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Abstract 
 

The number of partitions  ps  of a positive integer  s  can be expressed in terms of   
ps-1, ps-2, …, p1, p0  (p0=1) by the linear equations  �� = 1� (������ + ������ + ⋯ + ������ + ����)   ;       � = 1, 2, 3, … 
where each coefficient  λn  ;  n=1, 2, 3, .., s  represents the sum of divisors of  n  and has 
universal numerical values   λn = {1, 3, 4, 7, 6, 12, 8, 15, 13, 18, …} independent of  s. 
In the present paper it is shown that  λn  can be obtained from a triangular algorithm where 
the columns are well defined harmonic sequences: 

n λn 
1 λ1  =   1 = 1 
2 λ2  =   3 = 1 + 2 
3 λ3  =   4 = 1 + 0 + 3 
4 λ4  =   7 = 1 + 2 + 0 + 4 
5 λ5  =   6 = 1 + 0 + 0 + 0 + 5 
6 λ6  = 12 = 1 + 2 + 3 + 0 + 0 + 6 
7 λ7  =   8 = 1 + 0 + 0 + 0 + 0 + 0 + 7 
8 λ8  = 15 = 1 + 2 + 0 + 4 + 0 + 0 + 0 + 8 
9 λ9  = 13 = 1 + 0 + 3 + 0 + 0 + 0 + 0 + 0 + 9 
10 λ10 = 18 = 1 + 2 + 0 + 0 + 5 + 0 + 0 + 0 + 0 + 10 

 
As a result  λn  is given exactly by the formula  �� = ����� �2� 	
 ℓ����

ℓ��

�

���
 

Inversing the linear equations it is also shown that the partitions  ps  are given in terms of   
λ1, λ2, …, λs   by an  s2-matrix  establishing a new relation between partitions and harmonic 
functions. 
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1. Introduction 
 

The study of partitions [1] is an old subject of number theory, still active today. The number 
of partitions  ps  of a positive integer  s  is equal to the number of integer solutions of the 
equation 

n1 + 2n2 + 3n3 + … +sns = s                  (1) 
where  n1 ≥ 0,  n2 ≥ 0, …. . ns ≥ 0. Therefore, partitions are also of importance in statistical 
mechanics [2]  as they represent the number of states of macroscopic systems of N particles 
distributed among  s  discrete energy levels for  N ≥ s. 
In two previous communications [3,4], Eq. (1) was used in order to express partitions by 
integrals over harmonic functions. The main result of this work is the exact formula  
 

               �� = 2�� 
���	 [�� + 
��]��	 (
�) ��

���

	 �


�
������� − 2���� ��                                                   (2) 

 
In the present paper, continuing on the same line of research, we establish a new matrix 
relation between partitions and harmonic sequences. The theory is based on a linear 
recursion formula of partitions connecting multiplicative with additive number theory, 
presented later in the text [Eq. (14)]. 
Euler, gave us the following recursion formula [1] of ps :  
 
        �� =  ���� +  ���� − ���� − ���� + ����� + ����� − ����� − ����
 + ⋯                          (3) 

 
which can be written compactly in the form: 

        �� =  ��−1���������(�) + ����(��)��

���
                                                                                       (4) 

where  ω(κ) = ��  (3
� − 
)  are the pentagonal numbers of Pythagoras ω(κ)=(1,5,12,28,…). 
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Later, Theocharis [5]  expressed also ps by the recursion triangular algorithm: 
p0  = 1 } 1 
p1  = p0 } 1 
p� = p� + p�
p� = p� + p�
p� = p� + p�

�    3  

p� = p� + p� − p�
p
 = p� + p� − p��  2  
p� =  p
 + p� − p� − p�  
p� =  p� + p
 − p� − p�   
p� = p� + p� − p� − p�   
p�� = p� + p� − p� − p�  
p�� = p�� + p� − p
 − p�⎭⎪⎬⎪⎫    5                   (5) 

 

where the summation of each line reproduces Eq.(3) and the steps of the algorithm are 
given by the symplectic sequence: 

[1],  1,  [3],  2,  [5],  3,  [7],  4, …                   (6) 
made up by the odd numbers in bracket and the positive integers. Summing up the above 
sequence we obtain the indices of Eq.(3): 

