), it follows the contradiction with (c,a) = 1.

-If aj; = 3. We have rjy = 6> +3Y = 62 +3(6+1) = 62 +36+3—rpu; = 0. As
3|lp1 = w1 = 344,31 1y, k > 1, we obtain:

2 +3564+3(1-3"1rul) =0 (3.2.52)

** 1-1- We consider the case k > 1 == 3 { (1 —3*"1ru}). Let us recall the Eisenstein criterion

[6]
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Theorem 3.2.3. (Eisenstein Criterion) Let f = ag + - - - + a, X" be a polynomial € Z[X].
We suppose that 3 p a prime number so that p { ay, pla;, (0 <i<n—1), and p*{ ao, then
f is irreducible in Q.

We apply Eisenstein criterion to the polynomial R(Z) given by:
R(Z) = 7> 432 +3(1 -3 1ru)) (3.2.53)
then:
-311,-3[(+3),- 313(1 — 3* 1ru}), and - 3% 1 3(1 — 35 1ru}).

It follows that the polynomial R(Z) is irreducible in Q, then, the contradiction with R(¢) =
0.

** 1-2- We consider the case k = 1, then p; = 3y and (3}, 3) = 1, we obtain:
6 +354+3(1—ruy) =0 (3.2.54)

** 1-2-1- We consider that 3 (1 — r.u}), we apply the same Eisenstein criterion to the
polynomial R'(Z) given by:

R'(Z) = Z*+3Z +3(1 —r})
and we find a contradiction with R’(8) = 0.
** 1-2-2- We consider that:
3|(1 —rpy) = ruy —1=3"h,i>1,3th,h € N* (3.2.55)
d is an integer root of the polynomial R'(Z):
R(Z)=Z7*+3Z+3(1—ru}) =0 (3.2.56)

The discriminant of R'(Z) is: '
A=3"+3""x4h

As the root § is an integer, it follows that A = 2 > 0 with t a positive integer. We obtain:

A=32(1+3"1x4h) =+ (3.2.57)
— 1431 x4h=¢*>>1,9 € N* (3.2.58)

As 5 = pp and 3| = pp = 3ptb, then we can write the equation (3.2.54) as :

5(6+3) =3"h = 3%@. (uhrad(8) +1) =3 h = (3.2.59)
it mdg(‘s). (#hyrad(5) +1) = h (3.2.60)

We obtain i = 2 and ¢?> = 1 + 12k = 1 + 4pbrad(8) (phrad(5) + 1). Then, g satisfies :

q* — 1 =12h = 4brad(8) (uhrad(6) + 1) = (3.2.61)
U0 ) = 81 = iyrad(6) (yrad (6) +1). = (32:62)
q+1=2ubrad(5) +2 (3.2.63)

)
q—1=2pbrad(J) (3.2.64)
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It follows that (g = x,1 = y) is a solution of the Diophantine equation:
-y =N (3.2.65)

with N = 4ubrad(6)(uhrad(6) + 1) = 12h > 0. Let Q(N) be the number of the solutions
of (3.2.65) and 7(N) is the number of suitable factorization of N, then we announce the
following result concerning the solutions of the Diophantine equation (3.2.65) (see theorem
27.3 in [7]):

-If N =2(mod 4), then Q(N) = 0.

-If N=1or N =3(mod4), then Q(N) = [t(N)/2].

-If N =0(mod 4), then Q(N) = [t(N/4)/2].

[x] is the integral part of x for which [x] < x < [x] + 1.

As N = 4pubrad(6)(phrad(6) +1) = N = 0(mod 4) = Q(N) = [t(N/4)/2]. As (q,1)
is a couple of solutions of the Diophantine equation (3.2.65), then 3 d,d’ positive integers
with d > d" and N = d.d" so that :

d+d =2q (3.2.66)
d—d =21=2 (3.2.67)

#7.2.2-1 As N > 1, we take d = N and 4’ = 1. It follows:

—> N = 3 = then the contradiction with N = 0(mod 4).

N+1=2g
N-1=2

** 1-2-2-2 Now, we consider the case d = 2p4rad(6) (phrad(5) + 1) and d' = 2. It follows:

2ubrad(6) (uhrad(6) +1) +2 =2
Harad(9)(rad(9) +1) + (RN uhrad(8) (phrad(8) +1) =g —1
2ubrad(6) (phrad(8) +1) —2 =2
As g — 1 = 2ubrad(5), we obtain pbrad(5) = 1, then the contradiction.

