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§137. The formalism of quantum mechanics

In this exposition of the fundamental ideas of quantum mechanics no attempt has been

made to preserve a strict sequence of deduction. The orderly logic of a deductive account

would inevitably involve some degree of abstractness which would obscure the experimental

foundation of any given general result. However, to conclude the book it is appropriate to

summarise briefly the fundamental ideas and problems of quantum mechanics.

Quantum mechanics deals with statistical ensembles of microparticles, and solves three

main problems: (1) to determine the possible values (spectrum of values) of physical quan-

tities; (2) to calculate the probability of any particular value of these quantities in the

ensemble of microparticles; (3) to examine the variation of an ensemble with time (the

motion of microparticles).

In quantum mechanics the wave function ψ represents the fact that a microparticle be-

longs to a particular ensemble. It is a function of a complete set of quantities, which we

denote 1 by x. The number of quantities in a complete set is determined by the nature of

the system and is equal to the number of its degrees of freedom. The choice of the set of

quantities which appear as arguments of the wave function is said to determine a particular

representation.

The wave function also has a suffix (often omitted), such as n in ψn(x), indicating another

set which determines the wave function itself.

A statistical ensemble described by a particular wave function is called a pure ensemble;

one which does not have a particular wave function is called a mixed ensemble, and is

described by a density matrix.

The fundamental property of pure quantum ensembles is given by the principle of su-

perposition: if two possible states are described by wave functions ψ1 and ψ2, there exists a

third state described by the wave function

ψ = c1ψ1 + c2ψ2, (I)

where c1 and C2 are arbitrary amplitudes.

1 Here x does not necessarily denote one or more co-ordinates. We use it to signify any group of variables,

discrete or continuous, which form a complete set.
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All relations between physical quantities are expressed in quantum mechanics in terms

of linear self-adjoint operators so that to every real physical quantity L there corresponds

a linear self-adjoint operator L̂. The representation of quantities by means of operators is

related to measurable quantities by a formula giving the mean value L̄ of a quantity in the

state ψ. This formula is

L̄ = (ψ, L̂ψ) (II)

with the normalisation condition 2

1 = (ψ, ψ).

This definition of the mean value enables us to find the spectrum of the quantity L, i.e. its

possible values. For this purpose we seek states in which the quantity L has only a single

definite value, i.e. states in which ∆L2 = 0. This requirement leads to an equation for the

eigenfunctions of the operator L̂ (cf. Section 20):

L̂ψL(x) = LψL(x). (III)

Hence we find the spectrum (continuous or discrete) of L and the corresponding eigenstates

ψL(x). It is assumed that the eigenvalues of the operator L̂ are those values of the quantity

L which are experimentally observed.

Since the eigenfunctions form an orthogonal set, any wave function ψ(x) can be expanded

as a series of eigenfunctions ψL(x):

ψ(x) =
∑
L

c(L)ψL(x), (1)

where

c(L) = (ψL, ψ), (2)

and the sum is to be regarded as an integral
∫
dL. . . if the spectrum of L is continuous.

2 The symbol (u, L̂v) denotes the ‘scalar product’ of u and L̂v, which for continuous variables is the integral

(u, L̂v) =

∫
u∗ · L̂v · dx,

and for discrete variables is the sum

(u, L̂v) =
∑∑

u∗nLnmvm.
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This spectral resolution is in fact performed in an apparatus which resolves the ensemble

ψ(x) into sub-ensembles ψL(x), and in particular in a measuring apparatus which measures

the quantity L.

The probability of finding a value L in an ensemble described by a wave function ψ(x) is

|c(L)|2 (for a continuous spectrum, |c(L)|2 is the probability density); c(L) is also the wave

function of the ensemble in the L representation. That is, c(L) and ψ(x) represent the same

ensemble.

A fourth fundamental point in quantum mechanics relates to the variation of ensembles

with time. The variation with time of the wave function describing an ensemble is given by

the Schrödinger equation

i~
∂ψ

∂t
= Ĥψ, (IV)

where the operator Ĥ is the Hamiltonian of the system and depends only on the nature of

the system and the kinds of external field acting on it. The operator Ĥ is the total-energy

operator if the external fields are independent of time. Usually

Ĥ = T̂ + Û , (3)

where T̂ is the kinetic-energy operator and Û an operator representing the potential energy

or force function. The operator T̂ is a function of the momentum operator P̂. Experiment

shows that, in the absence of magnetic forces,

T̂ =
∑
k

P̂2
k

2mk

, (4)

where P̂k is the momentum of the k-th particle and mk its mass. When a magnetic field is

present, P̂k must be replaced by

Π̂k = P̂k −
e

c
Ak, (5)

where Ak is the vector potential at the position of the k-th particle.

From the Schrödinger equation (IV) and the definition of the mean value (II) it follows

that
dL

dt
=

(
ψ,
∂L̂

∂t
ψ

)
+ (ψ, [Ĥ, L̂]ψ). (6)

The operator dL̂/dt which represents the time derivative of the quantity L is therefore

dL̂

dt
=
∂L̂

∂t
+ [Ĥ, L̂], (7)
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where [Ĥ, L̂] = (i/h)(ĤL̂−L̂Ĥ) is the quantum Poisson bracket. The integrals of the motion

are such that
dL̂

dt
= 0. (8)

In the absence of external forces the most important integrals of the motion are the energy,

the total momentum of the system

P̂ =
∑
k

P̂k = −i~
∑
k

∇k (9)

and the angular momentum

M̂ =
∑
k

[rk · P̂k] +
∑
k

Ŝk, (10)

where Ŝk is the spin angular momentum of the k-th particle.

