Generalized Hooke’s Law

Rajeev Kumar*

Abstract
In this paper the generalized Hooke’s law has been presented.
Keyword: Generalized Hooke’s law.

1 INTRODUCTION
Hooke’s law is valid for small deformation of a solid body.

2 GENERALIZED HOOKE’S LAW
Let \(E_i = E_i(x, y, z) \); \(G_{ij} = G_{ij}(x, y, z) \); \(\nu_{ij} = \nu_{ij}(x, y, z) \); \(\nu_{ij} = \nu_{ji} \); i, j [i \neq j] = x, y, z

\[
\begin{align*}
E_x &= \frac{\sigma_{xx}}{E_x} - \nu_{xy} \frac{\sigma_{yy}}{E_y} - \nu_{xz} \frac{\sigma_{zz}}{E_z} \\
E_y &= \frac{\sigma_{yy}}{E_y} - \nu_{yx} \frac{\sigma_{xx}}{E_x} - \nu_{yz} \frac{\sigma_{zz}}{E_z} \\
E_z &= \frac{\sigma_{zz}}{E_z} - \nu_{zx} \frac{\sigma_{xx}}{E_x} - \nu_{zy} \frac{\sigma_{yy}}{E_y} \\
\gamma_{xy} &= \frac{\tau_{xy}}{G_{xy}} \\
\gamma_{yz} &= \frac{\tau_{yz}}{G_{yz}} \\
\gamma_{zx} &= \frac{\tau_{zx}}{G_{zx}}
\end{align*}
\]

where \(\gamma_{ij} = \gamma_{ji} \); \(\tau_{ij} = \tau_{ji} \); \(G_{ij} = G_{ji} \)
Thus there are nine body parameters for a given body and at a given location within the body.

3 HOOKE’S LAW FOR A HOMOGENEOUS BODY
Case (i): For a homogeneous body having cuboidal symmetry in arrangement of unit cells. For this case the corresponding moduli of elasticity and Poisson’s ratios will be same for all locations within the body, i.e.,
\(E_i(x, y, z) = A_i \); \(G_{ij}(x, y, z) = B_{ij} \); \(\nu_{ij}(x, y, z) = C_{ij} \)
where i, j [i \neq j] = x, y, z and \(A_i \); \(B_{ij} \); \(C_{ij} \) are material dependent constants.

*rajeevkumar620692@gmail.com
Case (ii): For a homogeneous body having axial symmetry in arrangement of unit cells. For this case the corresponding moduli of elasticity and Poisson’s ratios will be same for all locations within the body, i.e.,
\[E_i(r, \theta, z) = A_i, \ G_{ij}(r, \theta, z) = B_{ij}, \ \nu_{ij}(r, \theta, z) = C_{ij} \]
where \(i, j \ [i \neq j] = r, \theta, z \) and \(A_i, B_{ij}, C_{ij} \) are material dependent constants.

Case (iii): For a homogeneous body having spherical symmetry in arrangement of unit cells. For this case the corresponding moduli of elasticity and Poisson’s ratios will be same for all locations within the body, i.e.,
\[E_i(r, \theta, \phi) = A_i, \ G_{ij}(r, \theta, \phi) = B_{ij}, \ \nu_{ij}(r, \theta, \phi) = C_{ij} \]
where \(i, j \ [i \neq j] = r, \theta, \phi \) and \(A_i, B_{ij}, C_{ij} \) are material dependent constants.

4 CONCLUSION

Thus this theory provides us with an easy and effective method for stress analysis.
References