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Abstract

The number of partitions ps of a positive integer s can be expressed in terms of

Ps-1, Ps-2, .- P1, po (po=1) by the linear equations
1
bs = ;(/11?95—1 + Aops—o + -+ Apr H Apo) 5 s =1,2,3, ...

where each coefficient A, ; n=1, 2, 3, .., s represents the sum of divisors of n and has
universal numerical values A, ={1, 3,4,7,6,12,8, 15,13, 18, ...} independent of s.
In the present paper it is shown that A, can be obtained from a triangular algorithm where

the columns are well defined harmonic sequences:

n An

1 M= 1=1

2 A= 3=1+42

3 A3 = 4=14+0+3

4 M=7=14+24+0+4

5 As = 6=14+04+0+4+0+5

6 Ao =12=1+4+24+34+04+0+6

7 A7 = 8=14+04+04+0+04+0+7

8 A =15=1+4+24+0+4+0+0+0+38

9 A =13=1+4+0+34+0+0+04+0+0+9
10 AMo=18=14+24+0+0+54+0+0+04+0+10

As aresult A, is given exactly by the formula

n K-
ZZ cos 27r {’
K=1 =0

Inversing the linear equations it is also shown that the partitions ps are given in terms of
A1, A2, .., As by an s2-matrix establishing a new relation between partitions and harmonic

functions.



1. Introduction

The study of partitions [ is an old subject of number theory, still active today. The number

of partitions ps of a positive integer s is equal to the number of integer solutions of the

equation
ni+2nz+3n3+..+sns=s (D
where n1 > 0,n2 > 0, ..... ns = 0. Therefore, partitions are also of importance in statistical

mechanics [2] as they represent the number of states of macroscopic systems of N particles
distributed among s discrete energy levels for N > s.
In two previous communications [3,4], Eq. (1) was used in order to express partitions by

integrals over harmonic functions. The main result of this work is the exact formula

(G —

In the present paper, continuing on the same line of research, we establish a new matrix
relation between partitions and harmonic sequences. The theory is based on a linear
recursion formula of partitions connecting multiplicative with additive number theory,
presented later in the text [Eq. (14)].

Euler, gave us the following recursion formula [1] of ps :

Ps = Ds—1t Ps—2 — Ps—5 — Ps—7 t Ps—12 + Ps—15 — Ds—22 — Ps—26 T *** 3

which can be written compactly in the form:

[oe)

bs = Z(_l)K+1{ps—w(K) + ps—w(—x)} 4)

k=1

where w(k) = % (3k? — k) are the pentagonal numbers of Pythagoras w(x)=(1,5,12,28,...).



Later, Theocharis [5] expressed also ps by the recursion triangular algorithm:

po=1}1

p1 =po}1l

P2 = P1+ Do

pP3 =pz2+pPi; 3
pPs =pP3t+ P2

p5=p4+p3—po}2
Ps = Ps + P4 — P1

P7 = Ps T Ps — P2 —Po )

Ps = P7+Ps—P3—P1 |

Po =Pgt+P7 —Ps— P2 $ 5 (5)

P10 = P9+ Ps — Ps — P3 J

P11 = P10 + Po — Ps — Pa
where the summation of each line reproduces Eq.(3) and the steps of the algorithm are
given by the symplectic sequence:

[1], 1, [3], 2, [5], 3, [7], 4, - (6)
made up by the odd numbers in bracket and the positive integers. Summing up the above
sequence we obtain the indices of Eq.(3):

1=1; 2=1+1; 5=1+1+3;

7=1+1+3+2; 12=14+14+3+2+45; 15=1+14342454+3; .......... (7)
Clearly, the latter theories do not provide evidence that partitions depend on harmonic

functions. However, we argue that such dependence can be manifested if we express ps in

terms of ps-1, ps2, Ps-3, --» P1, Po, (po=1) by the linear representation
Ps = €1Ps-1 + €2Ps-2 + €3Ps-3 + ... + €s-1p1 + EPo (8)

where the coefficients €,; n=1,2,...s have universal numerical values independent of s

and are consistent with Euler’s expansion of Eq.(3).