The form of the operator P̂ can be determined from the very fact that it represents a

quantity which is an integral of the motion, i.e. commutes with the operator Ĥ in the

absence of external forces. Other more complex operators, whose physical significance may

be highly specialised, can be constructed from the operators P̂k and rk. Thus the form of

the principal operators is automatically determined if the form of the Hamiltonian (or the

Schrödinger equation) is postulated.

The last of the fundamental ideas of quantum mechanics relates to systems of identical

particles, and is the principle of indistinguishability, according to which the interchange of

any pair of identical particles (k, j) does not lead to a physically different state. Mathemat-

ically this is expressed as a condition on the wave functions:

P̂kjΨ = λΨ, (V)

where λ = ±1 is an eigenvalue of the interchange operator P̂kj. This condition leads to a

division of states into two classes:

Ψ = Ψs (symmetric), (11)

Ψ = Ψa (antisymmetric). (12)

It also follows from the Schrödinger equation that the symmetry cannot alter in the course

of time. Hence the nature of particles alone determines whether they belong to the s type

or the a type. Particles whose states are described by antisymmetric wave functions Ψa
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are fermions, and obey the Pauli principle, which is a consequence of the properties of an

ensemble described by antisymmetric wave functions. Particles whose states are described

by symmetric wave functions Ψs are called bosons.

Thus we see that quantum mechanics is based on five fundamental ideas: the principle

of superposition of states (I), the definition of the mean value (II), the interpretation of

eigenvalues as the only possible values (III), the Schrödinger equation (IV), and the principle

of indistinguishability of identical particles (V). The physical foundations of these ideas have

been discussed in detail in the relevant chapters.

§138. The Feynman formulation of quantum mechanics

In the preceding paragraph there was presented a formal framework of quantum mechanics

which became a commonly accepted one. What underlies this framework is the Schrödinger

equation, and when transiting from a classical description to the quantum Hamiltonian

approach is used.

However, there exists yet another formulation of quantum mechanics proposed by Feyn-

man in 1942 3. Feynmans approach is not based on the Schrödinger equation, and the

Lagrange method is used instead of Hamiltonian one 4. And even though the former is not

as popular, it nevertheless has a number of advantages.

The main object in the Feynman formulation is a propagator K(q, t; q0, t0), which enables

to express a wave function ψ(q, t) in terms of its initial value ψ(q0, t0) at the time t = t0.

Here q can stand for any dynamic variables describing our system at time t, and q0 – the

same variables at time t0. With that notations the propagator K is defined via

ψ(q, t) =

∫
K(q, t; q0, t0)ψ(q0, t0)dq0. (13)

Obviously, the propagator K should comply with the Schrödinger equation because ψ(q, t)

complies with that equation. It must turn into δ(q − q0) at t = t0 for the equation (13)

to make sense yet at t = t0. Further, at t < t0 one typically sets K = 0 (the causality

3 A complete exposition of this method is found in the book by R. Feynman and A. Hibbs Quantum

Mechanics and Path Integrals, Emended edition, Dover, 2005.
4 For the first time the prospects of using the Lagrange approach in quantum mechanics were pointed out

to by Dirac in 1933. See P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford, 1958, 32.
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principle). These conditions result in the propagator K coinciding with the retarding Green

function G of the complete (i.e. including an interaction) Schrödinger’s equation.

We, however, will not refer now to the Schrödinger equation, and choose another way to

obtain the propagator K, more adequate to this new notion.

Consider first basic properties of the operator K. Let dynamic variables q at the moment

t = t0 assume one certain value q = q0. Then ψ(q′0, t0) = δ(q′0− q0). If at time t q = q′, then

according to (13) we have

ψ(q′, t) = K(q′, t; q0, t0).

It follows from here that a quantity

P (q′, t; q0, t0) = |ψ(q′, t)|2 = |K(q′, t; q0, t0)|2

is a system transition probability from the state q = q0 into the state q = q′ over time period

t− t0 (t > t0). The propagator K has an important property: the product of propagators is

a propagator again. Indeed, by taking ψ(q′, t) as an initial one and inserting it into (13) we

obtain

K(q, t; q0, t0) =

∫
K(q, t; q′′, t′′)K(q′′, t′′; q0, t0)dq′′. (14)

From (14) it is seen that the system transition from the state q0 which it occupied at time

t0 to the state q at time t (t > t0), can be viewed as happening in two steps. Initially the

system passes into an arbitrary intermediate state q′′ at time t′′ (t0 < t′′ < t), and only after

that there effectuates the transition to a final state q at time t.

Apparently, one can continue on slicing an interval (t, t0). Let’s break it up into N

intervals: (t0, t1), (t1, t2),. . . , (tk, tk+1),. . . , (tN−1, tN), tN = t. Denote the value of dynamic

variables at times tk as qk (k = 0, 1, . . . , N), so that the propagator K for the l-interval, will

be

Kl = K(ql+1, tl+1; ql, tl).

Applying sequentially the propagator Kl to any initial function ψ(q0, t0) we obtain the

following expression of the propagator for the time interval (t0, t):

K(q, t; q0, t0) =

∫
...

∫
K(q, t; qN−1, tN−1)K(qN−1, tN−1; qN−2, tN−2) . . .