1=1 ;         2=1+1 ;       5=1+1+3 ;    
7=1+1+3+2 ;   12=1+1+3+2+5 ;  15=1+1+3+2+5+3 ; ………..   (7) 

Clearly, the latter theories do not provide evidence that partitions depend on harmonic 
functions. However, we argue that such dependence can be manifested if we express ps in 
terms of  ps-1 , ps-2 , ps-3 , …, p1 , p0 ,  (p0=1) by the linear representation  
 

ps = ε1ps-1 + ε2ps-2 + ε3ps-3 + … + εs-1p1 + εsp0             (8) 
 

where the coefficients εn ;   n=1,2,…,s  have universal  numerical values independent of  s  
and are consistent with Euler’s expansion of Eq.(3). 
 

εn = {[1], 1, 0, 0, [−1, 0], −1, 0, 0, 0, 0, [1, 0, 0], 1, 0, 0, 0, 0, 0, 0, [−1, 0, 0, 0], 
 −1, 0, 0, 0, 0, 0, 0, 0, 0,   [1, 0, 0, 0, 0], 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …}     (9) 

Example:  
p50 = p49 + p48 − p45 − p43 + p38 + p35 − p28 − p24 + p15 + p10 

      = 173525 + 147273 − 89134 − 63261 + 26015 + 14883 − 3718 – 1575 
      + 176 + 42 = 204226                      (10) 
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The structure of  εn  involves two separate groups of coefficients distinguished by brackets 
in sequence (9) and forming respectively two triangular algorithms: 
 

1        1 0 0         −1 0       −1 0 0 0 0       
1 0 0      1 0 0 0 0 0 0     −1 0 0 0     −1 0 0 0 0 0 0 0 0   
1 0 0 0 0    1 0 0 0 0 0 0 0 0 0 0 

                                                                                                                                                       (11)  
We observe that the first column of each algorithm is the harmonic sequence (1, -1, 1, -1,…) 
and the rest of columns all have zero terms. This shows that if Euler’s recursion formula 
[Eq.(3)] is extended in the form of Eq.(8), then a certain harmonic behaviour of εn and 
subsequently of  ps  is manifested. 
 
Inversing the linear Eqs (8), we obtain ps in terms of  ε1, ε2, …, εs  by the s2-matrix: 
 

ps = �� 
1        0         0

− �        1         0
− �        − �           1

       
      ⋯   0            0
      ⋯   0            0
      ⋯   0            0

               
 �   �  � 

  ⋯        ⋯       ⋯             ⋯   ⋯           ⋯              ⋯− ��� − ��� − ���
− ��� − ��� − ���
− ��� − ��� − ���        

⋯  1         0
⋯ − �         1
⋯ − �       − �           

 ��� ��� �  

  ��                                          (12) 

 
Example  s=5: �� = �� 1 0 0 0  �

− � 1 0 0  �
− � − � 1 0  � 
− � − � − � 1  �
− � − � − � − �  �  ��   =  �� 1 0 0 0 1

−1 1 0 0 1
−1 −1 1 0 0
0 −1 −1 1 0
0 0 −1 −1 −1

 �� = 7                           (13) 

 
In the present article, we study an alternative linear representation of the partitions ps in 
terms of  ps-1 , ps-2 , ps-3 , …, p1 , p0 ,  (p0=1) having the form [1] : �� =  1�  ������� + ������ + ⋯ + ������ + �����    ;       � = 1, 2, 3 …                                  (14) 
where each coefficient λn represents the sum of divisors of the number n. For instance   
n=6  ;  λ6 =1+2+3+6 = 12. 
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Therefore, the sequence λn has universal  numerical values : 
 

   λn = {1, 3, 4, 7, 6, 12, 8, 15, 13, 18, …}   ;   n=1, 2, 3,…                                                           (15) 
independent of s. As mentioned in ref.[1], Eq.(14) is a remarkable relation connecting 
multiplicative with additive number theory. 
 