** 1-2-2-3 Now, we consider the case d = pbrad(6)(phrad(6) + 1) and d’ = 4. It follows:

uhrad(0) (phrad(0) +1) +4 =2q
uhrad(8) (phrad(8) +1) —4 =2 = phrad(8) (phrad(6) +1) =6

As phrad(8) > 2 = phrad(6) =2 = pb =1 = yup =3 = ys and rad(é) = 2 but 3 1 2,
then the contradiction.

** 1-2-2-4 Now, let aj, be a prime integer so that a;|radd, we consider the case d =

érad,(é) (phrad(8) +1) and d’' = 4aj,. It follows:
Jo
rad (6
2 ( )(#érad(é) +1) +4a, = 2q rad (8
md]g(s) = U . (pprad(8) +1) = 2(1 +2a;) =
My (porad () +1) — daj, = 2 jo

Jo
Then the contradiction as the left member is greater than the right member 2(1 + 24;,).
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** 1-2-2-5 Now, we consider the case d = 4p4rad(d) and d’ = (phrad(5) + 1). It follows:

{ 4phrad(0) + (phrad(6) +1) =2q

— 3u4rad(8) = 3 = Then the contradiction.
4plrad(6) — (phrad(6) +1) =2

** 1-2-2-6 Now, we consider the case d = 2(pbrad(6) + 1) and d = 2pbrad(5). It follows:

2(phrad(0) + 1) + 2urad(d) = 2q = 2uhrad(6) +1 =g
2(phrad(0) +1) —2ubrad(d) =2 =2 =2

It follows that this case presents no contradictions a prior.

=
**1-2-2-7 phrad(5) and phrad(5) + 1 are coprime, let phrad(5) +1 = HA]-%, we consider the
j=1

. It follows:

brad(6) +1
case d = 2Aypsrad(d) and d' = 2%

i/

]

( brad(6) +1
2Ajiparad(8) + 2% =2g
]'/
brad(6) +1
20 pbrad(8) — 2% =2
\ 7'

** 1-2-2-7-1 We suppose that vy = 1. We consider the case d = 2Aypjrad(s) and d' =
zy’zrad(5) +1

Ajl

( / —
(6) + zylrad)fé) 1

. It follows:

2Ajipyrad =2q

il

j
= 4Appyrad(0) = 2(q+1) = 2Appyrad () = g +1

B zy’lmd(é) -1 5

A]‘/

But from the equation (3.2.22), g + 1 = 2p)rad(9), then Ay = 1, it follows the contradiction.

2Ajpyrad(6)

',

** 1-2-2-7-2 We suppose that 7y > 2. We consider the case d = ZA;jl "uhrad(6) and
g zy’zrad((?) +1

- . It follows:
]'/
)\].,
(T phrad(d) +1
2/\]., urrad(6) + 25 ——— =2
A
7’ /
Vir—
< — 4/\].,] Pubrad(8) =2(q+1)
V=T pbrad(8) +1
2/\]-,] Thrad(s) — 22—7,1 =2
/\j{

— ZA;j/_rj/y’zmd((S) =g+1
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As above, it follows the contradiction. It is trivial that the other cases for more factors
H/\;f’”_r A give also contradictions.
]'VI

** 1-2-2-8 Now, we consider the case d = 4(pbrad(5) +1) and d’ = phrad(5), we have d > d'.
It follows:

4(phrad(6) +1) + phrad(d) = 2q = Subrad(8) = 2(q+2) _ Then the contradiction as
4(phrad(0) +1) — phrad(0) =2 = phrad(6) =2 3|6.

Lrad(6
** 1-2-2-9 Now, we consider the case d = 4u(uhrad(6) + 1) and d' = %(), where u > 1

is an integer divisor of u,rad(d). We have d > d’ and:

/
4u(phrad(8) +1) + %d(é) =2g
— 2u(phrad(8) +1) = phrad(6) +1=2u =1
/
du(pprad(8) +1) — %d(é) =2

Then the contradiction.

In conclusion, we have found only one case (** 1-2-2-6 above) where there is no con-
tradictions a prior. As T(N) is large and also [T(N/4)/2], it follows the contradiction with
Q(N) <1 and the hypothesis (1, p2) # 1 is false.

** 2- We suppose that (pq, p2) = 1.

We recall that rad(c) = Y > rad'%¥/1%7(a), 6 +1 = Y, rad(a) = r.rad(5), (r,rad(8)) =
1,8 = pprad(8) and ru; = 6% + 3X, it follows:

U(S)=6>+35+3—ru; =0 (3.2.68)

** 2-1- We suppose 3|(3 — ru1) and 32 1 (3 — ru1), then we use the Eisenstein criterion [6] to
the polynomial U(¢) given by the equation (3.2.68), and the contradiction.