. . . K(q2, t2; q1, t1)K(q1, t1; q0, t0)dqN−1dqN−2 . . . dq1, (15)

where an integration occurs over all intermediate states (an integral of multiplicity N − 1).

The process of successive transitions through all admissible states is known as the Markov
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chain. However, in the classical theory this chain forms via not transition amplitudes (as

we obtained in (15)), but via transition probabilities P (qk+1, tk+1; qk, tk):

P (q, t; q0, t0) =

∫
...

∫
P (q, t; qN−1, tN−1)P (qN−1, tN−1; qN−2, tN−2) . . .

. . . P (q2, t2; q1, t1)P (q1, t1; q0, t0)dqN−1dqN−2 . . . dq1. (16)

On Fig. 1 there are shown several “trajectories” emerging in Markov’s chain. We took the

word trajectories into quotes because any final time interval ∆t = tk+1 − tk can be broken

down into shorter subintervals ∆t′ � ∆t. In turn, these subintervals can be broken down

even further, so that the Markov chain trajectories do not have continuous tangent lines.

Figure 1: Particle trajectories which are subject for integration over in the Markov chain.

The time interval (t0, t) is broken down into seven subintervals, q the particle coordinate.

Note in passing, that the difference between quantum (15) and classical (16) chains is

a further manifestation that the central role in quantum mechanics belongs to probability

amplitudes, and not to probabilities themselves. This fact does not allow, even in principle,

to reduce quantum mechanics to any kind of statistical mechanics.

It goes without saying, that a classical Markov chain also makes sense even in quantum

mechanics. However, that chain describes the motion of a quantum system which is inter-

rupted at times t = tk (k = 1, 2, . . . , N − 1) by the measurement of its dynamic variables
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q, that is, by the intervention of a measuring device. Along with that a coherence of the

system motion is disrupted on intervals (tk−1, tk) and (tk, tk+1).

To find the explicit expression for a propagator K(q, t; q0, t0) let’s resort, for a simplicity

sake, to a particular case of a one-dimensional motion in the external potential V (x). In

that case q = x and a classical Lagrange function is

L(x, ẋ) =
m

2

(
dx

dt

)2

− V (x).

Here m is a particle mass, ẋ = dx
dt

– its velocity. The action S over an interval (tk, tk+1) is

equal to

S(xk+1, tk+1;xk, tk) =

tk+1∫
tk

L(x, ẋ)dt.

Let’s show now, that if the quantum propagator K for an infinitesimal time interval ∆t =

tk+1 − tk is taken as

K(xk+1, tk+1;xk, tk) = C exp

{
i

~

[
m

2

(
xk+1 − xk

∆t

)2

− V (xk)

]
∆t

}
, (17)

then the wave function ψ(q, t) given by the formula (13) will satisfy the Schrödinger’s equa-

tion

i~
∂ψ(x, t)

∂t
= − ~2

2m
∇2ψ(x, t) + V (x)ψ(x, t). (18)

Note, that the quantity xk+1−xk
∆t

approximates a particle velocity for the interval ∆t =

(tk, tk+1), and C is a normalization factor stemming from the condition K = δ(xk+1− xk) if

∆t→ 0. It is easy to find that

C =
( m

2πi~∆t

)1/2

. (19)

Let’s substitute now (17) into (13) and set there q0 = x − ξ, q − q0 = x − x0 = ξ ,

t = t0 + ∆t. Further

ψ(x0, t0) = ψ(x− ξ, t0) = ψ(x, t0)− ∂ψ(x, t0)

∂x
ξ +

1

2

∂2ψ(x, t0)

∂x2
ξ2 + . . .

and

exp

{
− i
~
V (x)∆t

}
= 1 +

1

i~
V (x)∆t+ . . .
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The expression (13) then takes the form

ψ(x, t0 + ∆t) = C

+∞∫
−∞

dξ exp

(
i

~
m

2∆t
ξ2

)[
1 +

1

i~
V (x)∆t+ . . .

]

×
[
ψ(x, t0)− ∂ψ(x, t0)

∂x
ξ +

1

2

∂2ψ(x, t0)

∂x2
ξ2 + ...

]
. (20)

Employing the fact that
+∞∫
−∞

eiaz
2
dz =

√
iπ
a

it is easy to obtain the right hand side of

the formula (20). The integral comprising the factor ψ(x, t0) equals 1 in virtue of the

normalization condition (19). The integration of the term that is linear over ξ gives

zero. The integral containing ξ2 equals − 1
i~

~2
2m

∆t. Terms of a higher power over ξ van-

ish faster than (∆t)3/2. Collecting now together the results of integration and noting that

1
∆t

[ψ(x, t0 +∆t)−ψ(x, t0)]→ ∂ψ(x,t)
∂t

(we replaced t0 with t because they coincide in the limit

of ∆t → 0), we obtain the Shrödinger’s equation (18) for the wave function ψ(x, t) defined

by means of (13) and (17). It is proved thereby that the propagator method (the Lagrange

method) is equivalent to the method of the Schrödinger equation – the counterpart of the

Hamilton-Jacobi method of the classical mechanics.

Having said all that, one can write the propagator as well for the total time interval

(t0, t). Multiplying propagators (17) for intermediate intervals (tk, tk+1) and integrating

over intermediate variables xk, we find

K(x, t;x0, t0) = lim
N→∞,∆t→0

∫
...