Explicitly, Eq.(14) for  s=1, 2, …, 10 reads: 
 ��  =  ��  !��"  ��  =  ��  !�� + 3��"  ��  =  ��  !�� + 3�� + 4��"  ��  =  ��  !�� + 3�� + 4�� + 7��"  ��  =  ��  !�� + 3�� + 4�� + 7�� + 6�� "  �
  =  �
  !�� + 3�� + 4�� + 7�� + 6�� + 12��"  ��  =  ��  !�
 + 3�� + 4�� + 7�� + 6�� + 12�� + 8��"  ��  =  ��  !�� + 3�
 + 4�� + 7�� + 6�� + 12�� + 8�� + 15��"  ��  =  ��  !�� + 3�� + 4�
 + 7�� + 6�� + 12�� + 8�� + 15�� + 13��"  ��� =  �

��  !�� + 3�� + 4�� + 7�
 + 6�� + 12�� + 8�� + 15�� + 13�� + 18��"                    (16) 
 
In the second part of the article it is shown that the coefficients λn can be obtained from a 
well defined triangular algorithm based on harmonic sequences that are given by a simple 
formula. In the third part of the article, inversing the linear Eqs(14), the partitions  ps  are 
expressed in terms of  λ1, λ2, …, λs  by an  s2 - matrix  so that a new relation between 
partitions and harmonic functions is established. 
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2. Algorithm for the coefficients λn  
 

Consider the harmonic sequences   hκ(n)   ;   n≥ κ   ;   κ = 1,2,3, …  
h1(n) = (1, 1, 1, 1, 1, 1, 1, 1, …)  ;       n=1,2,3,4,…. 
h2(n) = (2, 0, 2, 0, 2, 0, 2, 0, …)  ;       n=2,3,4,5,…. 
h3(n) = (3, 0, 0, 3, 0, 0, 3, 0, 0, …)  ;      n=3,4,5,6,…. 
h4(n) = (4, 0, 0, 0, 4, 0, 0, 0, …)  ;       n=4,5,6,7,…. 
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .          (17) 

The above sequences have the following important property: 
ℎ��	� = #  
    �$  
  �� % ��&���' �$ 	        

0    �$  
  �� 	�( % ��&���' �$ 	                                                                                   (18) 
We construct next an algorithm in the form of a  2-D triangular matrix by using as columns 
the sequences  hκ(n)  of Eqs (17) where the sum of the terms of each row provides the 
coefficients λn of Eq.(14): 

n λn 
1 λ1  =   1 = 1 
2 λ2  =   3 = 1 + 2 
3 λ3  =   4 = 1 + 0 + 3 
4 λ4  =   7 = 1 + 2 + 0 + 4 
5 λ5  =   6 = 1 + 0 + 0 + 0 + 5 
6 λ6  = 12 = 1 + 2 + 3 + 0 + 0 + 6 
7 λ7  =   8 = 1 + 0 + 0 + 0 + 0 + 0 + 7 
8 λ8  = 15 = 1 + 2 + 0 + 4 + 0 + 0 + 0 + 8 
9 λ9  = 13 = 1 + 0 + 3 + 0 + 0 + 0 + 0 + 0 + 9 
10 λ10 = 18 = 1 + 2 + 0 + 0 + 5 + 0 + 0 + 0 + 0 + 10 
11 λ11 = 12 = 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 11 
12 λ12 = 28 = 1 + 2 + 3 + 4 + 0 + 6 + 0 + 0 + 0 + 0 + 0 + 12 

   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                         (19) 
The non-zero terms of the nth row of algorithm (19) are all the divisors of n. This is due to 
the correct vertical alignment of the sequences hκ(n)  forming the columns of the algorithm 
in accordance with property (18).  
Therefore, the coefficients λn obtained from Eqs (19) coincide with the sequence of Eq.(15) 
and are given by  
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                                    �� = � ℎ�(	)
�

���
                                                                                                  (20) 

The sequences  hκ(n)  introduced by Eqs (17) can be expressed for  κ=1,2,3, …  compactly 
as follows: 

                           ℎ��	� = �)�	���ℓ
���

ℓ��
    ;     	 = 
, 
 + 1, 
 + 2, …                                                  (21)  

 
Example:  
κ=1  (ℓ=0)     ;  h1(n)=1                ;  n=1, 2, 3,…               (22) 
 

κ=2  (ℓ=0,1)  ;  h2(n)=1+)�	�   ;  n=2, 3, 4, 5, ...              (23) 
In particular, the first four terms of sequence  h2(n)  read: 
 

