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Abstract: 

  This paper is a comparison of two different canonical quantization methods of the 

electromagnetic field, one commonly used, and the other similar to one by Kroll.  Both 

quantization methods will be carried out in the Schrodinger representation. 

 

I. Introduction 

  As is commonly done, the transverse gauge is used and a Fourier expansion is made of 

the vector potential.  The resulting Fourier coefficients are then quantized by two 

different methods.  The first method is similar to a method by Kroll [1], and the second 

method is commonly done in the Heisenberg representation, see for example Mandel and 

Wolf [2]. The advantage of the first method is that its quantization produces a 

wavefunction of the field in the configuration space of the vector potential, while the 

second method is more straightforward.  A canonical transformation is found between the 

two methods, and the corresponding Wigner distributions [3] of the ground and first 

excited states are found to be the same.  

   The first method appears to have started with the paper by Kroll [1], although Wheeler 

[4] gives the ground state in terms of the magnetic field.    Kuchar [5] also uses this 
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ground state when comparing with the gravitational field. 

   The second method appears to have originated with Dirac [6] and is used by a number 

of authors, for example see [7-11]. 

 

II. Classical field 

  The transverse gauge condition with 0 =• A  and 0 =  is chosen where A is the 

vector potential and  is the scalar potential.  Bold print is used to indicate a vector.   In 

terms of a Fourier expansion the vector potential takes the form 
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where 
k

is a sum over all of k space, and the field is confined to a box of size 3L , see, 

for example, Mandel and Wolf [2].   Maxwell's equations then reduce to 
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where the speed of light is taken to be 1 and k= .  A is real so the condition  

*kk aa =−  is needed.   Define k
1 and k

2  as two unit vectors perpendicular to each other 

and to k with the convention kk
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22  −=− ,  or kk
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   Now consider the independent variables.  We need to satisfy the conditions  



0=• kak  and *kk aa =−  which can be done in the two following ways: 
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III. Variational principles 

 

 

   In the “a” formulation the Lagrangian, conjugate momentum, and Hamiltonian  

 

take the form 

 

 

           *}aa
dt

*da

dt

da
{

8

1
L nn

2n
2

1n

n
a kk

k

k

k −


= 
+ =

                                                   (4a) 

 

 



          
dt

da

4

1

dt

da

L
i

dt

da

L
ippp n

n
I

a

n
R

a
n

Ia
n

Ra
n

a k

kk

kkk


=




+




=+=                             (4b) 

                     
 

a

n
I

n
Ia

2

1n

n
R

n
Ra

a L-}
dt

da
p

dt

da
{pH           

k
k

k

k
k += 

+ =

 

 

               *}aa*pp){(4
8

1
nn

2
n

a
n

a
2

1n

2

kkkk

k

+


= 
+ =

                                        (4c) 

                 
 
while in the “q” formulation the Lagrangian, conjugate momentum, and Hamiltonian are 
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In both cases the constant in front of the Lagrangian is chosen so that the Hamiltonian is 

equal to the total energy  •+•


= )dv(
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1
E BBEE , for example see Misner, Thorne and 

Wheeler [12].  
+k

means a sum over that part of k space with 0k z  , and dv  

represents an integral over the volume 3L . 

 
 
 



IV. Canonical transformation 

 
 
   What is the relationship between the two types of independent variables?   We  

 

have 
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with the corresponding conjugate momentum 
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We also have  
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Eqs. (7-10) can be combined to yield the canonical transformation 
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   To see that this transformation is canonical it is possible to show that Hamilton’s 

 

equations in the knq and kn
qp  coordinates transforms into Hamilton’s equations in the 

 

kna  and kn
ap  coordinates using the transformations given by eqs. (11a-d). 

 

 

V. Quantization of the “a” formulation 

 

  The “a” formulation is quantized by replacing the conjugate momentum kn
aRp
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in the Hamiltonian aH  to transform eq. (4c) into the Schrodinger like wave equation 
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where a ^ represents a quantum mechanical operator. 

  Then since this is just the Hamiltonian for a set of independent harmonic oscillators,  we 

can define the following creation and annihilation operators for 0k , see for example 

Saxon [13]. 
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with the following ground state 
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where 
+k

indicates a product over k space with 0k z  .  Note that this can be written as 
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where )(rB is the magnetic field.   This agrees with Wheeler [4]. 

 

VI. Coherent state and new operators 

   To extend the operators given in eqs. (13a-d) over all of k space, consider a coherent 

state defined by a classical field with the ground state superimposed upon it, see for 

example Schiff [14].   A classical solution for the vector potential can be written in the 

form 
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with   knA representing the amplitude and   kn the phase of a wave going in the k  

direction with polarization    k
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where the c superscript on kn
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   We then set the probability density c  for the coherent state c   to the probability 

density of the ground state superimposed upon a classical solution so that 
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The c that corresponds to this and satisfies eq. (12) is 
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up to an overall phase factor.  

   Now look at the effect of the annihilation operators kn
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We can separate out the kn
cA  and k-n

cA  components if we define the new operator 
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for all k. 
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The 
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 is included so that the states defined by these operators will be normalized.   

Kroll [1] makes a similar type of operator, but leaves out the )( n2n1 − terms. These 

terms are needed because kk
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  In terms of the operators given by eqs. (21a-b) and eqs. (22a-b), the Hamiltonian,  

vector potential,  and electromagnetic field momentum take the form 
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VII. Quantization of the “q” formulation 

   Now look at the quantization of the “q” formulation.   The system is quantized by  
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  Now again following Saxon [5], define the creation and annihilation operators 
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  In terms of the operators given by eqs. (26a-b), the Hamiltonian, vector potential and 

electromagnetic field momentum take the following form 
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   Thus the Hamiltonian, vector potential, and field momentum take the same form in 

terms of the creation and annihilation operators in both the “a” and “q” formulations. 

                

 



VIII. Comparison of ground states and first excited states 

  

For the “a” formulation, the ground state solution is given by eq. (14). and

 

the first excited states are 
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with 0k z  . 

    In the “q” formulation, the ground state takes the form 
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where 
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indicates a product over all of k space. The first excited state is given by 
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   To compare these states in the two formulations, look at their corresponding Wigner 

phase space distributions [3].   In the “a” formulation this can be written as 
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and in the “q” formulation as 
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For the “a” formulation ground state, eq. (14), the corresponding Wigner distribution is 
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and for the “q” formulation ground state, eq. (29), it takes the form 
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Under the canonical transformation, eq. (11a-d), a0

 

transforms into q0 , even though the 

wavefunctions themselves occupy different subspaces of the phase space. 

 

   For the first excited states,  the Wigner distribution corresponding to kan  is 
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and for k-an  is 
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for 0k z  , while the Wigner distribution for kqn  is 
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for all k.  Upon using the canonical transformations eq. (11a-d), we find that  

kk qnan = and kk -qn-an = so the Wigner phase space distributions of the first excited 

states are the same. 

 

IX.  Conclusions 

   The “a” method has the advantage that the wave function lives in the configuration 

space of the vector potential while the “q” method has the advantage of being more direct 

and simpler.  By using a coherent state with the “a” method, a way for justifying the new 

creation and annihilation operators is found.  Since the two methods are related by a 

canonical transformation they are just different ways of looking at the same situation. 

    The phase space distributions of the ground and first excited states are found to be the 

same for the two methods, but it is not apparent that a corresponding unitary 

transformation can be found between the two wave functions. 
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