en={[1],1,0,0,[-1,0],-1,0,0,0,0,[1,0,0],1,0,0,0,0,0,0,[—1, 0,0, 0],
-1,0,0,0,0,0,0,0,0, [1,0,0,0,0],1,0,0,0,0,0,0,0,0,0,0, ...} 9
Example:
Pso = P49 + Pag — P4as — P43 + p3s + P35 — P2s — P24 + p1s + pio
= 173525 + 147273 — 89134 — 63261 + 26015 + 14883 — 3718 - 1575
+ 176 + 42 = 204226 (10)



The structure of &, involves two separate groups of coefficients distinguished by brackets

in sequence (9) and forming respectively two triangular algorithms:

1 1 0 0

-1 0 -1 0 0 0 O
1 0 0 1 0 0 0 0 0O

-1 0 0 O -1 0 0 0 0 00 0O
1 0 0 0 O 1 0 0000 0 0 O0O0UO

(11)
We observe that the first column of each algorithm is the harmonic sequence (1, -1, 1, -1,...)
and the rest of columns all have zero terms. This shows that if Euler’s recursion formula
[Eq.(3)] is extended in the form of Eq.(8), then a certain harmonic behaviour of &, and

subsequently of ps is manifested.

Inversing the linear Eqs (8), we obtain ps in terms of €1, €, ..., €& by the s2-matrix:

1 0 0 0 0 &1
—& 1 0 0 0 &
_82 _81 1 0 0 83

Ds= . (12)
—&s—3 Es—4 Es—5 1 0 Es—2
—E&-2 €s-3 TE&-4 —& 1 €s-1
—&-1 €s—2 €s-3 —& —& Es

Example s=5:

1 0 0 0 & 1 0 0 0 1
—e, 10 0 g -1 1 0 o0 1

Ps =|—€& —& 1 0 &3 =|-1 -1 1 0 0(=7 (13)
_83 _82 _81 1 84, 0 _1 _1 1 O
—&, —& —& —& & 0 o -1 -1 -1

In the present article, we study an alternative linear representation of the partitions ps in

terms of ps1, Ps-2, Ps-3, .. P1, Po, (Po=1) having the form [ :
1
bs = 3 (M1Ps—1 + Aops—2 + -+ As_1p1 + Aspo) 5 s=1,2,3 .. (14)

where each coefficient A, represents the sum of divisors of the number n. For instance

n=6 ; A¢ =1+2+3+6 =12.



Therefore, the sequence A, has universal numerical values :

Am=1{1,3,4,7612,8,15,13,18,..} ; n=1,2,3,.. (15)
independent of s. As mentioned in ref.[1], Eq.(14) is a remarkable relation connecting

multiplicative with additive number theory.

Explicitly, Eq.(14) for s=1, 2, ..., 10 reads:

b1 = %{Po}

p2 = % {p1 + 3po}

ps = % {p2 + 3p1 + 4po}

Py = % {ps + 3p, + 4p1 + 7po}

ps = < {Pa+3ps +4p; + Tp. + 6po }

Ps = % {ps + 3ps + 4ps + 7pz + 6p1 + 12p,}

p7 = % {ps + 3ps + 4ps + 7p3 + 6p; + 12p; + 8po}

Pe = = {P7+3Ps + 4ps + 7ps + 6p3 + 12p;, + 8py + 15p,}

Po = 5 {Ps +3p; + 4ps + 7ps + 6ps + 12ps + 8p, + 15p; + 13p,}

1
P10 = 5 {po + 3pg + 4p; + 7ps + 6ps + 12p, + 8ps + 15p, + 13p; + 18p,} (16)

In the second part of the article it is shown that the coefficients A, can be obtained from a
well defined triangular algorithm based on harmonic sequences that are given by a simple
formula. In the third part of the article, inversing the linear Eqs(14), the partitions ps are
expressed in terms of Aj, A2, .., As by an s? - matrix so that a new relation between

partitions and harmonic functions is established.