ℎ��2� = 1 + )�	� = 2             ;                   ℎ��3� = 1 + )�	� = 0                                        
           ℎ��4� = 1 + )�	� = 2              ;                  ℎ��5� = 1 + )�	� = 0                                        (24)  
Therefore,  h2(n) = (2, 0, 2, 0, …)  ;  n=2, 3, 4, 5, …                                                                       (25) 
 

κ=3  (ℓ=0,1,2)  ;  h3(n) = 1+)��
� �� + )��

� ��   ;  n=3, 4, 5, 6, …          (26) 
 

In particular, the first six terms of sequence  h3(n)  read: 
ℎ��3� = 1 + )�	� + )�	� = 3                                                                          

ℎ��4� = 1 + )�	� � + )�
	� � = )�	� − 1)�	� � − 1
= 0                                                  

ℎ��5� = 1 + )��	� � + )��	� � = )��	� − 1)��	� � − 1
= 0                                              

ℎ��6� = 1 + )�	� + )�	� = 3                                                                         

ℎ��7� = 1 + )��	� � + )��	� � = )��	� − 1)��	� � − 1
= 0                                              

                         ℎ��8� = 1 + )�
	� � + )��	� � = )�
	� − 1)�
	� � − 1
= 0                                                             (27) 

Therefore   h3(n)=(3, 0, 0, 3, 0, 0, …)  ;  n=3, 4, 5, 6, …              (28) 
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We prove that  hκ(n)  defined by Eq.(21) has property (18): 
 

If  κ  is a divisor of  n  viz.  ��=m  ;  m=2, 3, 4, … we have 
                         ℎ��	� = 1 + )�	�� + )�	�� + ⋯ + )������	�� = 
                                              (29a) 
 

If  κ  is not a divisor of  n  we have  

ℎ��	� = 1 + )�	��� +  �)�	����� + �)�	����� + ⋯ + �)�	������� = )�	�� − 1)�	��� − 1
= 0            (29b) 

Taking the real part of each term of the ℓ-sum of Eq.(21), we can also obtain for  κ=1,2,3,… 
another form of  hκ(n): 

                 ℎ��	� = ���� �2� 	
 ℓ����

ℓ��
   ;     	 = 
, 
 + 1, 
 + 2, …                                            (30) 

The previous examples of Eq. (21) are also derived for Eq.(30) as follows: 
κ = 1 (ℓ=0)       ;   h1(n) = 1   ;   n=1, 2, 3, …               (31) 
κ = 2 (ℓ=0,1)   ;   h2(n) = 1+cos(πn)  ;  n=2, 3, 4, 5,…           (32) 

 

In particular, the first four terms of sequence h2(n) read: 
 

     h��2� = 1 + cos (2�) = 2             ;              h��3� = 1 + cos(3�) = 0                                             
      h��4� = 1 + cos(4�) = 2            ;               h��5� = 1 + cos(5�) = 0                                   (33)  

 

Therefore h2(n) = (2, 0, 2, 0, …)   ;   n=2, 3, 4, 5, …              (34) 
 

κ = 3 (ℓ=0,1,2)   ;   h3(n) = 1+cos��	� 	� + cos��	� 	�   ;   n=3, 4, 5, 6, …     (35) 
 

In particular, the first six terms of sequence h3(n) read: 
 

h3(3) = 1+cos(2π)+cos (4π) = 3 
h3(4) = 1+cos��	� � +cos��
	� � = 0 
h3(5) = 1+cos���	� � +cos���	� � = 0 
h3(6) = 1+cos(4π)+cos (8π) = 3 
h3(7) = 1+cos���	� � +cos���	� � = 0 

h3(8) = 1+cos��
	� � +cos���	� � = 0                  (36) 
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Therefore h3(n) = (3, 0, 0, 3, 0, 0, …)   ;   n=3, 4, 5, 6, …            (37) 
 
We prove that hκ(n) defined by Eq.(30) has property (18):  
If  κ  is a divisor of  n  viz.  ��=m  ;  m=2, 3, 4, … we have 
hκ(n) = 1 + cos(2πm) + cos(4πm) + …. +cos [2(κ−1)πm] = κ           (38a) 
If  κ  is not a divisor of  n  so that sin�� �

�� ≠ 0  we have [6]  

      ℎ��	� = ��	��	���	 �� 	
� ��� *�
 − 1�� 	
+ = 0                                                                                 (38b) 