∫
exp

{
i

~

N−1∑
k=1

[
m

2

(xk+1 − xk)2

∆t
− V (xk)∆t

]}
×C

N
2 dx1dx2...dxN−1. (21)

This limit of the multiple integral is called a functional integral. Noting, that for an in-

finitesimal slicing of the interval (t0, t) the quantity xk+1−xk
∆t

is tractable as a velocity dx
dt

= ẋ

and denoting the element of the integration volume CN/2dx1 . . . dxN−1 as d{x}, we can write

the result (21) in the compact form

K(x, t;x0, t0) =

∫
d{x} exp

 i
~

t∫
t0

L(x, ẋ)dt

 . (22)

The integral appearing here in the exponent is the classical action

S =

t∫
t0

L(x, ẋ)dt. (23)
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The integration in the formula (22) occurs not only over trajectories delivering an extremum

to the integral (23), but extends over all trajectories connecting points (t0, x0) and (t, x).

The propagator representation as a functional integral over trajectories (22) enables a

clear understanding why in a classical limit it is permissible to consider only classical trajec-

tories. Indeed, if one describes the given system via a classical mechanics, then the action S

is much bigger than a Planck constant ~. Consider now a trajectory which is not a solution

to classical motion equations. Every small change of such a trajectory causes a big change

of a ratio S/~ in (22) and fast oscillations of the amplitude. As a result, contributions from

all that trajectories cancel each other. Therefore, in the classical limit these trajectories can

be omitted.

However, in the vicinity of a trajectory coming out of classical motion equations, the

situation is different. Since the action here reaches an extremum δS = 0, then small de-

viations from that trajectory do not lead to changes in S. Therefore, contributions from

such trajectories into the propagator do not cancel each other as they are all close in phase,

which is equal here to Scl/~. This way in the classical approximation the propagator (22)

will differ from zero only there, where the action is extreme. But this is exactly a classical

result, namely, any object moves along the path of an extreme action δS = 0.

In conclusion of this section, let’s give an explicit calculation of the propagator

K(x, t;x0, t0) for a freely moving particle and for an oscillator. For the first case, the

Lagrange function equals

L(x, ẋ) =
m

2
ẋ2.

The corresponding functional integral comes out of (21) if we set there V (xk) = 0. Let’s

employ an elementary property of an integral

C2(∆t)

+∞∫
−∞

exp

{
i

~
m

2

[
(x− x1)2

∆t
+

(x− x0)2

∆t

]}
dx1 =

= C(2∆t) exp

[
i

~
m

2

(x− x0)2

2∆t

]
,

where C is defined by (19). Applying this formula successively (N − 1) times, we obtain

K(x, t;x0, t0) =

(
m

2πi~(t− t0)

)1/2

exp

[
i

~
m

2

(x− x0)2

t− t0

]
. (24)
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This result easily generalizes to a three-dimensional case

K(x, t; x0, t0) =

(
m

2πi~(t− t0)

)3/2

exp

[
i

~
m

2

(x− x0)2

t− t0

]
. (25)

As expected, the formula (25) coincides (up to the factor −i/~) 5 with the retarding Green

function of a free Schrödinger equation.

In the case of a harmonic oscillator the Lagrange function is of the form

L(x, ẋ) =
m

2
(ẋ2 − ω0x

2),

where ω0 is the oscillator eigen frequency. The direct calculation of a propagator K for

that Lagrange function via the multiple approximation (formula (21)) is quite challenging.

Instead, it is convenient to use the following approach. Let’s change variables in the formula

(22), setting

x(t) = xcl(t) + y(t),

where xcl(t) is the classical trajectory, connecting initial xa and final xb points. Obviously,

y(ta) = y(tb) = 0. If the Lagrangian is quadratic over coordinates and velocities , then the

action S can be rendered in the following way

S[x(t)] = Scl(xa, xb) + S ′[y(t)],

where Scl(xa, xb) = S[xcl(t)], and S ′ is an additional action depending only on y(t) 6. Now

let’s represent K(xb, tb;xa, ta) in the form

K(xb, tb;xa, ta) = exp

[
i

~
Scl(xa, xb)

] ∫
d{y(t)} exp

[
i

~
S ′[y(t)]

]
. (26)

Therefore, one manages to pick out explicitly the dependence of a propagator on coordi-

nates of initial and final points (xa and xb). If now the Lagrangian of the system does not

depend on time, then the remaining functional integral in the formula (26) depends func-

tionally only on the time difference tb− ta. For a number of cases this functional dependence

can be found without an explicit resorting to calculation of the integral over trajectories.

For the harmonic oscillator Scl(xa, xb) is

Scl(xa, xb) =
mω0

2 sinω0T
[(x2

a + x2
b) cosω0T − 2xaxb],

5 The factor (−i/~) stems from the different normalization of the propagator K(x, t;x0, t0) and the Green

function g(x− x0, t− t0).
6 Terms containing products xcl(t)y(t) give zero contribution after the integration over time.
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where T = tb − ta.

The expression for the propagator in that case can be written in the following way:

K(xb, tb;xa, ta) = F (t) exp

{
imω0

2~ sinω0T
[(x2

a + x2
b) cosω0T − 2xaxb]

}
. (27)

The function F (T ) can be found from the condition that the harmonic oscillator propagator

(27) becomes a propagator for the freely moving particle when ω0 → 0. The calculation

shows that

F (t) =

(
mω0

2πi~ sinω0T

)1/2

.