2. Algorithm for the coefficients A,

Consider the harmonic sequences hx(n) ; n=x ; k=123, ..

hi(n)=(1,1,1,1,1,1,1,1,..) ; n=1,2,34,...

h2(n) =(2,0,2,0,2,0,2,0,..) ; n=2,3,4,5,...

hi(n) =(3,0,0,3,0,0,3,0,0,...) ; n=3,4,5,6,....

hs(n) =(4,0,0,0,4,0,0,0, ...) ; n=4,5,6,7,....

....................................... (17)
The above sequences have the following important property:

= {5 1 Eadr s

We construct next an algorithm in the form of a 2-D triangular matrix by using as columns
the sequences hy(n) of Eqs (17) where the sum of the terms of each row provides the

coefficients A, of Eq.(14):

An
A= 1=1
A= 3=1+4+2

As= 4=1+0+3

M= 7=14+2+0+4

A= 6=1+0+0+0+5
Ae=12=14+2+3+0+0+6

A= 8=14+0+0+0+0+0+7

As =15=14+2+0+4+0+0+0+8

Ao =13=14+0+3+0+0+0+0+0+9

10 Ao=18=1+2+040+5+0+0+0+0+ 10

11  Au=12=1+0+0+0+04+04+0+0+0+0+11
12 A12=28=1+2+3+4+0+6+0+0+0+0+0+12
............................................. (19)

The non-zero terms of the nth row of algorithm (19) are all the divisors of n. This is due to

O© 0O N O U1l W W IN = D

the correct vertical alignment of the sequences hx(n) forming the columns of the algorithm
in accordance with property (18).
Therefore, the coefficients A, obtained from Eqgs (19) coincide with the sequence of Eq.(15)

and are given by



Ay = Zl he() (20)

The sequences hy(n) introduced by Eqs (17) can be expressed for k=1,2,3, ... compactly

as follows:

Kk—1

.n
h,(n) = Z et s n=KkK+1,K+2,.. (21)

£=0
Example:
k=1 (¥=0) ; hi(n)=1 ; n=1,2,3,.. (22)
k=2 (£=0,1) ; hz(n)=1+e™ ; n=2,3,4,5,.. (23)

In particular, the first four terms of sequence hz(n) read:

hy(2) =14 e =2 ; h,(3)=1+€3 =0
hy(4) =14 =2 ; hy(5) =14e =0 (24)
Therefore, h2(n) =(2,0,2,0,...) ; n=2,3,4,5, ... (25)
21, 41T,
k=3 (Y=0,1,2) ; h3(n) = 1+e=3" +e3" ; n=3,4,5,6, ... (26)

In particular, the first six terms of sequence hz(n) read:

h(3) =1+ e*™ +e*™ =3

sm,  16m, 87—
h3(4)=1+€3 +e 3 =T=0
e3'—1
lom,  20m, @l0M
h3(5):1+€3 +e 3 :TZO
e3'—1
h3(6) = 1+ e*™ % =3
um, 28w, MM q
h3(7):1+€3 +e 3 :TZO
e3'—1
lem,  32m;  elOM 1
h3(8):1+€3 +e 3 :TZO (27)
e3'—1
Therefore h3(n)=(3,0,0,3,0,0,..) ; n=3,4,5,6, ... (28)



We prove that h¢(n) defined by Eq.(21) has property (18):

. . s . n
If x is a divisor of n viz. —=m ; m=2, 3, 4, ... we have

h,(n) = 1+ e2™m 4 g4mim 4 ... 4 p20c-Dmim — 4 (29a)

If x is not a divisor of n we have
Kk—1 eZnin -1

he(n) =1+ ezm'% n (ez"i%)z N (ezni%)3 + et (ezni%) = Tl =0 (29b)
e" 'k —

Taking the real part of each term of the £-sum of Eq.(21), we can also obtain for k=1,2,3,...

another form of hy(n):
k-1

n
h.(n) = Z cos (ant’) o n=Kk+1,k+2,.. (30)
=0

The previous examples of Eq. (21) are also derived for Eq.(30) as follows:
k=1(=0) ; hi(n)=1 ; n=1,2,3, .. (31D
k=2 (¢=0,1) ; hz2(n) = 1+cos(mn) ; n=2,3,4,5,... (32)