 
Note that the imaginary part of the ℓ-sum in Eq.(21) is equal to zero: 
If  κ  is a divisor of  n  viz.  ��=m  ;  m=2, 3, 4, … we have ���	�2�,ℓ� = ��	�2�,� +

���

ℓ��
��	�4�,� + ⋯ + ��	�2�
 − 1��,� = 0                         (39a) 

If  κ  is not a divisor of  n  so that sin�� �
�� ≠ 0  we use the formula [6]  

 ���	 �2� 	
 ℓ� = ��	 (�	)��	 �� 	
����

ℓ��
��	 *�
 − 1�� 	
+ = 0                                                               (39b) 

Hence, for  κ=1, 2, 3, …. both Eqs(21,30) provide the harmonic sequences hκ(n) of Eqs (17) 
forming the columns of algorithm (19). Introducing Eqs (21,30) into Eq.(20), we obtain the 
coefficients  λn  of the linear representation of Eq.(14): 

   �� = ��)�	���ℓ
���

ℓ��

�

���
= ����� �2� 	
 ℓ����

ℓ��

�

���
                                                                              (40) 

in terms of harmonic functions. Note also that Eq.(40) is an exact formula for the sum of the 
divisors of n. 
 
Let us calculate explicitly  λ1, λ2, …, λ8  from Eq.(40):  

 n=1 

     �� = ����� -2� ℓ
. = ����2�0� = 1
���

ℓ��

�

���
                                                                           �41� 
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n=2 

     �� = ����� -4� ℓ
. = ����4�0� + !����2�0� + ����2��" = 3
���

ℓ��

�

���
                          �42� 

 
n=3 

         �� = ����� -6� ℓ
.���

ℓ��

�

���
                           

         �� = ����6�0� + !����3�0� + ��� (3�)" + !����2�0� + ����2�� + ��� (4�)" = 4    (43) 
 
n=4 

         �� = ����� -8� ℓ
.���

ℓ��

�

���
                           

         �� = ����8�0� + !����4�0� + ����4��" + /��� ��	� 0� + ��� ��	� � + ��� ��
	� �� 
               +!����2�0� + ����2�� + ����4�� + ��� (6�)" = 7                                                   (44)      

 
n=5 

         �� = ����� -10� ℓ
.���

ℓ��

�

���
                           

         �� = ����10�0� + !����5�0� + ����5��" + /��� ���	� 0� + ��� ���	� � + ��� ���	� �� 

              + /��� ��	� 0� + ��� ��	� � + ����5�� + ��� ���	� ��  
               +!����2�0� + ����2�� + ����4�� + ����6�� + ����8��" = 6                                   (45)  

 
n=6 

         �
 = ����� -12� ℓ
.���

ℓ��




���
                           

         �
 = ����12�0� + !����6�0� + ����6��" + !����4�0� + ����4�� + ����8��" 
+!����3�0� + ����3�� + ����6�� + ����9��"                                                            

               + /��� ���	� 0� + ��� ���	� � + ��� ���	� � + ��� ��
	� � + ��� ���	� ��  
               +!����2�0� + ����2�� + ����4�� + ����6�� + ����8�� + ��� (10�)" = 12        (46)  
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n=7 

         �� = ����� -14� ℓ
.���

ℓ��

�

���
                           

         �� = ����14�0� + !����7�0� + ����7��" + /��� ���	� 0� + ��� ���	� � + ��� ���	� �� 

             + /��� ��	� 0� + ��� ��	� � + ����7�� + ��� ���	� ��                                  
             + /��� ���	� 0� + ��� ���	� � + ��� ���	� � + ��� ���	� � + ��� ��
	� ��  

             + /��� ��	� 0� + ��� ��	� � + ��� ���	� � + ����7�� + ��� ���	� � + ��� ���	� ��  
             +!����2�0� + ����2�� + ����4�� + ����6�� + ����8�� + ��� (10�) + ��� (12�)" = 8  
                                (47) 

 
n=8 

         �� = ����� -16� ℓ
.���

ℓ��

�

���
                           

         �� = ����16�0� + !����8�0� + ����8��" + /��� ��
	� 0� + ��� ��
	� � + ��� ���	� �� 
           +!����4�0� + ����4�� + ����8�� + ����12��"                                  
           + /��� ��
	� 0� + ��� ��
	� � + ��� ���	� � + ��� ���	� � + ��� �
�	� ��  