** 2-2- We suppose 3|(3 — ruq) and 3%|(3 — rp1). From 3|(3 — rp1) = 3|ru; = 3|ror3|u;.
- If 3]r = (3,radé) = 1 = 3 { 5. Then the contradiction with 3|6? by the equation
(3.2.68).
-1f 3|y = 3t up = 314, it follows the contradiction with 3|6> by the equation
(3.2.68).

** 2-3- We suppose 31 (3 —rpu;) = 31ru; = 31 r and 31 p1. From the equation (3.2.68),
U(6) = 0 = rup = 6*(mod3), as 62 is a square then 6> = 1(mod3) = ru; = 1(mod3),
but this result is not all verified. Then the contradiction.

It follows that the case u, > rad*?¢(a) = a > rad>?%(a) and c = rad>(c) is impossible.

II-3-2-2- We consider the case y. = rad?(c) = ¢ = rad®(c) and ¢ = a + b. Then, we obtain
that Y = rad(c) is a solution in positive integers of the equation:

YP+1=¢ (3.2.69)
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withc=a+4+b+1=c+1= (¢,c) = 1. We obtain the same result as of the case 1-3-2-1-
studied above considering rad(¢) > radis (c).

II-3-2-3- We suppose i, > rad>?®(a) = a > rad>?°(a) and c large and p. < rad®(c), we
considerc =a-+b,b>1. Thena = md3(a) +h,h > 0, h a positive integer and we can write

1.63

c+1=rad®(c),1 > 0. As rad(c) > rad1¥ (a) = rad(c) > rad(a) = h+1+b=m > 0, it
follows:

rad®(c) —1 = rad®(a) + h+b >0 = rad’(c) —rad®(a) =h+1+b=m >0 (3.2.70)

We obtain the same result (a contradiction) as of the case I-3-2-3- studied above considering
rad(c) > radiss (a). Then, this case is to reject.

Then the cases u. < rad*(c) and a > rad>?%(a) are impossible.
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Chapter 4

Is The abc Conjecture True?

Abstract

In this paper, we consider the abc conjecture. As the conjecture ¢ < rad?(abc) is true, then
we give the proof of the abc conjecture for € > 1 and for the case € €]0, 1], we consider that
the abc conjecture is false, from the proof, we arrive in a contradiction.

Résumé

Dans cet article, nous considérons la conjecture abc. Comme la conjecture ¢ < rad?(abc) est
vraie, nous donnons la preuve que la conjecture abc est vraie pour € > 1 et pour les cas
€ €]0,1], supposant que la conjecture est fausse nous arrivons a une contradiction.

4,1 Introduction and notations

Let a positive integer a = [];a;’, a; prime integers and a; > 1 positive integers. We call
radical of a the integer []; a; noted by rad(a). Then a is written as :

a= Ha;"f = rad(a).Ha?"'fl (4.1.1)
1 1

We note:
Ho = Ha?‘iil = a = yg.rad(a) (4.1.2)
i

The abc conjecture was proposed independently in 1985 by David Masser of the University
of Basel and Joseph (Esterlé of Pierre et Marie Curie University (Paris 6) [1]. It describes
the distribution of the prime factors of two integers with those of its sum. The definition
of the abc conjecture is given below:

Conjecture 4.1.1. (abc Conjecture): For each € > 0, there exists K(e) > 0 such that if
a,b, c positive integers relatively prime with ¢ = a + b, then :

¢ < K(€).rad'*¢(abc) (4.1.3)

where K is a constant depending only of e.
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The idea to try to write a paper about this conjecture was born after the publication in
September 2018, of an article in Quanta magazine about the remarks of professors Peter
Scholze of the University of Bonn and Jakob Stix of Goethe University Frankfurt concern-
ing the proof of Shinichi Mochizuki [3]. The difficulty to find a proof of the abc conjecture
is due to the incomprehensibility how the prime factors are organized in c giving a, b with
c = a+b. So, I will give a simple proof that can be understood by undergraduate students.

Logc
Log(rad(abc))
that ¢ < rad*(abc) [4]. It is the key to resolve the abc conjecture. In the following, as
the conjecture ¢ < rad?(abc) holds (chapter 3), I propose an elementary proof of the abc
conjecture.

We know that numerically, < 1.629912 [1]. A conjecture was proposed

4.2 The Proof of the abc conjecture
Proof. We note R = rad(abc) in the case ¢ = a + b or R = rad(ac) in the case ¢ = a + 1.

421 Case:e>1

As ¢ < R? is true, we have Ve > 1:
¢ < R2 < R'™€ < K(e).R'™¢, with K(e) =e, € >1 (4.2.1)

Then the abc conjecture is true.