In particular, the first four terms of sequence hz(n) read:

h,(2) =1+ cos(2m) =2 ; h,(3) =1+ cos(3m) =0

h,(4) =1+ cos(4n) = 2 ; h,(5) =1+ cos(5m) =0 (33)
Therefore ho(n) = (2,0,2,0,...) ; n=2,3,4,5, .. (34)

k=3 (¥=0,1,2) ; h3(n)= 1+cos(2?nn) + cos(%nn) ; n=3,4,5,6, ... (35)

In particular, the first six terms of sequence hz(n) read:

h3(3) = 14+cos(2m)+cos (4m) =3
h3(4) = 1+cos(8?n) +cos(167n) =0
h3(5) = 1+cos(10Tn) +cos(20Tn) =0
h3(6) = 1+cos(4m)+cos (8m) =3

28w

h3(7) = 1+cos(14Tn) +cos(T) =0

h3(8) = 1+cos(167n) +cos(32—n) 0 (36)

3



Therefore h3(n) =(3,0,0,3,0,0,...) ; n=3,4,5,6, ... (37)

We prove that hi(n) defined by Eq.(30) has property (18):

If x is a divisor of n viz. Ezm ; m=2, 3,4, .. we have

hk(n) =1 + cos(2mm) + cos(4mm) + .... +cos [2(k—1)mm] = k (38a)
If x is not a divisor of n so that sin(ng) # 0 we have [¢]

sin (nn)

Note that the imaginary part of the £-sum in Eq.(21) is equal to zero:

h.(n) = cos [(K — 1)n—] =0 (38b)

If x is a divisor of n viz. Ezm ; m=2, 3,4, ..we have
K—1
Z sin(2mmf) = sin(2mm) + sin(4mm) + --- + sin[2(k — 1)mm] = 0 (39a)
=1

If x is not a divisor of n so that sin(n %) # 0 we use the formula (6]

k-1

( ng) _ sin(nn)

n(2m—
4 Kk sin (n )
K

Hence, for k=1, 2, 3, .... both Eqs(21,30) provide the harmonic sequences h«(n) of Eqs (17)

sm[(K 1)n] 0 (39Db)

)
1l

forming the columns of algorithm (19). Introducing Eqs (21,30) into Eq.(20), we obtain the

coefficients A, of the linear representation of Eq.(14):

zn:z—: 2misct zn:Zcos anf) (40)
k=1 £=0

K=1 £=0
in terms of harmonic functions. Note also that Eq.(40) is an exact formula for the sum of the

divisors of n.

Let us calculate explicitly A1, A2, ..., Ag from Eq.(40):
n=1

( —) = cos(2m0) =1 (41)

IIMH
M

)
1]



2 k-1
?
Ay = Z cos <4n —) = cos(4m0) + {cos(2m0) + cos(2m)} =3 (42)
k=1 ¢=0 K
n=3
3 k-1
?
Az = Z Z cos (67r—)
K
k=1 +¢=0

n=4
4 k-1
£
Ay = Z cos (87‘[ —)
k=1 ¢=0
Ay = cos(8m0) + {cos(4m0) + cos(4m)} + {cos (8?” 0) + cos (8?”) + cos (167”)}
+{cos(2m0) + cos(2m) + cos(4m) + cos(6m)} = 7 (44)
n=>5
5 k-1
£
Ag = Z Z cos (10n—)
K
k=1 ¢=0

As = cos(10m0) + {cos(5m0) + cos(5m)} + {cos (107” 0) + cos (an) + cos (ZOTH)}

+ {cos (%ﬂ 0) + cos (5711) + cos(5m) + cos (HTH)}

+{cos(2m0) + cos(2m) + cos(4m) + cos(6m) + cos(8m)} = 6 (45)
n=6
6 k-1 Y
Ag = cos|12m—

Ae = cos(12m0) + {cos(6m0) + cos(6m)} + {cos(4m0) + cos(4m) + cos(8m)}
+{cos(3m0) + cos(3m) + cos(6m) + cos(9m)}