The propagator knowledge gives practically all information needed for the quantum de-

scription of a system. First and foremost, the propagator can be used to obtain transition

probabilities between various systems states, as well as wave functions and an energy spec-

trum. All that issues will be not considered here because of the room limitation. A more

detailed exposition can be found in the aforementioned book of R. Feynman and A. Hibbs.

In closing this brief introduction to Feynman’s approach to quantum mechanics the fol-

lowing should be pointed out. Even though this method did not result in fundamentally

new discoveries in quantum theory, its undisputable advantages are the physical clarity and

more close connection to the classical description of physical phenomena.

§139. Some methodological problems. Wave functions and

quantum ensembles

New physcical ideas brought up by quantum mechanics lead in 1930s to rather serious

and at times quite heated arguments between proponents of different philosophical concepts.

The discussions continued to a certain extent also after World War II. These discussions

were not useless as they helped clarify more crisply many important aspects related to

foundations of quantum mechanics and its consequences for the methodology of science.

Key debates focused around undestanding of a wave function ψ. Does a wave function

provide an objective and complete description of physical reality or is it only a “notebook”

of an observer who records in it an available information? Does a wave function describe a

state of an individual particle or an ensemble of particles?

Another variety of issues was related to the causality in quantum mechanics. The point

here is that quantum mechanics is a statistical theory. In this regard there was a lot of views
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on the nature of that “statisticality” and it was assumed by many that this statisticality

needs a justification based on some fully deterministic mechanics.

The existence of different views stemmed partially from the lack of trust in quantum

mechanics, and partially from an insufficiently sound analysis of some quantum mechanics

consequences, appearing paradoxical.

Nowadays there are no whatsoever reasons to not to believe in quantum mechanics. The

power of its methods was completely proved both in atomic and nuclear physics. By aban-

doning the description of particles as moving over trajectories, which during the centuries

appeared as a scientific apex, we lost only some illusory hopes. Instead what opened to us

was striking in its beauty a harmony of laws ruling the atomic world.

An exposition of old discussions here would be only of a historical interest7. Therefore, in

what follows we would restrict ourselves only to the elucidation of problems – posed above

– based on concepts of quantum ensembles which underlie the presentation of quantum

mechanics in this course.

It should be noted that from the methodological viewpoint this concept differs from the

more popular Copenhagen school concept in that it spares more modest role to the observer

and emphasize everywhere an objective nature of quantum ensembles and laws they obey8.

The concept of quantum ensembles is quite close to the one of the Gibbs classical ensem-

ble, well known in the statistical thermodynamics. In the Gibbs ensemble a microsystem

is considered as interacting with the macroscopic thermostat M, with the temperature θ.

The probability Wθ(P ,Q) of one or another result of measuring dynamic variables (P ,Q)

refers to the ensemble, formed by endless repetitions of setups comprising a microsystem µ

and thermostat M; in other words – via unlimited copying of the system µ in one and the

same macroscopic environment, provided in this case by the thermostat with temperature

θ. As a result of this, the probability Wθ(P ,Q) includes characteristics of the microsystem

(P ,Q), as well as characteristics of a macroscopic environment – the temperature θ.

In the full analogy with the Gibbs classical ensemble the quantum ensemble is formed via

an unlimited reproduction of the situations formed by one and the same microsystem (but

not the same sample!) submerged into one and the same macroscopic environment M.

7 See, for instance, the previous, 4th edition of this book, D.I. Blokhintsev, Reidel, 1964.
8 See D.I.Blokhintsev “The philosophy of quantum mechanics”, , Reidel, 1968.
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This way, in quantum mechanics the microsystem µ is considered in the connection with

that macroscopic environment M which encompasses it and prescribes it a “state” in a

quantum mechanical sense.

However, that state is not described, as opposed to a classical ensemble, via some proba-

bility, but rather by a probability amplitude ΨM(Q), i.e. wave function, or, more generally,

by density matrix ρM(Q,Q′) (see §46 of main text). Here an index M points out to a

macroscopic environment determining a quantum ensemble. In most simple cases the index

M can be reduced to quantum numbers. For instance , for a sufficiently cold gas the ther-

mostate temperature θ can be replaced by n0 – the quantum number of the lowest atomic

level E0, if the average thermal energy of atoms 3/2 kθ is much smaller than the atomic

excitation energy ε = E1 − E0; index M can be replaced by a linear momentum p – the

momentum of a particle µ, if the macroscopic environment is such that it provides for the

monochromatic de Broglie wave.

All predictions of quantum mechanics refer to the ensemble made up of copies of the

macroscopic environment M and the microscopic system µ submerged into it.

The question of whether the wave function belongs to only one single particle is as

irrelevant as the question of whether the probability of winning is the attribute of the given

lottery ticket.

A wave function (or density matrix) includes coordinates of the microsystem µ, e.g.

coordinates (Q), as well as parameters of the environment M that determines the state of

this microsystem.

Therefore, while the wave function ΨM(Q), or density matrix ρM(Q,Q′), indicates what

is the specific quantum ensemble that the microsystem µ belongs to, the probability of a

one or another measurement result for dynamic variables Q is given by

dWM(Q) = |ΨM(Q)|2dQ or dWM(Q) = ρM(Q,Q)dQ.

The environment M can arise either in the artificial set up, when one strives to prepare

particles in a certain way, or by itself under the natural conditions.

In that sense a wave function ΨM(Q), or density matrix ρM(Q,Q′), is an objective char-

acteristics of a quantum ensemble and can be found, at least in principle, via measurements.

