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Abstract 

  A non-relativistic QED equation is developed for extended spinning charges in the 

Schrodinger picture.  It is based on the corresponding classical electromagnetic - particle 

system, and the Hamiltonian associated with it. 

                                                                  

1. Introduction 

   Most studies of non-relativistic QED consider a system of non-spinning point charges 

interacting with the electromagnetic field, for example see Healy1.  Spin can be included 

by adding a Pauli spin term to the Hamiltonian, see for example Messiah 2.   Moniz and 

Sharp 3,4,  Grotch and Kazes 5, and Roa-Neri and Jimenez 6 consider non-relativistic QED 

with extended charges, but do not include spin.  They quantize the system in the 

Heisenberg picture, and look at the effect of the self-fields.   Spohn7 considers non-

relativistic QED with extended charges and includes spin by introducing the Pauli spin 

matrices into the non-spinning QED equations.  He using a method developed by 

Feynman and shown by Sakurai 8 which automatically yields the value g = 2.   Our 
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method develops an equation for any g factor starting with a Hamiltonian with the spin 

included and then quantizing the whole system.    

   Nodvik9, Appel and Kiessling10 and Spohn7 look at relativistic rigid extended spinning 

charges, and derive equations of motion from a Lagrangian, but do not quantize the 

system.  

   Kiessling11 looks at the conservation of total charge, energy, linear and angular 

momentum for the combined system of the electromagnetic field and a set of non-

relativistic extended spinning charges, and shows that spin must be included for the 

conservation laws to hold.  

   In this paper we use a non-relativistic model of Lorentz electrodynamics, that is a set of 

classical non-relativistic extended spinning particles interacting with the electromagnetic 

field, and find the corresponding Lagrangian and Hamiltonian for the field and particle 

system. This system, including the spin, is then quantized by a canonical quantization in 

the Schrodinger picture. The charges are taken to be rigid and only interact by the 

electromagnetic field, that is their charge distributions are allowed to overlap. 

  Non-relativistic QED can be derived from relativistic QED, but only for point particles, 

and because they are point particles there are problems with infinities and thus 

renormalization.   Using an extended particle with spin may lead to a better 

understanding of these infinities.  While papers 3-6 look at the effect of the self-field, in 

this paper the self-field is included in the general formulation but is not separated out 

specifically. 

  

 



 2. Classical Equations 

   Consider a system of N rigid particles of charge qi, charge density 
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where )t(ir represents the position of particle i, )t(iv  its velocity, and )t(i   its angular 

 velocity. )'r(f  is a smooth function concentrated around 0'r =  with |'|'r r= , and  

)t(' irrr −= .  Bold face will be used to indicate a vector, and * indicates the complex 

conjugate. 

  Using the transverse gauge, 0=• A , Maxwell's equations take the form, for example 

see Jackson 12  
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where A is the vector potential,  the scalar potential, and the speed of light is taken to be 

one. 

  Since 0=• A , we can expand the vector potential as a Fourier expansion 
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where the n
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box of size L3.  We use (2L3)-1/2 instead of L-3/2 so that, in terms of the degrees of 

freedom, the basis functions form an orthogonal set which are normalized to one.  Using 

this relation for A in eq. (2), and taking the inner product with dv exp(-ik’•r)n'
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using dv exp(i(k – k’)•r) = L3k,k' and n
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integral over the box of size L3.  Note that 
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using a partial integration, and taking the scalar potential  to be constant at spatial 

infinity and the fact that n
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   L3/2(k2ank + 
2
n

2

dt

ad k ) = 4 2 dv exp(-ik•r)n
k •j = 4 2 dv exp(-ik•r)n

k •
=

N

1i
ij  

 

                                     = 
=

•
N

1i
i )exp(-i24 rk dv exp(-ik•(r – ri))

n
k •ji 

 

                                     = 
=


N

1i
iq24 exp(-ik•ri) dv' exp(-ik•r’)n

k •(vi + ixr' )f(r')       (6)                   

 

with r’ = r – ri. 

  The particle equations of motion for particle i are taken to be 
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where the E and B fields are due to all the particles, including particle i, so the particle 

self field is included. In this way the radiation reaction is included in the equations of 

motion. m is the bare mass of particle i, and I is its mechanical moment of inertia. 

  We can pick a particular form for the mass and charge distribution, and will take them 

to be a solid sphere of constant mass density and a shell of charge.   In this case the 

mechanical moment of inertia is I = 
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  Then using E = - - 
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, B = xA, and a Fourier expansion of the vector potential, 

the spatial equation (7) takes the form   
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Since 2 = -4,  
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so that 
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where r'' = r - ri, r''' = r' - rj, and the j = i term has been left out since it makes no 

contribution.  '' is the gradient with respect to r'', and i

 

is the gradient with respect to 

ri. Thus the spatial equation (9) takes the form 
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Now use E = - -
t

A
, B = xA, and the Fourier expansion of the vector potential in the 

rotational equation (8) to obtain 
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using the relation kx 'dv f(r')r'exp(ik•r’) = 0 and dv i(r - ri)x = 0 for a spherically 

symmetric charge distribution. 



    The first condition kx 'dv f(r')r'exp(ik•r’)= 0 can be seen to be true by choosing the 

coordinate system such that only kx is non-zero, and noting that 

 

    'dv f(r')y'exp(ikx’) = 'dv f(r')z'exp(ikx’) = 0                                                         (14) 

 

by spherical symmetry.  The second relation dv i(r - ri)x = 0 then follows by 

making a Fourier expansion of , and using the first relation. 
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where x, y, and z are the unit vectors in the x, y and z directions. 