42.2 Case:0<e<1

For the cases ¢ < R, it is trivial that the abc conjecture is true. In the following we consider
that ¢ > R. From the statement of the abc conjecture 4.1.1, we want to give a proof that
c < K(e)R'"¢ = LogK(€) + (14 €)LogR — Logc > 0.

For our proof, we proceed by contradiction of the abc conjecture. We suppose that the
abc conjecture is false:

dep €]0,1[,VK(e) >0, Tco=aog+Dbo; ag, by, co coprime so that
co > K(eg)RyT (4.2.2)

1
We choose the constant K(e) = e€?. Let :

Y, (€) = 61—2 + (1+€)LogRy — Logcp, € €]0,1] (4.2.3)

From the above explications, if we will obtain Ve €]0,1[, Y, (€) > 0 == ¢y < K(e)R}™ =
co < K(eg)Ry ™, then the contradiction with (4.2.2).

About the function Y;,, we have:

lime_41Ye,(€) =1+ Log(R3/co) = A >0

lime_40Ye,(€) = 400
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The function Y, (e) has a derivative for Ve €]0,1], we obtain:

e3LogRy — 2

e (4.2.4)

2
Yl (€) = — = + LogRo =

2
/ = = / =2 >
Y () =0=e=¢ =] TogRs €]0,1] for Ry > 8.

Y'(g) -
Y(g) \ Y(g’) /

Figure 4.1: Table of variations

>0

Discussion from the table (Fig.: 4.1):

-If Yo, (¢') > 0, it follows that Ve €]0,1[, Y¢,(€) > 0, then the contradiction with Y, (€p) <
0 = co > K(eo)R(1)+€0 and the supposition that the abc conjecture is false can not hold.
Hence the abc conjecture is true for e €10,1].

I Y, () <0=30<e; <€ <e<1,so that Y, (e1) = Y, (€2) = 0. Then we obtain:
co = K(e1)Ry ™ = K(eg)Ry ™ (4.2.5)

We recall the following definition:

Definition 4.2.1. The number ¢ is called algebraic number if there is at least one
polynomial:
I(x)=Ilo+hx+-+1ux", L,#0 (4.2.6)

with integral coefficients such that I(¢) = 0, and it is called transcendental if no such
polynomial exists.

We consider the equality :

»—\Nl —

c
co = K(e)Ry™ = 2 = Mo _ €

€1
R() - Tad(aobo) RO (4.2.7)

i) - We suppose that €; = B; is an algebraic number then By = 1/ e% and a7 = Ry are also
algebraic numbers. We obtain:

1
S _ M _ el e _ oo ob
Ry~ rad(agbo) e 1Ry = e (4.2.8)

From the theorem (see theorem 3, page 196 in [2]):
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Theorem 4.2.1. cfoaf 1...045” is transcendental for any nonzero algebraic numbers
1 Y 8
&1, ., &n, Bos -, P

Heo
rad(agby)
is an algebraic number, then the contradiction and the case Y, (¢’) < 0 is impossible. It
follows Y, (€’) > 0 then the abc conjecture is true.

we deduce that the right member ¢fo.a! of (4.2.8) is transcendental, but the term
& 1

ii) - We suppose that €; is transcendental, then 1/ (€?) is transcendental. If not, 1/ (€?) is an
algebraic number and from the definition (4.2.1) above, we find a contradiction. As Ry is
an algebraic number, then LogRy is transcendental. We rewrite the equation (4.2.5) as:

1 1
— — 1 1
c 2 2 C -5 +€1LogRg 5 t+exLogRg
_O — 661 Rgl — eez RSZ — —O — eel — 662 (4.2.9)

As e is transcendental and e* is transcendental, it follows the contradiction with c¢y/Rg an
algebraic number. It follows that Y, (¢’) > 0 and the abc conjecture is true.

Then the proof of the abc conjecture is finished. As ¢ < R? is true, we obtain that Ve > 0,
JdK(e) > 0, if ¢ = a + b with 4, b, ¢ positive integers relatively coprime, then :

¢ < K(e).rad'™¢(abc) (4.2.10)

and the constant K(e) depends only of e.
QE.D

Ouf, end of the mystery!

4.3 Conclusion

As ¢ < R? is true, we have given an elementary proof of the abc conjecture. We can
announce the important theorem:

Theorem 4.3.1. The abc conjecture is true:
For each € > 0, there exists K(€) > 0 such that if a, b, c positive integers relatively prime
with c = a+ b, then:

¢ < K(e).rad "¢ (abc) (4.3.1)

where K is a constant depending of €.

Acknowledgments. The author is very grateful to Professors Mihdilescu Preda and
Gérald Tenenbaum for their comments about errors found in previous manuscripts con-
cerning proofs proposed of the abc conjecture.
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