However, neither ΨM nor ρM can be restored from the one single sample of a microsystem.

Newcomers to quantum mechanics usually ask questions about the physical essence of
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the phenomenon of a wave function contraction (Editorial Note – “collapse” in a modern

parlance), when an arbitrary wave function Ψ(Q) converts into an operator L eigen wave

function ψn after the measurement of a dynamical variable L = Ln,

ΨM(Q) =
∑
n

cnψn(Q), (28)

if the measurement gave L = Ln. This way after the series of measurements an initially

pure ensemble transforms into a mixed ensemble (compare with §83 in the main text).

Those ready to accept a pure informational view of that process, would then answer: as

the result of a measurement an information available to the observer has changed, and in

his notebook he crosses out ΨM(Q) function as an outdated and enters a new one ψn. Such

an interpretation, being pragmatically quite satisfactory, faces difficulties when a quantum

transition happens without an explicit presence of the observer. For instance, a radioac-

tive atom can decay spontaneously and an initial wave function ψ0(r), concentrated in the

nucleus, transforms into an outgoing wave eikr/r: the state ψ0(r) contracts into the state

eikr/r, which is an eigen state for the momentum operator P̂r with an eigen value pr = ~k.

An answer to the question about the foregoing phenomenon can be given only on the basis

of describing a microsystem and measuring instrument (an analyzer + detector) jointly. The

key point here is that the coherence of initial states ψn prior to the measurement, is destroyed

in the measurement process. The role of an analyzer performing a spectral decomposition

here is insufficient in this regard, as beams separated by an analyzer, still remain coherent.

That is, if we recombine these beams together via, say, a system of mirrors, they would

reveal an interference picture.

A coherence of beams is destroyed by an activation of a macroscopic detector. All that

is clarified on Fig. 2.

A macroscopic environmentM determines the state ΨM of a µ-microsystem. An analyzer

A decomposes the initial ensemble wave function ΨM into the spectrum c1ψ1, c2ψ2,. . . ,

cnψn,. . . over the attribute L characteristic of the given analyzer. Then the microsystem

acts upon one of the channels D1, D2,. . . , Dn,. . . of the detector D with the result that the

particle reveals itself in one of the channels, say, channel n. After that we can say that the

quantum transition from the state ΨM(x) into the state ψn(x) took place. If now, after the

detector activation, we collect particles with L = L1, L = L2,. . . , L = Ln. . . into groups, then

the corresponding wave functions ψ1, ψ2,. . . , ψn,. . . , will be incoherent. Therefore, the most
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Figure 2: A scheme of quantum mechanical measurements: the circleM+µ depicts a macroscopic

environment arranging for a certain state ΨM of a microparticle µ.

A – an analyzer decomposing ΨM into a spectrum over values of the dynamic variable L being measured:

ψ1, ψ2, . . . , ψn, . . .; D1, D2, . . .Dn, . . . – different detector D channels whose triggering is what establishes

the measurement result.

important element of the wave function “contraction” ΨM → ψn is a change in the state

of the macroscopic system, i.e. the detector. This process can be considered via quantum

mechanical methods if the detector is included into the quantum mechanical treatment.

The incorporation of a macroscopic detector into the quantum mechanical representation

requires the whole situation to be handled by a density matrix ρM method.

Consider now two idealized, but simple though, quantum mechanical measurements.

A. Let there be a diaphragm D (Fig. 3) with two openings O1 and O2 of the diameter d.

An initial particle wave ψ0(x) hits the diaphragm. When passing through openings that

wave creates two different beams ψ1(x) and ψ2(x) (it is assumed that the wavelength λ of

the initial beam ψ0 is of the order of the diameter d). In virtue of the coherence of waves

ψ1(x) and ψ2(x), there emerges an interference pattern on the screen with the intensity

distribution in it given by

I(x) = |ψ1(x) + ψ2(x)|2 = |ψ1(x)|2 + |ψ2(x)|2 + 2Reψ∗1(x)ψ2(x).

The last term in this formula is caused by an interference of beams ψ1(x) and ψ2(x).

Let’s assume we would like to find out which one is the opening that the particle went

through. The diaphragm serves as an analyzer of the particle position (x ≈ O1 or x ≈ O2).

Besides, what is also needed is a detector. As detectorsD1 andD2 we take two light beams L1

and L2. The wavelength λ0 of beams should be short enough so that these probing beams do

not spread because of the diffraction. That means beams must obey the geometrical optics.
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Figure 3: A wave ψ0(x) passes through two openings O1 and O2 in a diaphragm D.

On the right side there emerges a field ψ(x) = ψ1(x) + ψ2(x) which produces an interference on the screen.

D1 and D2 are probing beams identifying the location where a particle passes through a diaphragm.

Therefore, they are classical macroscopic beams. What’s more, if the scattering happens

for the beam L1, then it means that the particle passed through the opening O1 and had a

coordinate x nearby O1. If the scattering occurs for the beam L2, then it means that the

particle passed through the opening O2 and its coordinate x was close to O2.

After the beam scattering, the particle state will neither be wave ψ1(x) nor ψ2(x), but

will become δ(x−x1) or δ(x−x2), (x1 ≈ O1, x2 ≈ O2), and one of the beams ψ1(x) or ψ2(x)

will be destructed. Obviously, the coherency of beams will also be destroyed.