           + /��� ��	� 0� + ��� ��	� � + ��� ��
	� � + ����8�� + ��� ���	� � + ��� ���	� ��  

          + /��� ��
	� 0� + ��� ��
	� � + ��� ���	� � + ��� ���	� � + ��� �
�	� � + ��� ���	� � + ��� ��
	� ��  
          +!����2�0� + ����2�� + ����4�� + ����6�� + ����8�� + ����10��                              +
               +����12�� + ��� (24�)" = 15                                                                                              (48)   
 
Extending Eqs(19) of the algorithm and developing Eqs(40), the sequence  λn  up to n=50 
reads: 
λn={1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60,  
         31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72,  
         48, 124, 57, 93}                            (49) 
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Replacing the above coefficients into Eq.(14) we get  p50  as a sum of 50 terms: 
 

           ��� = 1
50 # �����

173525 + �����
441819 + �����

499016 + ����

738906 + �����

534804 + �
���
902100 + �����

506088
+ �����

797610 + �����
579579 + ������

672084 + ������
374220 + ������

728420 + ������
302918 + �����


431448
+ ������

357192 + ��
���
381610 + ������

182574 + ������
325611 + ������

136840 + ������
235368 + ������

146080
+ ������

133848 + ������
72240 + �����


146160 + ������
60698 + ��
���

66150 + ������
50200 + ������

56112  + ������
23760

+ ������
45144 + ������

15680 + ������
24255 + ������

14256 + �����

12474 + ������

8448 + ��
���
12285 + ������

3838
+ ������

4620 + ������
3136 + ������

3780 + �����
1260 + �����

2112 + �����
660 + ����


924 + �����
546 + ��
��

360
+ �����

144 + �����
248 + �����

57 + �����
93 0 = 10211300

50 = 204226                            (50) 
 
 
3. Matrix representation of partitions 
 

Inversing linear Eqs(14), we obtain the partitions  ps  in terms of  λ1, λ2, …, λs  in the form of 
the determinant of an  s2-matrix. The method can be developed by the following steps: 
 
For  s=1,2  and  p0=1,  Eqs(14) read 

    1p1+0p2=λ1 
−λ1p1+2p2=λ2                     (51) 

where 
                            1� = 2 1 0

−�� 2 2 = 2!                                                                                                    (52)  
Solution 
 
                      �� = 11�

2 1 ��
−�� �� 2 = 1

2! 3 1 1
−1 3 3 = 2                                                                      (53) 

 
 



 
 

13 

For  s=1,2,3  and  p0=1,  Eqs(14) read 
    1p1+0p2+0p3=λ1 
 −λ1p1+2p2+0p3=λ2 
−λ2p1−λ1p2+3p3=λ3                                                                                            (54) 

where 

                            1� = 4 1 0 0
−�� 2 0
−�� −�� 3

 4 = 3!                                                                                    (55) 

Solution 

                      �� = 11�
4 1 0 ��
−�� 2 ��
−�� −�� �� 4 = 1

3! 4   1   0   1
−1   2   3
−3 −1   4

 4 = 3                                            (56) 

 

For  s=1,2,3,4  and  p0=1,  Eqs(14) read 
     1p1+0p2+0p3+0p4=λ1 
  −λ1p1+2p2+0p3+0p4=λ2 
 −λ2p1−λ1p2+3p3+0p4=λ3 

−λ3p1−λ2p2−λ1p3+4p4=λ4                                                                                (57) 
where 

                            1� = � 1 0 0 0
−�� 2 0 0
−�� −�� 3 0
−�� −�� −�� 4

 � = 4!                                                                      (58) 

 

Solution 

                      �� = 11�
� 1 0 0 ��
−�� 2 0 ��
−�� −�� 3 ��
−�� −�� −�� �� � = 1

4! � 1 0 0 1
−1 2 0 3
−3 −1 3 4
−4 −3 −1 7

 � = 5                        (59) 

 

For  s=1,2,3,4,5  and  p0=1,  Eqs(14) read 
      1p1+0p2+0p3+0p4+0p5=λ1 
   −λ1p1+2p2+0p3+0p4+0p5=λ2 
  −λ2p1−λ1p2+3p3+0p4+0p5=λ3 