+ {cos (12?” ) + cos (12?”) + cos (24?”) + cos (36?”) + cos (%Tn)}

+{cos(2m0) + cos(2m) + cos(4m) + cos(61) + cos(8m) + cos(10m)} = 12 (46)

10



n=7

7 k-1

P Z Z cos (1471;)

Kk=1¢=0

A5 = cos(14m0) + {cos(7m0) + cos(7m)} + { (% 0) n cos( ) + cos (287‘[)}

+ cos( ) + cos ( ) + cos(7m) + cos (Zlﬂ)}

{
+{am(““ )+ os( )+ s( )+ s( )+ s(s)}
{a;( )+—os( )+c ( )+wwsUn)+am(7;)+am(%?»

+{cos(2m0) + cos(2m) + cos(4m) + cos(61) + cos(8m) + cos(10m) + cos(12m)} = 8

+

(47)
n==38
8 xk-1
4
Ag = Z Z cos (16n—)
K
Kk=14=0

Ag = cos(16m0) + {cos(8m0) + cos(8m)} + {cos (— 0) + Cos( ) + cos (327:)}

3

+{cos(4m0) + cos(4m) + cos(8m) + cos(12m)}
+{cos( O)+cos( - )+cos( i )+cos( i )+cos(6§n)}
+ {cos (? 0) + cos ( ; ) + cos ( ) + cos(8m) + cos ( ) + cos (M)Tn)}
+{cos( O)+ os( )+ S( )+ S( )+ S( )+ s( )+cos(967”)}
+{cos(2m0) + cos(2m) + cos(4m) + cos(6m) + cos(8m) + cos(10m)
+cos(12m) + cos(24m)} = 15 (48)

Extending Eqs(19) of the algorithm and developing Eqs(40), the sequence A, up to n=50
reads:
Mm={1,3,4,7,6,12,8,15,13,18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60,
31,42, 40, 56, 30,72, 32,63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72,
48,124, 57,93} (49)

11



Replacing the above coefficients into Eq.(14) we get pso as a sum of 50 terms:

:i{ MDao A2Dasg n A3Da7 n A4Dae n AsDas AeDaa n A7Das3
501173525 441819 499016 738906 534804 902100 506088

AgDasz AoPa1 MoDao n M1D39 n A2D3s n M3D37 n AaD36
797610 579579 672084 374220 728420 302918 431448

A1sD3s n MeD34 n M7D33 n A1gD32 n MoD31 n A20P30 n A21D29
357192 381610 182574 325611 136840 235368 146080

A22D28 +/123P27+/124P26 +/125P25 AzeP2a  Az27D23  AgDaa +/129P21
133848 72240 146160 60698 66150 50200 56112 23760

/1301920_}_/131?919 +/132P18 +/133P17 +/134P16+/135P15 +/136P14+/137P13
45144 15680 24255 14256 12474 8448 12285 3838

AsgP12  AzoP11 . AsoPio  Aa1Po  AuzDs  AusD7  AuaDe  AusPs  AueDa
4620 3136 + 3780 + 1260 + 2112 + 660 + 924 + 546 + 360

Aa7D3  AagPz APy /150190} 10211300
T gaa T oas T 57 T ooz T 50

Pso

+

= 204226 (50)

3. Matrix representation of partitions

Inversing linear Eqs(14), we obtain the partitions ps in terms of Ay, A2, ..., As in the form of

the determinant of an s2-matrix. The method can be developed by the following steps:

For s=1,2 and po=1, Eqs(14) read

1p1+0p2=A1
—AMp1+2p2=A2 (51)
where
1 0
D, = ’ | = 21 52
2 _/11 2 ( )
Solution
_ 111 M| 171 1 _
P2=5010 4 =51l-1 3l=2 (53)