Measuring the particle coordinate by means of an intervention of the probing beam,
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changes the environment for particles in the incident beam ψ0(x). There emerges a new

quantum ensemble stemming from the new macroscopic environment. For this new environ-

ment an interference pattern on the screen no longer exists. It should be noted, by the way,

that this example is a good illustration for the complementarity principle.

B. Consider another simplified measurement example9. Let microparticle µ to belong in

an ensemble, in which its state is a standing wave

ϕ(x) =
1√
2π

(eikx + e−ikx) = ϕ+(x) + ϕ−(x).

Here x is a particle coordinate, k its linear momentum. As seen, ϕ(x) is a coherent sum

Figure 4: On the figure there is a scheme of a simplest measuring device.

On the ordinate axis there is a potential energy U of a ball, located on the cone top. On the abscissa

axis is given its coordinate Q. On the same graph is depicted the ball wave function before (Φ0) and after

(Φ = Φ+ + Φ−) the micro-particle scattering on it.

of two states ϕ±(x) = 1√
2π
e±ikx, of which one belongs to a momentum k, and the other to

momentum −k. The measurement which is being planned should determine the sign of k,

i.e. whether the particle is found in the state ϕ+(x) or ϕ−(x). As a detector which acts in

9 For more details and further examples see D.I. Blokhintsev The philosophy of quantum mechanics, Reidel,

1968.
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this case as an analyzer as well serves here a macroscopic little ball M placed on the top

of the cone. To make it possible, imagine a little crater on the cone top, so that the ball in

it is in a state very close to unstable. Such a cone can be described with a potential energy

U(Q) (Q is the ball centre of mass coordinate), depicted on the Fig. 4. The energy ∆E

needed to push the ball off cone top is assumed very small, so that ∆E � (2p)2

2M
. The latter

value is the recoil energy received by the ball M after the microparticle µ scattering on it.

In view thatM is assumed large and µ – small, the momentum transfer in the scattering is

±2p. In virtue of the ball instability on the cone top, after the microparticle scattering, the

ball will roll off the cone gaining in the process the kinetic energy p′2

2M
= U0. This energy

can be arbitrary large (if U0 is large). Therefore, the physical phenomenon begins here at

the microscopic quantum level (microparticle scattering), and converts into a macroscopic

phenomenon – the motion of the heavy ball with a large speed. On Fig. 4 is given also,

besides the potential energy U(Q), the wave function of the ball initial state Φ0(Q). With

time this function transforms as a result of the microparticle scattering on the ball – into

the function

Φ(Q, t) = Φ0(Q) + Φ+(Q, t) + Φ−(Q, t),

where the second and third terms arise from the scattering on the ball of microparticle waves

ϕ+(x) and ϕ−(x), respectively. For the ball density matrix ρM(Q,Q′, t)

ρM(Q,Q′, t) = Φ∗(Q, t)Φ(Q′, t).

The first perturbation order estimate shows, that the diagonal term of that matrix

ρM(Q,Q, t) for large t and |Q| � a (a being a linear size of a crater on the cone top)

reduces to two terms

ρM(Q,Q, t) = |Φ+(Q, t)|2 + |Φ−(Q, t)|2.

with the first and second term being non-zero at Q > a and Q < −a, respectively.

That means a) the absence of typical quantum interference terms in ρM(Q,Q, t), and

b) for large t the ball will roll either to the right or left from the cone. Being though ex-

tremely simplified, this example illustrates quite a common feature of all quantum mechan-

ical measurements: they all begin at a microscopical level and end up with a macroscopical

phenomenon in an unstable system (the detector!). Therefore, all these measurements bear
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signatures of an explosion inflicted by a micro-phenomenon10.

This paramountly important aspect of quantum measurements, being quite trivial by its

very essence, remained though unemphasized for a long time. In particular, N. Bohr believed

that the inclusion of the measuring device Π into the quantum mechanical description shifts

the focus somewhere else, because – as Bohr thought – to study the system (µ+Π) there is a

need for a new classical device Π′, and so on. However, what is missed in this consideration,

is that because of a detector macroscopic instability the system (µ + Π) will – in virtue

of quantum mechanical laws – pass on its own to a macroscopic level and a new device

Π′ will no longer “see” a micro-, but a macro-phenomenon. What’s more, the described

situation may occur not only in a laboratory, but also on its own in the nature whenever

the macroscopic phenomena are induced by microscopic events.

(Editorial note: The simple example B enables to determine the sign of a microparticle

momentum in a superposition prior to the scattering on the ball. On a more general

note that same example illustrates the concept of the “indirect quantum measurements” in

superpositional states and ensuing interpretations.)

§140. Causality issues

The classical mechanics is a simplest example of a theory with an unlimited reign of

determinism. We are indoctrinated that with laws of classcical mechanics one can uncon-

ditionally forecast the future of a mechanical system if the initial conditions – coordinates

and velocities (or momenta) – are known for parts making up a system.

In XVIII century Laplace, infatuated in a logical consistency and power of classical me-

chanics means, declared proudly: “Give me the initial data of all particles in the world, and

I’ll predict the future”. However, now we are very far away from this hope of the mechanical

era.

In fact, in the very concept of the classical mechanics there is already something that

undecuts the power of strictly deterministic statements.

