Quantum X-entropy in Generalized Quantum Evidence Theory

Fuyuan Xiaoa,\,*

aSchool of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China

Abstract

In this paper, a new quantum model of generalized quantum evidence theory is proposed. Besides, a new quantum X-entropy is proposed to measure the uncertainty in generalized quantum evidence theory.

Keywords: Generalized quantum evidence theory, Quantum X-entropy

1. A new quantum model of GQET

Definition 1.1 Let $\{|\Phi\rangle = \{ |\phi_1\rangle, \ldots, |\phi_j\rangle, \ldots, |\phi_m\rangle \}$ be a QFOD. A set of basis events is defined:

$$BE = \{|\emptyset\rangle, |\phi_1\rangle, \ldots, |\phi_j\rangle, \ldots, |\phi_m\rangle \},$$

where $|\emptyset\rangle$ is an unknown event.

Definition 1.2 A vector representation of a basis event is defined:

$$|e_z\rangle = [\eta_0, \eta_1, \ldots, \eta_g, \ldots, \eta_m]^T, \quad \eta_g = \begin{cases} 1, & g = z, \\ 0, & g \neq z. \end{cases}$$

Definition 1.3 A pure quantum state of proposition $|\psi_i\rangle$ is defined:

$$|\psi_i\rangle = \sum_{c} \lambda_i |e_c\rangle,$$
where λ_i^z is a complex number with $\sum_t |\lambda_i^z|^2 = 1$.

Definition 1.4 A density operator of $|\psi_i\rangle$ is defined as:

$$\rho_i = |\psi_i\rangle\langle\psi_i|.$$ \hfill (4)

Definition 1.5 The density operator of a GQBBA is defined as:

$$\rho_{Q_M} = \sum_i Q_M(|\psi_i\rangle)\rho_i.$$ \hfill (5)

2. The proposed quantum X-entropy

Definition 2.1 The quantum X-entropy is defined as:

$$X(Q_{M}) = -\tr\left(\rho_{Q_M} \log \frac{\rho_{Q_M}}{d}\right),$$ \hfill (6)

where d denotes eigenvectors of ρ_{Q_M}.

Let E_w and d_w be eigenvalues and eigenvectors of ρ_{Q_M}, respectively. The quantum X-entropy is also defined as:

$$X(Q_{M}) = -\sum_w E_w \log \frac{E_w}{d_w}.$$ \hfill (7)