12



For s=1,2,3

where
1 0 0
D;=|-4 2 0|=3!
_A‘Z _A‘l 3
Solution
1 1 0o A 1
pz=7"|"h 2 A|=7|-1
D 3!
3=, -4 A5 -3
For s=1,2,3,4 and po=1, Eqs(14) read
1p1+0p2+0p3+0ps=A1
—A1p1+2p2+0p3+0ps=Az
—A2p1—A1p2+3p3+0ps=A3
—A3p1—A2p2—A1p3+4ps=A4
where
1 0 0 0
D -1 2 0 0 — 4
4+ _/12 _/11 3 0 o )
_/13 _A‘Z _A‘l 4
Solution
1 0 0o A
_ i _A‘l 2 0 A‘Z _ i
Pe=p -2, -A 3 |4 |-3
—A3 Ay A A
For s=1,2,3,4,5 and po=1, Eqs(14) read

and po=1, Eqs(14) read

1p1+0p2+0ps=As
—A1p1+2p2+0p3=A2
—A2p1—A1p2+3p3=A3

1p1+0p2+0p3+0ps+0ps=A1
—A1p1+2p2+0p3+0ps+0ps=Az
—A2p1—A1p2+3p3+0ps+0ps=A3
—A3p1—A2p2—A1p3+4ps+0ps=2As4
—Mp1—A3p2—A2p3—A1pa+5ps=As

13

w o o
N A W

(54)

(55)

(56)

(57)

(58)

(59)

(60)



where

1 0 0
-, 2 0
D5 = _Az _/11 3
A3 —Ay —A4
A —A3 —A
Solution
1 0 0 0
(-2 0 o
s[-1;, -4, -4, 4
_A4 _A3 _A‘Z _/1

Clearly, the coefficients A4, A2,

1
_Al
_Az

_/15—3
_/15—2
_As—l

—A
—As—4
—As-3
_/15—2

0

0

3
_AS—S
_/15—4
_15—3

U1 © © O O

0
0
0

14

= 51

-3
—4

0 0 1
0 0 3
-1 3 0 4| =7
-1 4 7
-3 -1 6

0 0

0 0

0 0

| = s!

0 0
s—1 0
-A s

0 A

0 A,

0 A3

0 A5
s—1 Ag_4
_Al /15

(61)

(62)

(63)

(64)



Example: Using coefficients A, [EqQ.(49)] up to n=10, Eq.(64) gives

1 0o 0O O 0 0 0 0 0 A
-4 2 0 0 0 0 0 0 0 A
A4 -4, 3 0 0 0 0 0 0 A
A - -4 4 0 0 0 0 0 A
1A -2 -4 -4 5 0 0 0 0 A
Po=To1[-2c -4, =4 -4, -4, 6 0 0 0 A
7 0 0
8 0
9

1 0 0 0 0o o0 0 o0 o0 1

-1 2 0 0 0o 0 0 o0 o0 3

-3 -1 3 0 0O 0 0 0 0 4

-4 -3 -1 4 0 0 0 0 o0 7

_1f-7 -4 -3 -1 5 0 0 0 0 6

~10!l-6 -7 -4 -3 -1 6 0 0 0 12

-12 -6 -7 -4 -3 -1 7 0 0 8

-8 -12 -6 -7 —4 -3 -1 8 0 15

-15 -8 -12 -6 -7 -4 -3 -1 9 13

-13 -15 -8 -12 -6 -7 —4 -3 -1 18
152409600 :
© 3628800 (65)

Since the coefficients A, have already been expressed in terms of harmonic sequences by
Egs (19,40), it is clear that the s2-matrix representation of ps in terms of A, [Eq.(64)]
establishes a new relation between partitions and harmonic functions. Note that previous

work [34] has already shown that partitions can be represented by harmonic integrals

[Eq.(2)].

4. Conclusions

We study the linear representation of the partitions ps [Eq.(14)] where each coefficient A,
is the sum of divisors of the number n. It is shown that the coefficients A, are universal

numbers [Eq.(15)] obtained by a well defined triangular algorithm [Egs.(19)].

15



The columns of this algorithm are harmonic sequences h«(n) defined by Eqs(17) and
given explicitly by Eqs(21,30) so that A, can be expressed in terms of harmonic functions
by Eqs(40). Inversing the linear Eqs(14), it is also shown that the partitions ps depend on
A1, A2, .., As by an s2-matrix [Eq.(64)], establishing a new relation between partitions and

harmonic functions.
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