10 The above fragment (following the Fig. 4) is just a semi-heuristic exposition of rigorous calculations for

this type of the measurement (via full wave functions of a complete (micropartice + macroscopic ball)

system) and is found in D.I. Blokhintsev The philosophy of quantum mechanics, Reidel, 1968 , which we

refer the reader to for all clarifications.
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Clearly, the pre-setting of initial data of all particles in the Universe would require an

unlimited time. Therefore, in reality one needs to be restricted to isolated mechanical

systems. Predictions, stemming from the knowledge of initial data for such a system, are of

a provisional nature. They are true only if there will be no violation of the system insulation

in the future 11

Similarly, to obtain certain conclusions about the future in the field theory, there is a

need to know, besides initial data, the boundary conditions. The latter are given before-

hand, into the future. Therefore, here the predicitions bare the conditional nature as well.

Everything will be as the field theory predicts unless something unexpected is happening on

the boundaries.

Therefore, the determinism in classical physics is illusory to a certain extent. It contains

assumptions about the future, stemming neither from mechanics nor field theory.

If we still try to avoid these difficulties by extending the system under consideration via

introducing more and more secondary factors, we will reduce the very best determinism to

the irreproducible randomness 12.

L. Boltzmann, the great physicist and materialist, was one of the first to realize that using

statistical methods we can understand laws of gases, which are totally incomprehensible in

terms of mechanics of a system, comprising a large number of particles. In its famous

H-theorem, Boltzmann showed that random interactions between gaseous particles result

in the Maxwell distribution. It appears, there is no way to “derive” statistical laws from

deterministic ones. At best they can be made compatible. In those systems, where the role of

chance becomes significant, there is a need to make some special assumptions of a statistical

nature to “deduce” ruling laws. Typically those assumptions are about an equilikelihood for

one or another state of a mechanical system.

It should be acknowledged therefore, that chance is not inferior to determinism in creating

law.

The founder of statistical mechanics, D. Gibbs, apparently was the first to realize, it is

not necessary to seek a specific way the chance uses to bring one or another system to a

certain – in a statistical scense – state. One can make some assumptions and then compare

11 For instance, predictions of a space ship motion would be valid barring the collision with an asteroid. The

latter showing up on the trajectory of a spaceship can be predicted only statistically.
12 In this regard, see F.Engels, Dialectics of Nature, Moscow, 1969
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them with experiments.

In various fields of modern science statistical methods are so prevalent and powerful, that

we need to acknowledge – in the being of the Universe elements of games of chance can not

be ignored: Chance is certainly favored by Law and cooks up events that are unexpected and

unlikely. In quantum mechanics an element of randomness is laid into its very foundations

– in the concept of a probability amplitude and wave function ψ.

Entering the field of quantum phenomena we need to abandon cozy illusions of determin-

ism and acknowledge an existence of games of chance. Every time that a quantum transition

occurs, there effectuates a selection from various potentialities (Editorial note: the term “po-

tentiality” in the sense of a potential opportunity was repeatedly used by D. Bohm in his

“Quantum theory”). While a likelihood of one or another selection is predicted by quantum

mechanics, potentialities themselves are predetermined. In that respect quantum mechanics

appears as an amazing blend of a statistical concept and a strict determinism.

In nonrelativistic quantum mechanics determinism is expressed via the condition that a

wave function, comprehensively determining a quantum ensemble, follows the Schrödinger

equation

i~
∂ψ(x, t)

∂t
= Ĥ(x, t)ψ(x, t). (29)

From that equation it follows that a state ψ(x, t + ∆t) at time t + ∆t, infinitesmally close

to a preceding moment t, is determined by the equation (29)

ψ(x, t+ ∆t) = ψ(x, t)− i

~
Ĥ(x, t)ψ(x, t)∆t,

i.e. the wave function value at the preceding time.

A more detailed idea of the causality in quantum mechanics can be obtained from Green

functions. As is well known, a wave function ψ(x, t) obeys the integral equation stemming

from the Schrödinger equation

ψ(x, t) = ψ0(x, t) +

+∞∫
−∞

g(x− x′, t− t′)V (x′, t′)ψ(x′, t′)dx′dt′.

Here ψ0(x, t) is the intitial value of a wave function before a potential V (x, t) turns on,

g(x−x′, t− t′) is the retarded Green function of the Schrödinger equation for a free motion.

A paramountly important property of that function is that it equals zero for t′ > t.
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Let’s change a system state in the vicinity of x′, t′. We’ll express this change by means of

giving the function ψ(x, t) a variation in the neighborhood of x′, t′. By taking the functional

derivative of a ψ(x, t) with respect to ψ(x′, t′), we’ll have

δψ(x, t)

δψ(x′, t′)
= g(x− x′, t− t′)V (x′, t′).

From the basic Green function property it follows that the impact of a change made at x′, t′

on the state at x, t equals zero, if t′ > t, i.e. if a change δψ(x′, t′) has happened later than a

response δψ(x, t). This property becomes even more transparent in a relativistic quantum

theory. While the exposition of that theory goes beyond the scope of this book, it might be

still worthwhile to mention, that in the relativistic theory the Green function g(x−x′, t− t′)

is non-zero only in the area where

c(t− t′) ≥ |x− x′|. (30)

Here c is the speed of light. In virtue of this condition the change at x′, t′ can cause a change

at x, t only if these points can be connected to each other with a signal propagating with a

speed v = |x−x′|
t−t′ ≤ c. The relativistic condition (30) becomes the non-relativistic one t > t′,

if the speed of light is considered infinitely high.

Therefore, in quantum mechanics changes of a quantum system state are connected to

each other via a simple condition of causality. Transitions, incompatible with the condition

of causality, are impossible. In turn, quantum transitions compatible with the causality

principle, are governed by probabilistic laws.