 

3. Variational Principles 



  For a Lagrangian of the combined system try 
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where 
+k

represents the sum over the k vectors for kz > 0, and k = |k|.   Richoz15 writes 

down a similar Lagrangian but for a single charge and then derives equations of motion 

from it.    

    Variation of  L with respect to the spatial particle coordinates ri yields the equations 
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switching the j and k indices, and the r'' and r''' integrations.

 

This agrees with eq. (12).      

   Variation of L with respect to the individual particle Euler angles yields the equations  
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where 
iv  is the gradient with respect to vi.  Using the notation 
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which in terms of the conjugate momentum becomes 
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using pnk = pR
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4. Quantization 
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and a ^ indicates an operator. Using eq. (26), the corresponding Schrodinger equation 

takes the form 
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 = Ĥ  = [ 

=

N

1i

{
2m

1
(-ii -  dv iA)2 + 

2I

1
(-i iD̂  -  dv i(r - ri)xA)2} 

 

      + 
|' - |

)'()(
dv'dv

2

1

rr

rr 


 

+ 
8

1
 
+ = 


+






k kk

2

1n
2

n
I

2

2
n

R

2
2 )

a
  

a
(){-(4  + k2ank*ank}]              (28)     

 

where  = (ri,i,i,i,a
R

nk,aI
nk,t).  Now define the following creation and annihilation 

operators for kz > 0 

 

     *b̂ n
R

k  = 
2

1
{

2h

k
aR

nk - 
k

2h

kn
Ra


}                                                                   (29a) 

 



      kn
Rb̂  = 

2

1
{

2h

k
aR

nk + 
k

2h

kn
Ra


}                                                                  (29b)                                                                         

 

     *b̂ n
I

k = 
2

1
{

2h

k
aI

nk - 
k

2h

kn
Ia


}                                                                      (29c) 

 

     kn
Ib̂  = 

2

1
{

2h

k
aI

nk + 
k

2h

kn
Ia


}                                                                       (29e) 

 

using h = 2.  To extend these operators over all of k space, introduce the new operators 
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Kroll13 defines the same type of operators, but leaves out the (n,1

 

- n,2) terms.  These 

terms are needed because n
-k

 

= (n,1

 

- n,2)n
k.  

    In terms of these operators we have 
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so that eq. (28) becomes 
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If we restrict the system to spin 
2

1
 particles, then try a solution of the form 
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where the matrix  is given by 
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The 
2

1
 factor is for normalization.  does not appear to be single valued in the 

orientation coordinate space, but this is because the space is doubly connected, for  

example see Merzbacher17.  Then using the fact that 
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and the fact that different 
2211 n,mn,m  .... are independent, eq. (33) yields 2N identical sets 

of the 2N equations 
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where now  stands for ,...n,,...nm,m 2121
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 •  dv i((r - ri)x Â ) ,...,..n'n,...n,..mm,m i21i21

                                                    (38)

 

 

 

where the  are the Pauli spin matrices. 

    Bohm and Hiley18 also look into the many body Pauli equation but conclude that the 

above method is not viable because the number of equations does not agree with the 

number of degrees of freedom of the system, that is there are 2n equations for 3n Euler 

angles.   They are considering a hidden variable theory while here we are not and the total  

wavefunction, eq. (34), is just a function of all the position and Euler angle coordinates.   

We never try to specify the values of the particular Euler angles, but just the probability 

of obtaining a particular value of them.   

   Now set  = 'exp(-i(
8I

3N
)t) so that, dropping the prime on , eq. (37) becomes 
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   To see how this equation changes as the size of the particles is reduced and the external 

fields vary little over the size of the particle,  expand the vector potential about the center  

of particle i so that 
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where a comma represents a partial derivative, and we have dropped terms which involve 

third and higher order derivatives of the vector potential.   Then using the spherical 

symmetry of the charge distribution, eq. (39) becomes 
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where Qi =  dv ir
2.   The g factor is defined using gLi
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   The m and I that go into the g definition here are the mechanical values only, that is 

they do not include the self-field electromagnetic contribution.   The reason that the self-

field contribution is not included is because we have ignored higher order derivatives of 

the vector potential which will have a large contribution from the self-fields of the 

particles.  

   Now look at equation (41) using our value of I = 
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so that using I = 
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2
 we have g = 
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5
and equation (41) becomes 
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where we have set r’’ = r – ri, r’’’ = r’- rj and used spherical coordinates about the ri and 

rj centers in the next to last term.   The length of r’’ and r’’’ is restricted to r0 and  

  '''d''d  represents the integrals over the angular parts of the r’’ and r’’’ coordinates.  

     In the limit of r0 going to zero, r’’ and r’’’ go to zero and the angular dependence of 
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Thus in the limit of a point particle equation (43) reduces to 
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Here g = 
3

5
 which just includes the mechanical mass and moment of inertia.  

 

5. Conclusions 

  This paper investigated  non-relativistic QED of extended spinning particles with an 

arbitrary g factor included and came up with a general equation which includes the self- 

field terms.  In the limit of a point particle the self-field terms have not been ignored.   If 

these can be included in the limit of a point particle then using the result of this 

calculation may lead to a better understanding of the infinities associated with a point 

particle with spin.    No definite predictions can be made from these equations until a way  

to include the self-field terms in the limit of a point particle can be achieved.    This 

inclusion of the self-field terms probably has to be done in the Heisenberg picture using 

methods similar to those used in papers 3-7. 
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