 −λ3p1−λ2p2−λ1p3+4p4+0p5=λ4 

−λ4p1−λ3p2−λ2p3−λ1p4+5p5=λ5                                                                     (60) 



 
 

14 

where 

                            1� = �� 1 0 0 0 0
−�� 2 0 0 0
−�� −�� 3 0 0
−�� −�� −�� 4 0
−�� −�� −�� −�� 5

 �� = 5!                                                         (61) 

Solution 

            �� = 11� �� 1 0 0 0 ��
−�� 2 0 0 ��
−�� −�� 3 0 ��
−�� −�� −�� 4 ��
−�� −�� −�� −�� �� �� = 1

5! �� 1 0 0 0 1
−1 2 0 0 3
−3 −1 3 0 4
−4 −3 −1 4 7
−7 −4 −3 −1 6

 ��  = 7        �62� 

 
Clearly, the coefficients  λ1, λ2, …, λs-1  provide for any  s  the determinant  
 

                1� = ��
1 0 0 … 0 0 0

−�� 2 0 … 0 0 0
−�� −�� 3 … 0 0 0

… … … … … … …
−���� −���� −���� … � − 2 0 0
−���� −���� −���� … −�� � − 1 0
−���� −���� −���� … −�� −�� �  �� = �!                                   (63) 

 

and the general solution for the partition  ps  reads 

             �� = 1�! ��
1 0 0 … 0 0 ��

−�� 2 0 … 0 0 ��
−�� −�� 3 … 0 0 ��

… … … … … … …
−���� −���� −���� … � − 2 0 ����
−���� −���� −���� … −�� � − 1 ����
−���� −���� −���� … −�� −�� ��  ��                                         (64) 
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Example: Using coefficients  λn  [Eq.(49)] up to  n=10, Eq.(64) gives 
 

��� = 1
10! ��

� 1 0 0 0 0 0 0 0 0 ��
−�� 2 0 0 0 0 0 0 0 ��
−�� −�� 3 0 0 0 0 0 0 ��
−�� −�� −�� 4 0 0 0 0 0 ��
−�� −�� −�� −�� 5 0 0 0 0 ��
−�� −�� −�� −�� −�� 6 0 0 0 �

−�
 −�� −�� −�� −�� −�� 7 0 0 ��
−�� −�
 −�� −�� −�� −�� −�� 8 0 ��
−�� −�� −�
 −�� −�� −�� −�� −�� 9 ��
−�� −�� −�� −�
 −�� −�� −�� −�� −�� ���

 ��
�
 

 

= 1
10! ��

� 1 0 0 0 0 0 0 0 0 1
−1 2 0 0 0 0 0 0 0 3
−3 −1 3 0 0 0 0 0 0 4
−4 −3 −1 4 0 0 0 0 0 7
−7 −4 −3 −1 5 0 0 0 0 6
−6 −7 −4 −3 −1 6 0 0 0 12

−12 −6 −7 −4 −3 −1 7 0 0 8
−8 −12 −6 −7 −4 −3 −1 8 0 15

−15 −8 −12 −6 −7 −4 −3 −1 9 13
−13 −15 −8 −12 −6 −7 −4 −3 −1 18

 ��
�
 

 

                = 152409600
3628800 = 42                                                                                                 (65) 

 
Since the coefficients  λn  have already been expressed in terms of harmonic sequences by 
Eqs (19,40), it is clear that the  s2-matrix representation of  ps  in terms of  λn  [Eq.(64)] 
establishes a new relation between partitions and harmonic functions. Note that previous 
work [3,4] has already shown that partitions can be represented by harmonic integrals 
[Eq.(2)]. 
 
 
4. Conclusions 
 

We study the linear representation of the partitions  ps  [Eq.(14)] where each coefficient  λn  
is the sum of divisors of the number  n.  It is shown that the coefficients  λn  are universal 
numbers [Eq.(15)] obtained by a well defined triangular algorithm [Eqs.(19)]. 
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The columns of this algorithm are harmonic sequences  hκ(n)  defined by Eqs(17) and 
given explicitly by Eqs(21,30) so that  λn  can be expressed in terms of harmonic functions 
by Eqs(40). Inversing the linear Eqs(14), it is also shown that the partitions  ps  depend on 
λ1, λ2, …, λs  by an  s2-matrix [Eq.(64)], establishing a new relation between partitions and 
harmonic functions. 
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